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ABSTRACT Ehrlichia chaffeensis causes human monocytic ehrlichiosis by replicating
within phagosomes of monocytes/macrophages. A function disruption mutation within
the pathogen’s ECH_0660 gene, which encodes a phage head-to-tail connector pro-
tein, resulted in the rapid clearance of the pathogen in vivo, while aiding in induction
of sufficient immunity in a host to protect against wild-type infection challenge. In
this study, we describe the characterization of a cluster of seven genes spanning from
ECH_0659 to ECH_0665, which contained four genes encoding bacterial phage pro-
teins, including the ECH_0660 gene. Assessment of the promoter region upstream of
the first gene of the seven genes (ECH_0659) in Escherichia coli demonstrated tran-
scriptional enhancement under zinc and iron starvation conditions. Furthermore, tran-
scription of the seven genes was significantly higher under zinc and iron starvation
conditions for E. chaffeensis carrying a mutation in the ECH_0660 gene compared to
the wild-type pathogen. In contrast, for the ECH_0665 gene mutant with the function
disruption, transcription from the genes was mostly similar to that of the wild type or
was moderately downregulated. Recently, we reported that this mutation caused a
minimal impact on the pathogen’s in vivo growth, as it persisted similarly to the wild
type. The current study is the first to describe how zinc and iron contribute to E. chaf-
feensis biology. Specifically, we demonstrated that the functional disruption in the
gene encoding the phage head-to-tail connector protein in E. chaffeensis results in the
enhanced transcription of seven genes, including those encoding phage proteins,
under zinc and iron limitation.

IMPORTANCE Ehrlichia chaffeensis, a tick-transmitted bacterium, causes human monocytic
ehrlichiosis by replicating within phagosomes of monocytes/macrophages. A function
disruption mutation within the pathogen’s gene encoding a phage head-to-tail connec-
tor protein resulted in the rapid clearance of the pathogen in vivo, while aiding in
induction of sufficient immunity in a host to protect against wild-type infection chal-
lenge. In the current study, we investigated if the functional disruption in the phage
head-to-tail connector protein gene caused transcriptional changes resulting from metal
ion limitations. This is the first study describing how zinc and iron may contribute to
E. chaffeensis replication.

KEYWORDS Rickettsiales, Anaplasmataceae pathogens, tick-borne diseases, metal ion
deficiency, Ehrlichia chaffeensis, iron, metal ions, zinc

T he obligate intracellular rickettsial pathogen Ehrlichia chaffeensis grows within
the phagosomes of monocytes/macrophages and causes human monocytic ehrli-

chiosis (HME), a potentially life-threatening zoonotic disease (1, 2). This pathogen is
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transmitted primarily from an infected Amblyomma americanum tick (3, 4). Common
signs and symptoms of HME range from influenza-like symptoms to a life-threatening
disease (5). E. chaffeensis also causes a similar disease in dogs, in addition to
infecting white-tailed deer and coyotes (6). Several other obligate tick-transmitted
Anaplasmataceae family pathogens, including Ehrlichia ewingii, Ehrlichia canis, Ehrlichia
muris subspecies eauclairensis, and Anaplasma phagocytophilium, are also known to
cause diseases in people (7–9). These pathogens have reduced genomes and are also
evolved for intracellular survival within arthropod hosts and cause persistent infections
in vertebrate hosts (6). E. chaffeensis replication within phagosomes inhibits phago-
some-lysosome fusion, and the pathogen evades the host immune responses by
several mechanisms (10–18). Ehrlichia species and other related Anaplasmataceae
pathogens depend on the host for nutritional sources such as metabolites and metal
ions for survival (6, 19).

While iron and zinc are two essential metal ions, neither of them is readily accessi-
ble within a host for an intracellular pathogen (20). Zinc and iron are also known to
play essential roles in host innate and adaptive immune functions (21, 22). During
pathogen infection, nutritional immunity can be triggered that involves the host-
imposed metal ion deprivation or poisoning to counter infection progression (23, 24).
Iron can catalyze the formation of reactive oxygen species (ROS) during macrophage-
based bacterial killing by damaging bacterial membranes, proteins, and DNA (25).
Bacterial pathogens also employ proficient ways to regulate the acquisition of the
metal ions to both support nutritional requirements and to evade metal ion-mediated
host response (24). Previous studies reported that E. chaffeensis-containing phago-
somes and, similarly, Mycobacterium tuberculosis-containing phagosomes in human
monocytes accumulate transferrin receptors (26, 27). E. chaffeensis inclusions are early
endosomes, which selectively accumulate transferrin receptors, possibly facilitating the
acquisition of iron by the pathogen from the host cell cytoplasm. A recent study
described upregulation of iron-regulated genes under iron starvation conditions in a
related bacterium, Ehrlichia ruminantium, by a predicted master regulatory protein,
ErxR (28).

Simplification and assimilation of bacteriophage genomes into bacterial chromo-
somes is well documented (29). Such a process, leading to residual phage genomes
being integrated into bacterial chromosomes, serves as a secretion system to support
bacterial growth or provide enzymes that benefit the bacteria by helping them to
adapt to adverse environments (30–32). The bacteriophage-derived secretion systems
in bacteria are used for multiple functions, including the translocation of effector pro-
teins and metal ion transporters (30, 33). Rickettsial pathogens, including E. chaffeensis,
contain only two known secretion systems, the type I secretion system (T1SS) and the
type IV secretion system (T4SS) (6). We recently discovered that a function disruption
mutation within a E. chaffeensis gene (ECH_0660) encoding a phage head-to-tail con-
nector protein causes the bacterial attenuation and leading to its rapid clearance from
vertebrate hosts (34, 35).

In the current study, we assessed how the ECH_0660 mutation contributes to
E. chaffeensis attenuation by performing molecular characterization of the seven genes
spanning from ECH_0659 to ECH_0665, as four genes from this cluster encode phage-
related proteins, including ECH_0660. We described how deprivation of zinc and iron
impacts gene expression from the gene cluster in wild-type E. chaffeensis and mutants
of the pathogen with gene function disruptions in two of the seven genes, ECH_0660
and ECH_0665.

RESULTS
Analysis of E. chaffeensis DNA sequence surrounding the ECH_0660 gene. A

genomic segment spanning E. chaffeensis genes ECH_0659 to ECH_0665 (seven genes)
was evaluated for its relationship with the ECH_0660 gene encoding the phage head-
to-tail connector protein in which we reported a disruption mutation impacting in vivo
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growth (34) (see Fig. S1 in the supplemental material). Intergenic spacer sequences are
absent or ranged in size from 43 to 141 bp long in some of the seven genes assessed.
The intergenic spacer regions are absent between the coding regions of ECH_0660,
ECH_0661, and ECH_0662. Furthermore, the protein coding sequences for these three
genes are overlapped by a few nucleotides, namely, four nucleotides between
ECH_0660 and ECH_0661 and 23 nucleotides between ECH_0661 and ECH_0662.
ECH_0659 encodes a hypothetical protein, while ECH0661, ECH_0662, and ECH_0665
are similar to ECH_0660 in encoding predicted bacteriophage proteins, phage major
tail protein, phage stopper protein, and phage terminase large subunit protein, respec-
tively. Structural prediction analysis revealed a greater degree of structural homology
for the four predicted phage proteins of E. chaffeensis with previously documented
structural phage proteins and a protein required for phage DNA packaging (see Fig. S2
in the supplemental material) (36). ECH_0663 and ECH_0664 genes are paralogs
encoding hypothetical proteins sharing 34.5% homology. To determine if the seven
genes are conserved in other related Anaplasmataceae family bacteria, genomes of
seven organisms belong to the genera Anaplasma, Ehrlichia, Neorickettsia, and
Wolbachia were compared (see Fig. S3 in the supplemental material). Homologs for all
seven genes were identified in other Ehrlichia species. Anaplasma phagocytophilum
lacks only an ECH_0663 homolog (one of the two paralogs), while both ECH_0663 and
ECH_0664 homologs are absent in Anaplasma marginale and Wolbachia. Neorickettsia
sennetsu contains only one of the seven genes.

Promoter segment upstream of the first gene of the seven genes responds to
the metal ion restriction. Bioinformatic analysis of the putative 294-bp-long promoter
segment that is located upstream of the coding sequence of the first of the seven
genes revealed the presence of several inverted repeat (IR) sequences with the poten-
tial to form intrastrand secondary structures (Fig. 1). Furthermore, the sequence
included putative binding sites that likely interact with zinc- and iron-responsive pro-
teins (37). To test whether transcription from the seven genes could be influenced by
these metal ions, the promoter segment was cloned in front of the lacZ reporter gene
in a plasmid, and b-galactosidase activity was tested in E. coli XL1-Blue MRF9 under
conditions of chemically defined medium adjusted by the availability of metal ions. To
assess the zinc restriction, E. coli transformed with a plasmid vector (pJT3) was first
grown under phosphate starvation conditions in the culture medium with or without
15mM ZnSO4 for 24 h. The endogenous alkaline phosphatase (PhoA) activity expressed
from the E. coli chromosome served as an ideal positive control for our study to mea-
sure the impact of zinc starvation assessed from the E. coli lysates, as it requires zinc for
its optimal activity (38). A reduction of 40% of PhoA activity was observed without
zinc, compared to when it was present (Fig. 2A). We then analyzed the activity for the
E. coli lysate containing the recombinant plasmid with the full-length promoter
(pJT294) or segments of it with 59 end deletions (Fig. 2B). The b-galactosidase (b-Gal)
activity was observed only for the recombinant plasmid containing the full-length pro-
moter (Fig. 2C). Further, the b-Gal activity increased by 30% when zinc was absent in
the culture medium compared to that when it was present (Fig. 2D). The 59 end dele-
tion segments of the promoter caused enhanced b-Gal expression when zinc was
absent (Fig. 2E), with minimal b-Gal activity observed for the shortest segment of
50 bp. Similarly, the full-length recombinant construct expressed detectible b-Gal ac-
tivity with or without 100mM FeCl2 or FeCl3, and the enzyme activity was significantly
greater in the absence of iron compared to that in its presence (Fig. 2F).

Transcripts from the seven genes assessed for the E. chaffeensis wild type and
ECH_0660 and ECH_0665 mutants. Transcripts for all seven genes were detected in
the RNA recovered from the E. chaffeensis wild type cultured in the canine macrophage
cell line DH82 (Fig. 3A to C). As intergenic spacer regions are absent or too small and
range in size from 43 to 141 bp between the genes of all seven genes (Fig. S1), and
given that the promoter prediction analysis identified several putative binding sites for
transcriptional regulators in the sequence upstream from the ECH_0659 coding region
(Fig. 1), we assessed if a polycistronic message(s) is transcribed from these genes.
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Reverse transcription-PCR (RT-PCR) assays targeting the coding regions overlapping
from ECH_0659 to ECH_0662 yielded predicted amplicons (Fig. 3B and C), while such
products were absent when assessed for the presence of overlapping transcripts
between the genes from ECH_0662 to ECH_0665 (data not shown). These results sug-
gest that the genes ECH_0659 to ECH_0662 are cotranscribed as a single transcript,
while the remaining three genes, spanning from ECH_0663 to ECH_0665, are not part
of the polycistronic message. To determine the impact of the ECH_0660 gene disrup-
tion mutation (34), RT-PCR analysis was carried out similarly for this mutant.
Transcription was not detected for ECH_0660 (Fig. 3C), although the mutant tested
positive for the remaining six genes (data not shown). We recently generated another
mutant with functional disruption in ECH_0665, the last gene of the gene cluster (39).
Unlike the ECH_0660 mutation, this mutation has no impact on the pathogen’s in vivo
growth, as it progressed very similarly to that of the wild type when assessed in a ver-
tebrate host (39). For this mutant, transcription was absent for ECH_0665 (Fig. 3C),
while the remaining gene transcripts were detected (data not shown). In both
ECH_0660 and ECH_0665 mutants, the RT-PCR products targeting the insertion-specific
aadA gene were also observed (Fig. 3C).

Effects of zinc and iron starvation on the E. chaffeensis wild type and ECH_0660
and ECH_0665 mutant strains. As we found only the predicted promoter region
upstream of the seven genes and because this promoter responded to zinc and iron
depletion when assessed in the heterologous E. coli surrogate system, we evaluated how
E. chaffeensis responds to zinc and iron starvation in culture. The E. chaffeensis wild type
and two mutants with ECH_0660 or ECH_0665 gene function disruptions were assessed
by reverse transcription-quantitative PCR (qRT-PCR) for transcriptional changes from the

FIG 1 The putative promoter region upstream of the ECH_0659 coding region contains DNA binding motifs that likely contribute to metal ion regulation and
transcription. (A) Putative promoter region upstream of the ECH_0659 coding region. Regions that resemble the consensus for the Fur-binding site are
indicated by magenta shading and in boldface type and are labeled Fur-(1), Fur-(2), and Fur-(3). The region that resembles the consensus for the Zur-binding
site is indicated in boldface type in magenta color and labeled “partial Zur box.” Predicted 235 and 210 sequences are shown in blue and cyan-blue text,
respectively, and are labeled P1-35, P2-35, P2b-35, P3-35, P4-35, P2-10, P2b-10, P3-10, and P4-10. (B) Inverted repeat sequences that are separated are a-a9, b,
b9, c-c9, d-d9-d0, e-e9 and f-f9; inverted repeats that are located at close proximity are identified with underlines and listed as h, i, and j. Direct repeats are
shown after the inverted repeats. (C and D) Zur (C) and Fur (D) partial consensus binding site sequences from other Gram-positive and Gram-negative bacteria
are indicated by gray shading. Bt, Burkholderia thailandensis; Bs, Bacillus subtilis; Bj, Bradyrhizobium japonicum; Ec, E. coli; Ech, E. chaffeensis.
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cluster of seven genes, following their growth in medium containing zinc and with or
without the zinc chelator N,N,N9,N9-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN)
(Fig. 4). We similarly assessed the iron starvation in medium containing FeSO4 and with
or without the inclusion of the iron chelator 2,29-bipyridyl (BIP) (Fig. 4). The relative gene
expression in the presence of the zinc chelator for ECH_0659 was increased 2.3-fold for
the wild type and 3.7-fold for the ECH_0660 mutant but did not show significant altera-
tion in ECH_0665 mutant (Fig. 4A). The iron chelation is more pronounced for this gene,
where we observed a 3.8-fold increase for the wild type. Similarly, for the ECH_0665 mu-
tant, the transcripts increased by 3.2-fold, whereas an 8.1-fold increase was observed for
the ECH_0660 mutant (Fig. 4A). Similarly, ECH_0660 transcripts for zinc chelation resulted
in a 2.3-fold increase for the wild type and a 6.7-fold increase for the ECH_0660 mutant
for gene coding region upstream of the insertion mutation site, while 1-fold downregu-
lation was noted for the ECH_0665 mutant (Fig. 4B). The iron chelation was also more
enhanced for these gene transcripts, which increased by 5.4-fold for the wild type and
17.5-fold for the ECH_0660 mutant, whereas it declined 1.5-fold for the ECH_0665 mu-
tant compared to that of the wild type (Fig. 4B). For ECH_0661, the relative transcription
without zinc was increased 1.7-fold for the wild type, while expression increased 4-fold
for the ECH_0660 mutant and decreased to 0.7-fold for the ECH_0665 mutant (Fig. 4C).
As in ECH_0659 and ECH_0660 gene transcripts, iron chelation resulted in considerably
more transcripts for ECH_0661; these gene transcripts increased to 3.4-fold, 4.3-fold, and

FIG 2 A promoter region upstream of ECH_0659 assessed in an Escherichia coli surrogate system using zinc- and iron-sufficient or depletion conditions. (A)
Endogenous alkaline phosphatase activity (PhoA) of the E. coli XL1-Blue MRF9 strain harboring the plasmid vector pJT3. Bacterial cells were grown in
chemically defined medium (Tris-glucose) with zinc or phosphate restriction or supplemented with 15mM ZnSO4 or 64mM buffer phosphate. For iron
response, bacterial cells were grown in Tris-glucose medium, iron depleted or supplemented with 100mM FeCl2 or 100mM FeCl3, as described in Materials
and Methods. (B) Schematic diagram of the ECH_0659-promoter region and transcriptional fusion constructed pJT294, pJT189, pJT145, pJT130, pJT96,
pJT50, and the control pJT3 plasmid, showing the putative binding regions for Zur and Fur (colored boxes), the 210 and 235 promoter elements (bent
arrows), and the secondary structures (lines with open circles [j, i, and h]). Inverted repeat sequences are indicated with black boxes. The numbering of the
nucleotides is relative to the ECH_0659 translational start codon. (C, D, E, and F) b-Gal activity for each construct is expressed as Miller units and was
measured in Escherichia coli as described in Materials and Methods. The values are results from three independent experiments. Statistical significance was
determined by one-way analysis of variance (ANOVA) followed by Tukey’s multiple-comparison test (**, P, 0.01; ***, P, 0.001; ****, P, 0.0001).
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FIG 3 Transcripts from the seven genes assessed for the E. chaffeensis wild type and the ECH_0660 and ECH_0665 mutants. (A) Schematic
representation of the seven genes on E. chaffeensis wild-type chromosome, and ECH_0660 and ECH_0665 mutants. (B) Reverse transcription-PCR

(Continued on next page)
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2.1-fold for the wild type, ECH_0660 mutant, and ECH_0665 mutants, respectively
(Fig. 4C). The removal of zinc from the medium caused a much more pronounced
enhancement of the ECH_0662 transcription, as 4.6-fold and 11.7-fold transcript levels
were observed in the wild type and the ECH_0660 mutant, respectively, and with no sig-
nificant difference for the ECH_0665 mutant (Fig. 4D). While iron chelation also triggered
ECH_0662 transcription, its effect is less compared to that of zinc chelation, with similar
values for the wild type and ECH_0665 mutants (3.6- and 3.5-fold, respectively), whereas
for the ECH_0660 mutant, it was another 2-fold more (5.8-fold) (Fig. 4D). ECH_0663 tran-
script levels increased during zinc chelation 1.9-fold for the wild type and 5-fold for the
ECH_0660 mutant, with no significant change for the ECH_0665 mutant, whereas for the
iron chelation, the wild type and the ECH_0660 mutant had similar increases of tran-
scripts (3.7- and 3.6-fold, respectively), and transcription declined 0.5-fold for the
ECH_0665 mutant (Fig. 4E). ECH_0664 relative gene expression was moderately
increased during zinc chelation only for the ECH_0660 mutant bacteria, while no differ-
ences in the transcript levels were observed for both the wild type and the ECH_0665
mutant (Fig. 4F). Similarly, a moderate increase in transcript levels was observed in bacte-
ria cultured under conditions of iron chelation for the wild type (1.9-fold) and the
ECH_0660 mutant (3-fold) but was downregulated for the ECH_0665 mutant (0.4-fold)
(Fig. 4F). Gene expression changes for the last gene (ECH_0665) also increased moder-
ately, about 2.3-fold for the wild type and 2.1-fold for the ECH_0665 mutant (for the
gene coding region upstream of the mutation site), and 4.3-fold for the ECH_0660 mu-

FIG 4 Effects of zinc and iron starvation on the E. chaffeensis wild type and ECH_0660 and ECH_0665 mutants. The genes ECH_0659 to ECH_0665 from E.
chaffeensis are upregulated under zinc and iron depletion conditions. The expression of ECH_0659 (A), ECH_0660 (B), ECH_0661 (C), ECH_0662 (D),
ECH_0663 (E), ECH_0664 (F), and ECH_0665 (G) from wild-type, ECH_0660 mutant, and ECH_0665 mutant organisms was measured during the stationary
phase of infection under zinc repletion or depletion conditions, and similarly under iron repletion or depletion conditions, by quantitative real-time RT-PCR.
The data represent the mean 6 standard deviation (SD) from 2 biological replicas, each of which comprises 3 technical replicas. Fold expression changes
are normalized using gyrB as an endogenous reference gene (DCT). Statistical significance was determined by one-way analysis of variance (ANOVA)
followed by Tukey’s multiple-comparison test (*, P, 0.05; **, P, 0.01; ***, P, 0.001; ****, P, 0.0001).

FIG 3 Legend (Continued)
(RT-PCR) targets identified. The primer pairs and their estimated products are represented with arrows and bars, respectively. (C) RT-PCR data
presented for the amplicons generated targeting the 7 genes. “D” refers to a positive control with genomic DNA as the template; 1 and 2 refer
to the RT-PCR assays performed with or without reverse transcriptase, respectively. Molecular weight markers (MWM) were included when
resolving the PCR products to help locating specific amplicons. Expected amplicons for the internal coding regions of all seven genes were
detected for the wild type when reverse transcriptase was added but were absent for the mutation insertion regions of ECH_0660 and ECH_0665
mutants (PCRs 2 and 11, respectively). Also, amplicons from overlapping coding regions of genes were detected as shown. For both ECH_0660
and ECH_0665 mutants, the transcription of the aadA gene from the Himar1 transposon (Tn) insertion was also observed (PCR 12).
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tant. With the iron chelation, the transcription enhancement was more noticeable;
4.4-fold and 6.2-fold, respectively, for the wild type and ECH_0660 mutant bacteria and
no significant difference for the ECH_0665 mutant (Fig. 4G). Together, transcripts of all
seven genes were significantly upregulated for the wild type under both the zinc and
iron depletion conditions, and the transcription levels were significantly enhanced for
the ECH_0660 mutant, while essentially similar enhancements were observed in the wild
type and downregulation was observed in the ECH_0665 mutant.

DISCUSSION

In earlier studies, we reported that a mutation in the E. chaffeensis ECH_0660 gene
encoding the phage head-to-tail connector protein results in the rapid clearance of the
pathogen from vertebrate hosts (white-tailed deer and dogs). In contrast, persistent
infection occurs with wild-type E. chaffeensis and the ECH_0665 mutant (34, 35, 39, 40).
Pathogenic intracellular bacteria are often challenged by the restricted availability of
metal ions such as iron and zinc in the host cells (20). Starvation of the metal ions trig-
gers enhances expression of certain metal ion response genes in bacteria. In this study,
we characterized functional disruption mutations in the ECH_0660 and ECH_0665
genes of E. chaffeensis encoding two predicted phage proteins, the head-to-tail-con-
nector protein and the phage terminase enzyme, respectively. We assessed how the
wild type and the two mutants respond to depletion of two important metal ions, zinc
and iron. The wild type and the mutant bacteria had distinct gene expression profiles
in response to depletion of the two metal ions. Specifically, chelation of the metal ions
triggered significant transcriptional enhancement for most of the genes from the
seven genes for the wild type. Transcription enhancement was significantly higher for
all seven genes under zinc starvation conditions for the ECH_0660 mutant, while iron
starvation similarly caused enhanced gene expression from six genes. Contrary to
these observations, the transcripts for the ECH_0665 gene mutant, previously shown
to have a minimal impact on the bacterial in vivo growth (39), were more or less similar
to those of wild-type E. chaffeensis. We used TPEN, a chelator known to chelate other
divalent metal ions such as cadmium, cobalt, nickel, and copper (41), to chelate zinc
from E. chaffeensis cultures. Thus, the gene expression changes observed may also be
the result of depleting other metal ions. As the E. coli surrogate system selectively dem-
onstrated the impact of zinc, we reasoned that the TPEN chelation effects primarily
resulted from zinc starvation.

Zinc and iron play essential roles in bacterial cells to serve as cofactors for multiple
enzymes, to support the structural integrity of proteins, and to regulate protein expres-
sion from several bacterial genes (42). These metal ions are not readily accessible for in-
tracellular pathogens (20). Pathogenic bacteria employ unique strategies in acquiring
metal ions from a host cell during intracellular replication (24). We observed that the
predicted promoter sequence upstream of the seven genes activates reporter gene
expression, and it was significantly higher in medium with limited zinc or iron when
assessed in the E. coli surrogate system. Although the E. coli-based analysis may not be
ideal for assessing an E. chaffeensis promoter function, this heterologous system is cur-
rently the best means of investigating bacterial gene regulation, considering the lack
of desirable genetic tools for the pathogen (11, 43–49). Assessment of the effect of pro-
moter deletion analysis suggested that one or more of the putative DNA binding
motifs within the sequence responds to zinc or iron depletion. The E. chaffeensis ge-
nome includes genes encoding a zinc transporter protein (ECH_0067) and an iron
transport system substrate-binding protein (ECH_0189). However, it is yet to be deter-
mined if these proteins are involved in metal ion transport. A recent study in a related
Ehrlichia species (Ehrlichia ruminantium) suggested that iron restriction causes upregu-
lation of a T4SS protein (VirB), an outer membrane-associated protein (MAP1), and two
predicted transcriptional regulators (Tr1 and ErxR) (28). In the current study, we dem-
onstrated significant transcriptional enhancement for the seven genes when depleting
zinc and iron during E. chaffeensis growth for the wild-type bacteria. The transcriptional
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enhancement was significantly greater for the ECH_0660 mutant, a mutation known to
exert an in vivo growth defect (34, 35, 50). In contrast, transcript levels were similar to
those of the wild type, or slightly downregulated for the ECH_0665 mutant. We
recently reported that this mutation has a minimal impact on its in vivo growth (39).
Together, the data presented in the current study suggest that the growth defect
mutation in the ECH_0660 gene encoding the phage head-to-tail connector protein
triggers significant upregulation of transcription from the seven genes assessed when
metal ions are chelated, while the mutation in the ECH_0665 gene encoding the phage
terminase protein leads to the pathogen maintaining transcription levels more or less
similar to those of wild-type E. chaffeensis.

We reported earlier that the ECH_0660, ECH_0663, and ECH_0665 gene products
are membrane-associated proteins, as judged by mass spectrometry analysis of puri-
fied total and immunogenic E. chaffeensis membrane fractions (51). We recently
reported that the ECH_0660 gene mutant caused minimal variation in the bacterial
global transcriptome and proteomes compared to the wild-type E. chaffeensis (52, 53)
when assessed in standard culture medium (54). This mutant having the growth defect
allowed the vertebrate host to initiate a potent immune response to confer protection
against wild-type pathogen infection challenge (34, 35). The data presented in the cur-
rent study suggest that the functional disruption in the predicted phage head-to-tail
connector protein gene is likely detrimental in altering the pathogen’s ability to obtain
metal ions to support its growth within a phagosome of infected host macrophages.
Our previously described mutation in the ECH_0660 gene causing in vivo attenuation
may have caused a metabolic burden for E. chaffeensis resulting in the upregulation of
gene expression from several genes likely involved in the metal ion uptake.

MATERIALS ANDMETHODS
Bioinformatics. The E. chaffeensis genomic region (GenBank accession number CP000236.1) span-

ning from the ECH_0659 to ECH_0665 genes was subjected to data searching as described below.
Inverted repeat and direct repeat sequences in DNA were identified by visual examination and by using
the palindromic sequence finder REPFIND (55). Promoter 235 and 210 element sequences for Ehrlichia
genes were predicted with the BPROM program (56). Genomic DNA sequences of Ehrlichia canis (Jake),
Ehrlichia muris (AS145), Ehrlichia ruminantium (Welgevonden), Anaplasma phagocytophilum (HZ),
Anaplasma marginale (St. Maries), Wolbachia (wHa), and Neorickettsia sennetsu were obtained from the
NCBI website. The genome data were compared with the gene cluster from ECH_0659 to ECH_0665 to
identify the gene homologs. DNA and protein alignments were performed with ClustalW and ClustalX,
respectively. Database searches were performed using NCBI BLAST and CDD databases (57).

Bacterial strains, plasmids, and media. The bacterial strains and plasmids used in this study are
listed in Table S1 in the supplemental material. Escherichia coli strains were routinely grown at 37°C in
Luria–Bertani (LB) medium. When required, the medium was supplemented with an appropriate antibi-
otic. Tris-glucose (TG) medium (58) was used for zinc response assessment, with or without 15mM
ZnSO4. Similarly, the iron response was assessed in TG medium with or without 100mM FeCl2 or 100mM
FeCl3. For determining b-galactosidase (b-Gal) or alkaline phosphatase (PhoA) activities, 100-ml aliquots
taken at 24 h or 72 h were used as described below.

Construction of ECH_0659 promoter-lacZ fusion plasmids. DNA manipulations to prepare
recombinant plasmids and E. coli transformations were carried out by standard molecular cloning proto-
cols as in (59). All primers used in this study were synthesized by Integrated DNA Technology (Coralville,
IA) and are listed in Table S2 in the supplemental material. DNA fragments containing the entire 294-bp
putative promoter region upstream of the ECH_0659 gene coding sequence were amplified by PCR
using E. chaffeensis genomic DNA as the template and with the primer sets specific for the segment
(Table S2). PCR products were cloned using primers designed for directional cloning into KpnI-BamHI
sites of the pJT3 plasmid (60) to create the recombinant plasmid pJT294. Deletion constructs were pre-
pared similarly with 59-end sequential deletions.

Enzymatic assays. b-Galactosidase (b-Gal) activity was assessed on the cultures supplemented with
50mg 5-bromo-4-chloro-3-indolyl-b-D-galactopyranoside (X-Gal) ·ml21. Quantitative evaluation of b-Gal
was carried out using permeabilized cells obtained from stationary-phase cultures grown with or with-
out 15mM ZnSO4, or with or without 100mM FeCl2/FeCl3, and incubated with o-nitrophenyl-b-D-galacto-
pyranoside (ONPG) substrate (Sigma-Aldrich) as previously described (61). Quantitative evaluation of
alkaline phosphatase (PhoA) was carried out similarly using cultures grown under phosphate starvation
conditions with or without 15mM ZnSO4 and incubated with 4-nitrophenyl phosphate (4mg · ml21) sub-
strate (Sigma-Aldrich) as described previously (58). Average values (6standard deviations) for activity
units were calculated from three independent assays, each carried out in triplicate.
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Treatment of E. chaffeensis-infected macrophages (DH82 cells) with metal chelators and
subsequent RNA analysis. E. chaffeensis (Arkansas isolate) wild-type, ECH_0660 mutant (34), and
ECH_0665 mutant (39) cells were grown in the canine macrophage cell line DH82 (ATCC, Manassas, VA)
in minimal essential medium (MEM) as previously described (54). For the zinc response assay, culture
medium was supplemented with 15mM ZnSO4, with or without 5mM N,N,N9,N9-tetrakis(2-pyridylmethyl)
ethylenediamine (TPEN, a zinc chelator; Sigma-Aldrich, St. Louis, MO) (63). To define the growth charac-
teristics under iron-supplemented or -depleted conditions, E. chaffeensis cultures were propagated in
medium supplemented with 100mM FeSO4 and with or without 0.15mM 2,29-bipyridyl (BIP, an iron che-
lator; Sigma-Aldrich) (62). TPEN or BIP was added independently to the cultures at 72 h postinoculation
when infectivity was about 80 to 90%. After 24 h, cultures were harvested by centrifugation at
14,000� g for 10min. The pellet was resuspended with a half volume of the medium and mixed with
2.5ml of RNAlater stabilization solution (Thermo Fisher) and stored at 24°C until RNA extraction. Total
RNA was recovered, DNase treated, and then reverse transcribed using SuperScript III reverse transcrip-
tase (Invitrogen). The cDNA was used in PCR analysis using Platinum Taq DNA polymerase (Invitrogen)
using primers specific for each gene. The resulting PCR products were separated by electrophoresis in
1.5% agarose gel. Real-time PCR amplification of the cDNA was performed with 2� PowerUp SYBR green
master mix (Applied Biosystems, Life Technologies) as specified by the manufacturer, with 1ml cDNA
(corresponding to 0.1 to 0.2mg of total RNA) and using a gene-specific primer set. Two independent
experiments were performed for every gene transcript with samples examined in triplicate for each
experiment in a StepOnePlus real-time PCR system (Applied Biosystems by Life Technologies). Relative
expression levels of the specific transcripts between different biological conditions for wild-type and
mutant E. chaffeensis were calculated using the relative abundance of gyrB as an internal reference
standard for normalization and expressed as fold differences by calculating 22(DDCT) (CT, threshold cycle)
(64). The final qRT-PCR data were presented as the means of two experiments.

Statistics. The statistical differences between experimental groups were assessed by one-way analy-
sis of variance (ANOVA) followed by Tukey’s multiple-comparison test or Student’s t test. Differences
with a P value of ,0.05 were considered significant.
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