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Summary

Objectives

Accumulation of visceral fat (VF) in children increases the risk of cardiovascular disease
and type 2 diabetes, and measurement of VF in children using computed tomography
and magnetic resonance imaging (MRI) is expensive. Dual-energy X-ray absorptiometry
(DXA) may provide a low-cost alternative. This study aims to determine if DXA VF esti-
mates can accurately estimate VF in young girls, determine if adding anthropometry
would improve the estimate and determine if other DXA fat measures, with and without
anthropometry, could be used to estimate VF in young girls.

Methods

Visceral fat was measured at lumbar intervertebral sites (L1–L2, L2–L3, L3–L4 and L4–
L5) using 3.0T MRI on 32 young girls (mean age 11.3 ± 1.3 years). VF was estimated
using the GE CoreScan application. Measurement of DXA android and total body fat
was performed. Weight, height and waist circumference (WC) measurements were also
obtained.

Results

Waist circumference and body mass index were both strongly correlated with MRI, al-
though WC was the best anthropometric covariate. Per cent fat (%fat) variables had
the strongest correlation and did best in regression models. DXA %VF (GE CoreScan)
and DXA android %fat and total body %fat accounted for 65% to 74% of the variation
in MRI VF.

Conclusion

Waist circumference predicted MRI VF almost as well as DXA estimates in this popula-
tion, and a combination of WC and DXA fat improves the predictability of VF. DXA VF es-
timate was improved by the addition of WC; however, DXA android %fat with WC was
better at predicting MRI VF.

Keywords: Imaging, Obesity, Paediatric, Visceral fat.

Introduction

Childhood and adolescent obesity, with its attendant
health risks, remains at an all-time high (1). In youth, as
in adults, a growing body of evidence suggests fat distri-
bution, as much as, if not more so than whole-body fat,
confers risk of cardio-metabolic diseases (2–5). For ex-
ample, accumulation of visceral fat (VF) in adolescents is

associated with metabolic syndrome and an increased
risk of cardiovascular disease and type 2 diabetes (2–4,6).

Accurate measurement of VF is difficult to achieve, and
measurement of VF in large studies requires a fast and in-
expensive method that is accessible, valid and accurate.
Anthropometric surrogates of VF (e.g. body mass index
[BMI], waist circumference [WC] and waist–hip ratio) have
proven to be less than ideal measures and tend to be
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better correlated with total fat than VF (7–9). Direct
methods for measuring VF, such as computed tomogra-
phy (CT) and magnetic resonance imaging (MRI) (10,11),
are expensive and have limited access, especially for
conducting large population-based studies. Additionally,
the radiation exposure associated with CT is a concern,
especially in pre-pubertal and pubertal children.

Dual-energy X-ray absorptiometry (DXA), which has
been used to measure total and regional whole-body
composition for many years, offers a low radiation alter-
native (11). Early work in late teens and adults combined
a DXA fat measurement (total fat, android fat, etc.) plus
an anthropometric measurement (BMI, WC, etc.) in an
equation to estimate VF (12,13). Recent advances have
now led to a ‘fully automated’ DXA measurement of VF
and have provided a low radiation exposure alternative
to CT and a low-cost alternative to both CT and MRI.
GE Lunar and Hologic instruments both offer VF mea-
surements from total body DXA scans using proprietary
software applications such as GE Lunar’s CoreScan and
Hologic’s InnerCore applications. Both have been vali-
dated against CT in adults but not in children. Whether
these equations can be applied in youth is not clear. Thus,
total body scans were obtained using a GE Lunar densi-
tometer and estimated VF using CoreScan in 32 adoles-
cent girls. The primary aim was to determine the
accuracy of the GE Lunar CoreScan application for esti-
mation VF in adolescent girls using MRI as the criterion
method. A secondary aim was to determine whether the
addition of anthropometric measures to DXA VF improved
the estimation of MRI VF. A tertiary aim was to determine
if other DXA measures of adiposity could be used to esti-
mate VF in young girls and if these estimates are im-
proved with the addition of anthropometric measures.

Methods

Study population

Thirty-two healthy adolescent girls with diverse body
composition, aged 9–13 years, who were participants in
the ‘Soft Tissue and Bone Development in Young Girls
(STAR)’ study were studied. The STAR study was de-
signed to assess the effects of adiposity and related met-
abolic risk factors on bone development. Exclusion
criteria included diagnosis of diabetes, taking any medi-
cations that alter body composition, physical disability
that limits physical activity and learning disability that lim-
ited completion of questionnaires or otherwise made the
participant unable to comply with assessment protocols.
The study protocol was approved by the University of
Arizona Human Subjects Protection Committee. Written
informed consent was obtained from all participants and

their parents or legal guardians. All body composition
measurements, blood draw and questionnaires were
completed at the Body Composition Research Labora-
tory in the Collaboratory for Metabolic Disease Prevention
and Treatment at the University of Arizona.

Anthropometric measures

Body weight was measured to the 0.1 kg with a calibrated
digital scale (Seca, Model 881, Hamburg, Germany).
Standing height was measured to the nearest 0.1 cm
using a stadiometer (Shorr Height Measurement Board,
Olney, MD). WC was measured to the nearest 0.5 cm at
the umbilicus using an anthropometric tape. All measure-
ments were performed in duplicate, and the average of
the measurements was used in the analysis. BMI was cal-
culated using the measured height and weight of each
participant. Maturity offset was estimated from age and
anthropometric measures (height, weight, sitting height
and leg length) using the validated Mirwald equation (14).

Dual-energy X-ray absorptiometry acquisition

Measures of whole-body (total fat mass and total per cent
fat) and regional adiposity (android fat mass and android
per cent fat) were obtained from DXA using the
GE/Lunar Prodigy densitometer (GE Healthcare,
Madison, WI) following standard subject positioning and
data acquisition protocols. The android region of interest
(ROI) is defined as the regions with its inferior border at
the iliac crest and superior border defined by 20% of the
distance between this point and immediately below the
chin and laterally to include all of the torso (15). The
within-subject variation for bone and soft tissue for the
Lunar Prodigy DXA machine has been previously reported
(16). The Prodigy densitometer was calibrated daily ac-
cording to the manufacturer guidelines. All DXA scans
were conducted by trained operators, and all analyses
were performed by one certified technician.

Dual-energy X-ray absorptiometry visceral fat
measurement

Dual-energy X-ray absorptiometry visceral fat was
calculated using GE Lunar’s CoreScan application, which
utilizes a validated algorithm that estimates the mass and
volume of VF in the android region (15). This application
has a lower age limit of 18 years; thus, to test the applica-
tion in this sample of young girls, actual birthdates were
adjusted so that all participants would appear to be
18 years of age so that an estimate of VF could be
obtained.
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Magnetic resonance imaging acquisition

All MRI examinations were performed on a 3T MR system
(MAGNETOM Skyra, Siemens Healthcare, Erlangen,
Germany). Imaging was performed using an anterior
18-channel flexible array coil in combination with 12–16
elements of the table-mounted spine array. For the abdo-
men, the two-point Dixon (17) 3D VIBE sequence (breath-
hold) was used with the following parameters:
TR = 3.92 ms, flip angle = 10, matrix 288 × 168, field of
view 380–420 mm, slice thickness = 3.5 mm, 96 parti-
tions, phase resolution 70%, slice resolution 50%, band-
width = 1300 Hz per pixel, bipolar readout, the first
TE = 1.23 ms (out of phase) and the second echo at
2.46 ms (in phase). A parallel acceleration technique (CAI-
PIRINHA) was used with acceleration factors of 2 in both
phase encoding and partition directions, leading to an ac-
quisition time of 13 s (17). Contiguous 3.5-mm slices from
L1 to S1 were obtained for all participants.

Magnetic resonance imaging sites for estimation of
visceral fat

From the literature, it is evident that ‘best site’ often de-
pends on numerous factors (18–26). For MRI VF,

segmentation was performed on four intervertebral slices,
between L1 and L2 (L1–L2), L2 and L3 (L2–L3), L3 and L4
(L3–L4) and L4 and L5 (L4–L5), in order to observe the as-
sociation with DXA measures of adiposity and subse-
quently select the slices best correlated with MRI VF.

Magnetic resonance imaging image segmentation

Image segmentation of MRI slices was accomplished
using a graphical user interface (GUI) developed using
MATLAB programming (Mathworks, Natick, MA). The
GUI provides semi-automatic ROI image segmentation
of fat. The GUI provides the technician with a user-
adjustable thresholding feature based on signal intensity.
Threshold level was selected to allow inclusion of fat
while excluding lean tissue (e.g. muscle and organs).
The use of the ‘Add more ROI’ and ‘Erase region’ func-
tions allows the technician to adjust the segmentation in
areas that needed modification to include or exclude
pixels from ROIs. The semi-automatic feature is the sepa-
ration of the subcutaneous fat from the VF after ROI ma-
nipulation is complete. Upon completion, the segmented
image is saved as a colour-rendered image with the sub-
cutaneous fat in yellow and the VF in red – colours con-
verted to greyscale for publication (Figure 1). The

Figure 1 Pairs a/b and c/d show unsegmented (left; a and c) and segmented (right; b and d) magnetic resonance imaging slices (dark grey = sub-
cutaneous fat; grey = visceral fat in segmented images).
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number of pixels in both the subcutaneous and VF ROIs is
tallied and saved. When the segmentation of all slices
was completed, the GUI generates a report that provides
the total number of pixels counted in subcutaneous and
VF ROIs for each slice.

Segmentation was performed by two trained techni-
cians. Each technician repeated segmentation on 10 ran-
domly selected participants (one-third of total subjects) in
order to determine intra-rater reliability. Inter-rater and
intra-rater intraclass correlations were high (R ≥ 0.98).

Conversion of magnetic resonance imaging data to
volume and mass

Pixel count was converted to voxel volume by multiplying
the pixel dimensions and slice thickness. VF volume was
then calculated by multiplying pixel count and voxel vol-
ume. The CoreScan software estimates and records the
VF in mass (grams). Kaul et al. (15) used a conversion fac-
tor of 0.94 g cm�3 for all volume to mass conversions in
their study. Because the goal was to compare the DXA
measurement with MRI, the same conversion factor was
used to estimate VF mass for all MRI slices.

Statistical analysis

Means and standard deviations were calculated for all
sample characteristics. Measures of skewness and kurto-
sis were calculated to determine distribution characteris-
tic of anthropometric variables. Linear regression was
used to assess the relationship of MRI VF to DXA VF
and also to assess the relationships of other body fat
measures (android fat and total body fat) for DXA versus
MRI VF.

Multiple regression analyses were used to test whether
anthropometric variables (WC, BMI and weight) improved
the prediction of MRI VF from DXA VF, android fat and to-
tal body fat. Age was added to each model as a surrogate
for maturity.

Bland–Altman analysis was used to determine the level
of agreement between MRI measures of VF and the VF
estimations from the regression equations. Scatterplots
with fit lines were constructed to aid in visualizing the re-
lationship between the regression equation VF value and
the MRI VF.

The Statistical Package for the Social Sciences (SPSS)
24.0 (IBM Corp., Armonk, NY) was used for all statistical
analyses.

Results

Study sample characteristics are shown in Table 1. Par-
ticipant age ranged from 9 to 13 years. Mean height and

mean weight percentiles were 63.4% and 73.9%, respec-
tively, based on national norms (27). Mean WC and BMI
percentiles were 73% and 71.6%, respectively, based
on national norms (27). Using weight categories based
on BMI percentile, 17 participants were normal weight,
while six and nine participants were overweight and
obese, respectively. The study sample was normally dis-
tributed for height and WC although slightly skewed right
(skewness = 1.4, standard error [SE] = 0.414) for weight
and skewed right (skewness = 1.056, SE = 0.414) for
BMI. Mean values (±standard deviation) of DXA measures
of adiposity, total fat mass, total per cent fat, android fat
mass and android per cent fat were 17.2 ± 8.8 kg,
34.8 ± 9.1%, 1.29 ± 0.80 kg and 39.3 ± 12.2%, respec-
tively. DXA VF mass and volume measured by the
CoreScan software application was 230 ± 220 g and
247.3 ± 237.4 cm3, respectively. Single-slice MRI VF
mass for the lumbar intervertebral sites ranged from
14.3 ± 6.1 g at the L4–L5 level to 18.5 ± 9.0 g at the L2–
L3 level. Differences in MRI VF mass are due to differ-
ences in ROIs at the various intervertebral sites.

Dual-energy X-ray absorptiometry measures of adipos-
ity were significantly (ρ ≤ 0.001) correlated with MRI VF

Table 1 Sample characteristics (n = 32)

Characteristic Mean ± SD Range

Age (years) 11.3 ± 1.3 9.3–13.7
Height (cm) 149.8 ± 9.7 132.0–166.9
Weight (kg) 48.2 ± 13.1 27.5–92.9
BMI (kg m�2) 21.3 ± 4.3 15.3–33.4
BMI percentile (%) 71.6 ± 26.5 21.9–99.2
Waist circumference (cm) 77.4 ± 12.0 26.9–99.9
Waist percentile (%) 73.0 ± 25.8 18–99
Maturity offset (years) 0.9 ± 1.3 �1.4 to 2.6
DXA total body fat mass (kg) 17.2 ± 8.8 5.8–48.0
DXA total body per cent fat (%) 34.8 ± 9.1 16.4–52.8
DXA android fat massa (kg) 1.29 ± 0.80 0.36–3.9
DXA android per cent fata (%) 39.3 ± 12.2 15.4–60.1
DXA visceral fat massb (g) 230 ± 220 20–890
DXA visceral fat volumeb (cm3) 247.3 ± 237.4 19.2–945.3
DXA visceral per cent fatb (%) 9.4 ± 6.6 1.2–23.0
MRI L1–L2 visceral fat mass (g) 16.5 ± 9.3 2.4–36.7
MRI L2–L3 visceral fat mass (g) 18.5 ± 9.0 4.3–40.3
MRI L3–L4 visceral fat mass (g) 16.7 ± 7.5 5.3–36.5
MRI L4–L5 visceral fat mass (g) 14.3 ± 6.1 6.2–29.3
MRI visceral fat mass sumc (g) 66.0 ± 30.7 18.6–135.2

aDXA android fat variables were measured using automatic ROI for
android region.
bDXA visceral fat were measured using CoreScan software.
cMRI visceral fat mass sum = sum of four slices (L1–L2 + L2–L3 + L3–
L4 + L4–L5).
BMI, body mass index; DXA, dual-energy X-ray absorptiometry; MRI,
magnetic resonance imaging; ROI, region of interest; SD, standard
deviation.
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measurements (Table 2). DXA VF mass (VFM), android fat
mass (AFM) and total body mass (TBFM) were all similarly
correlated with MRI VF. DXA measures of android per
cent fat (APF) and total body per cent fat (TBPF) were
more highly correlated with MRI VF than DXA visceral
per cent fat (VPF). WC, BMI and body weight (weight)
were significantly correlated (ρ ≤ 0.001) with MRI VF

measurements. WC had a higher association with MRI
VF than BMI and body weight (Table 2).

The results of simple univariate regression of DXA mea-
sures of adiposity on MRI VF mass (MRI VFM) are shown
in Table 3. In general, significant associations were found
but were lower for L1–L2, L2–L3, L3–L4 compared with
L4–L5 and MRI VF sum as shown in Table 2, and thus,
only the results for MRI VF at L4–L5 and MRI VF sum
are shown in this table and all subsequent tables. DXA
VPF variables had consistently higher adjusted R2 values
and lower standard error of the estimate (SEE) values than
DXA VFM. Overall, DXA VF variables performed compara-
bly with DXA android fat variables and DXA total fat vari-
ables resulting in similar adjusted R2 values and SEE
values (Table 3). Per cent fat variables were more highly
correlated than fat mass variables for all MRI VF sites
and provide better adjusted R2 and SEE values across
all regressions. Regression models that used per cent
fat variables had consistently better adjusted R2 values
and lower SEE values compared with models that used
fat mass variables.

Table 4 compares regression models where DXA, an-
thropometry and age were regressed on MRI VF vari-
ables. Only the results for MRI VF at L4–L5 and MRI VF
sum are shown. The addition of WC and BMI to DXA mea-
sures of adiposity improved the adjusted R2 values in al-
most all regression models (Table 4). Additionally,
adding age did not improve the adjusted R2 in all models
and was only significant in some of the models. When age
was significant, it often resulted in the loss of significance
in the DXA variable, anthropometric variable or both. The
addition of body weight did not improve prediction of MRI
VF variables (data not shown).

The addition of anthropometric measures and age to
DXA VF models, however, did not improve prediction of
MRI VF variables compared with models using DXA an-
droid and DXA total body measures. Furthermore, DXA

Table 2 Correlations between MRI and DXA variables (n = 32)

MRI variable DXA VFMa DXA VPFa DXA AFM DXA APF DXA TBFM DXA TBPF WC BMI Weight

MRI VFM L1–L2 0.71 0.77 0.72 0.82 0.69 0.83 0.74 0.75 0.51
MRI VFM L2–L3 0.70 0.77 0.70 0.81 0.66 0.79 0.72 0.70 0.51
MRI VFM L3–L4 0.75 0.82 0.76 0.85 0.73 0.84 0.81 0.75 0.57
MRI VFM L4–L5 0.79 0.82 0.77 0.81 0.76 0.83 0.84 0.80 0.63
MRI VFM sumb 0.76 0.82 0.76 0.85 0.73 0.85 0.80 0.78 0.57

ρ ≤ 0.001 for all correlations. DXA android fat variables were measured using automatic ROI for android region.
aDXA visceral fat variables were estimated using GE Lunar’s CoreScan application.
bMRI VFM sum = sum of four slices (L1–L2 + L2–L3 + L3–L4 + L4–L5).
BMI, body mass index; DXA, dual-energy X-ray absorptiometry; DXA AFM, dual-energy X-ray absorptiometry android fat mass; DXA APF, dual-
energy X-ray absorptiometry android per cent fat; DXA TBFM, dual-energy X-ray absorptiometry total body fat mass; DXA TBPF, dual-energy X-
ray absorptiometry total body per cent fat; DXA VFM, dual-energy X-ray absorptiometry visceral fat mass, DXA VPF, dual-energy X-ray absorp-
tiometry visceral per cent fat; MRI, magnetic resonance imaging; ROI, region of interest; VFM, visceral fat mass; WC, waist circumference.

Table 3 Regression of DXA visceral fat, DXA android fata and DXA
total body fat variables on MRI visceral fat variables (n = 32)

Dependent Predictor Adjusted R2 SEE %SEE

MRI VFM L4–L5 DXA VFM 0.61 3.8 26.6
MRI VFM sumb DXA VFM 0.57 20.1 30.5
MRI VFM L4–L5 DXA VPF 0.65 3.6 25.2
MRI VFM sumb DXA VPF 0.66 17.8 27.0
MRI VFM L4–L5 DXA AFM 0.59 3.9 27.3
MRI VFM sumb DXA AFM 0.56 20.2 30.6
MRI VFM L4–L5 DXA APF 0.64 3.6 25.2
MRI VFM sumb DXA APF 0.72 16.2 24.5
MRI VFM L4–L5 DXA TBFM 0.57 4.0 28.0
MRI VFM sumb DXA TBFM 0.52 21.2 32.1
MRI VFM L4–L5 DXA TBPF 0.68 3.5 24.3
MRI VFM sumb DXA TBPF 0.72 16.2 24.5

All mass values in grams.
aDXA android fat variables were measured using automatic ROI for
android region.
bMRI visceral fat mass sum = sum of four slices (L1–L2, L2–L3, L3–
L4 and L4–L5).
DXA, dual-energy X-ray absorptiometry; DXA AFM, dual-energy
X-ray absorptiometry android fat mass; DXA APF, dual-energy X-ray
absorptiometry android per cent fat; DXA TBFM, dual-energy X-ray
absorptiometry total body fat mass; DXA TBPF, dual-energy X-ray
absorptiometry total body per cent fat; DXA VFM, dual-energy X-ray
absorptiometry visceral fat mass, DXA VPF, dual-energy X-ray
absorptiometry visceral per cent fat; MRI, magnetic resonance imag-
ing; ROI, region of interest; SEE, standard error of the estimate; VFM,
visceral fat mass.
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VF variables were ‘intermittently’ significant (ρ > 0.05) af-
ter the addition of anthropometric variables and age. Re-
gression models that included body weight as a predictor
had consistently lower adjusted R2 values than models
using WC and BMI and were left out of Table 4.

Selected regression models

The regression equations with the greatest adjusted R2

values and the lowest SEEs are summarized in Table 5.
All selected models included WC as the anthropometric
measure as it performed better than BMI. Age was in-
cluded in all models to control for maturity. Keeping
‘age’ in the regression model generally improved the ad-
justed R2 only slightly and did not improve SEE over

models without age as a covariate. Regressions were also
performed with maturity offset (an alternate measure of
maturity) in place of age. Regression outcomes using ma-
turity offset were similar to models using age (data not
shown). Models that included WC performed best,
whereas models that included body weight as a covariate
had consistently lower adjusted R2 and higher SEE values
(data not shown).

Scatterplots and Bland–Altman plots of selected
regression models

Scatterplots (Figure 2) provide a comparison between
DXA VPF and DXA APF of how well each predicts MRI
VFM. The first four plots in Figure 3a–d are scatterplots

Table 4 DXA measures of adipositya and anthropometry regressed on MRI VFM variables with and without age in the models (n = 32)

Dependent
Age
covariate

Predictor(s)

DXA VPF + WC DXA APF + WC DXA TBPF + WC DXA VPF + BMI DXA APF + BMI DXA TBPF + BMI

Adjusted R2 Adjusted R2 Adjusted R2 Adjusted R2 Adjusted R2 Adjusted R2

MRI VFM L4–L5 Without 0.71e 0.72d 0.71d 0.71d 0.71d 0.69d

With 0.71e 0.72e 0.72e 0.70d 0.70d 0.69d

MRI VFM sumb Without 0.68c 0.74d 0.72c 0.69c 0.74c 0.72c

With 0.70e 0.74d 0.74c 0.70d 0.74c 0.73c

This table only shows the results of regressions performed with DXA per cent fat variables because they had the highest adjusted R2 and lowest
SEE values when compared with DXA fat mass variables.
aDXA measures of adiposity: DXA APF, dual-energy X-ray absorptiometry android per cent fat; DXA TBPF, dual-energy X-ray absorptiometry
total body per cent fat; DXA VPF, dual-energy X-ray absorptiometry visceral per cent fat. DXA android fat variables were measured using auto-
matic ROI for android region.
bMRI VFM sum = sum of four slices (L1–L2 + L2–L3 + L3–L4 + L4–L5).
cDXA variable was significant (p ≤ 0.05) in regression model; however, anthropometric variable and/or age was not significant.
dDXA and anthropometric variables were significant (p ≤ 0.05) in regression model.
eAnthropometric variable was significant; however, DXA and/or age were not significant.
BMI, body mass index; DXA, dual-energy X-ray absorptiometry; MRI, magnetic resonance imaging; ROI, region of interest; VFM, visceral fat
mass; WC, waist circumference.

Table 5 Regression equations giving the best prediction of MRI VFM

Model Equation Adjusted R2 SEE %SEE

1 MRI VFM L4–L5 = (0.229 * DXA VPFa) + (0.315 * WC) � (0.534 * age) � 6.26 0.71 3.3 22.9
2 MRI VFM sumb = (1.410 * DXA VPFa) + (1.372 * WC) � (4.796 * age) � 0.35 0.70 16.7 25.3
3 MRI VFM L4–L5 = (0.136 * DXA APFa) + (0.308 * WC) � (0.428 * age) � 10.00 0.72 3.2 22.4
4 MRI VFM sumb = (1.206 * DXA APFa) + (1.017 * WC) � (3.139 * age) � 24.62 0.74 15.6 23.6
5 MRI VFM L4–L5 = (0.215 * DXA TBPFa) + (0.280 * WC) � (0.485 * age) � 9.33 0.72 4.0 27.8
6 MRI VFM sumb = (1.670 * DXA TBPFa) + (0.927 * WC) � (3.990 * age) � 18.60 0.74 15.6 23.6

Model numbers are arbitrary.
aDXA measures of adiposity: DXA APF, dual-energy X-ray absorptiometry android per cent fat; DXA TBPF, dual-energy X-ray absorptiometry
total body per cent fat; DXA VPF, dual-energy X-ray absorptiometry visceral per cent fat. DXA android fat variables were measured using auto-
matic ROI for android region.
bMRI VFM sum = sum of four slices (L1 � L2 + L2 � L3 + L3 � L4 + L4 � L5).
DXA, dual-energy X-ray absorptiometry; MRI, magnetic resonance imaging; ROI, region of interest; SEE, standard error of the estimate; VFM,
visceral fat mass; WC, waist circumference.
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and Bland–Altman plots for model 4 and model 6, which
had the highest adjusted R2 of all the ‘best’ models
when predicting MRI VFM sum. Scatterplots and Bland–
Altman plots show good agreement between the regres-
sion equation estimates and MRI VFM. Eror plots, which
plot the regression equation results against the error
(MRI values minus predicted values) for model 4 and
model 6, are shown in Figure 3e,f, respectively. In general,
the error plots show that error increases with higher
amounts of VF.

Because of slight but noticeable curvilinear character
exhibited in scatterplots of DXA versus MRI, analysis of
the variability was performed on the DXA measures of ad-
iposity. The DXA mass variables (VFM, AFM and TBFM)
were skewed right (1.42–1.63; SE = 0.414) with some kur-
tosis (1.63–3.92; SE = 0.809). Of the per cent fat variables,
only DXA VPF was slightly skewed right (0.618;
SE = 0.806). Log transformation of these variables did
not improve regression outcomes. Analysis of variability
was also performed on MRI VF variables, which found
the MRI variables to have a fairly normal distribution with
very little skewness or kurtosis.

Discussion

This study sought to determine whether DXA estimates of
VF using GE Lunar’s CoreScan software application are
accurate in young girls (aged 9–13 years). This software
estimate of VF was previously validated in an adult
sample by Kaul et al. (15), using the criterion measure of
abdominal X-ray CT in 109 adult participants. Other suc-
cessful estimations of VF in adults using DXA have been
made in recent years using MRI as the criterion method
with studies reporting that VF measurement by DXA is
strongly correlated with MRI VF (28–31). None of these
studies included children in their sample.

This study is the only one to examine the applicability
of the GE CoreScan software application in children. Cor-
relation analysis showed that DXA measures of fat mass
(VFM, AFM and TBFM) were moderately correlated
(r = 0.43–0.59, p < 0.001) with MRI VF in girls aged
9–13 years. These results are similar to those of Laddu
et al. who did not have VF estimating software but
compared the fat masses of both an automatically drawn
DXA android ROI and a manually drawn DXA ROI of the
L1 to L4 region, to MRI VF at the L4–L5 level in a sample
of men and women aged 12–25 year (32). They showed
that with the addition of gender and/or weight, 54% to
62% of the variance in VF could be explained (32).
VF estimates provided by the GE Lunar CoreScan appli-
cation accounted for 48% to 61% of the variation in
MRI VF at all intervertebral sites as well as the sum of
the slices regardless of whether the DXA VF was

Figure 2 (a) Relationship between magnetic resonance imaging vis-
ceral fat mass (MRI VFM) sum (g) and dual-energy X-ray absorptiom-
etry (DXA) visceral per cent fat (%) estimated by the GE Lunar
CoreScan application, (b) relationship between MRI VFM sum (g)
and the measured DXA android per cent fat (%) and (c) relationship
between MRI VFM sum (g) and the measured DXA total body per cent
fat (%). SEE, standard error of the estimate.
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expressed in mass or as a per cent. Simple univariate re-
gressions using DXA android fat mass and DXA TBFM as
the predictors provided similar results when compared
with the DXA VF regressions.

Dual-energy X-ray absorptiometry per cent fat vari-
ables were better correlated with MRI VF than DXA fat
mass variables, with the exception of DXA VF. Addition-
ally, simple regression showed that the predictive power

Figure 3 (a) Relationship between magnetic resonance imaging visceral fat mass (MRI VFM) sum (g) and VF predicted by model 4 (Table 5), (b)
relationship between MRI VFM sum (g) and VF predicted by model 6, (c) Bland–Altman plot of the difference and average of MRI VFM sum and
model 4 prediction, (d) Bland–Altman plot of the difference and average of MRI VFM sum and model 6 prediction, (e) plot of model 4 VFM pre-
diction against error (MRI VFM sum � model 4 prediction) and (f) plot of model 6 VFM prediction against error (MRI VFM sum � model 6 pre-
diction). SEE, standard error of the estimate.

444 Estimation of visceral fat in girls V. Lee et al. Obesity Science & Practice

© 2018 The Authors
Obesity Science & Practice published by John Wiley & Sons Ltd, World Obesity and The Obesity Society. Obesity Science & Practice



of DXA android per cent fat and DXA total body per cent
fat was better than that of DXA VFM, DXA android fat
mass and DXA total body fat mass. DXA android and total
body per cent fat variables accounted for 62% to 72% of
the variation in MRI VFM at all sites compared with 42%
to 61% for the mass variables. DXA visceral per cent fat
accounted for less variability compared with the other
per cent fat variables, although it accounted for more var-
iability than DXA VFM. It can be surmised that, in general,
increased percentage of total body fat translates to in-
creased VF content more than total fat mass because
VF increases in relation to per cent fat (i.e. in participants
with obesity) as opposed to those large participants who
have more fat in total but not as a per cent.

Interestingly, there was an inverse relationship be-
tween age and VF predicted from DXA, indicating that in
older girls for a given amount of DXA fat, there is less
VF. In general, the relationship is non-significant, but in
several models, it did approach significance. This rela-
tionship may be the result of the limited sample size,
and a future study using a larger study population may
prove this to be a significant finding.

This study also sought to determine whether adding
simple anthropometric measurements to DXA VF and
other DXA measures of adiposity can improve the estima-
tion of VF. The GE CoreScan application used to estimate
DXA VF in this study was not developed for this age
group. Because it is a proprietary algorithm, it is not pos-
sible to know what specific variables are used in the ap-
plication. An attempt was made to improve the ability for
this application to estimate VF in this age group by includ-
ing the anthropometric measurements of WC and BMI.
Overall, the addition of anthropometric measures and
age did improve prediction, but the prediction was not
as good as using other DXA measures of adiposity
(android per cent fat or total body per cent fat). Adding
WC or BMI improved the adjusted R2 and decreased the
SEE in the majority of the models regardless of the DXA
measure of adiposity. WC and BMI were both moderately
correlated with MRI VF (waist = 0.72 to 0.84, p < 0.001;
BMI = 0.70 to 0.80, p < 0.001). WC has been shown to
be correlated with VF and is considered a predictor of
VF, accounting for 65% of the variance in MRI VF (33), al-
though some studies found WC to be a better predictor of
subcutaneous fat and total fat (8,9,32). The relationship
between BMI and VF, however, is inconsistent. Studies
by Goodwin et al. and Ross et al. (8,32) had shown only
low to moderate correlation; however, a study by
O’Connor et al. (23) showed a strong correlation with VF.
Body weight, on the other hand, was not as well corre-
lated with MRI VF as WC and BMI.

In many regression models, the addition of WC or BMI
resulted in the adiposity variable no longer being

significant. WC is often used as a surrogate measure for
estimating VF (33) and had stronger correlation than the
DXA measure of adiposity in this study, and therefore,
the adiposity variable losing significance would be a
realistic consequence when adding WC to the models.
Overall, WC was the most common anthropometric co-
variate appearing in models with the greatest adjusted R2.

The findings of this study are limited by the small
sample size and narrow age range of the participants
(9–13 years; mean age = 11.3 ± 1.3 years). A larger
sample size was not financially feasible because of the
cost of MRI imaging. Additionally, a power analysis
calculation could not be completed because of the lack
of an effect size estimate on the bias of the DXA
CoreScan software application as applied to the sample.
However, the sample was diverse across a range of BMI
and per cent body fat. Additionally, the narrow age range
may limit the usefulness of the selected equations to be
generalizable to older girls. A final limitation is that total
VF measurements from MRI were not available for use in
the analysis.

Conclusion

The results of this study show that there is a strong rela-
tionship between DXA measures of adiposity and MRI
measures of VF. In univariate regression, the GE Lunar
CoreScan application estimates VF in young girls
9–13 years of age comparatively as well as other DXA
measures. Although the GE Lunar CoreScan application
estimate can be improved by adding WC, other DXA mea-
sures of adiposity are better correlated and result in better
estimation of VF, especially after adding WC. The results
also indicate that WC alone is a good predictor of VF in
young girls and that combining WC with DXA android
per cent fat accounts for 74% of the variability in VF mea-
sured by MRI.

Although the resultant equations account for consider-
able variability with satisfactory SEE and %SEE, the use
of these equations cannot be recommended. In order to
improve these equations to provide a more accurate esti-
mate, total MRI VF should be acquired in order to provide
total VF measurement by the criterion method. Further-
more, future studies should include a greater number of
participants with a more diverse range of body habitus,
age, race and ethnicity.

Overall, this study shows that the association among
DXA measures of adiposity and anthropometry can be
combined to accurately estimate VF in young girls. Thus,
it appears likely that a generalizable formula can be devel-
oped for girls improving on the present GE Lunar
CoreScan application.

Obesity Science & Practice Estimation of visceral fat in girls V. Lee et al. 445

© 2018 The Authors
Obesity Science & Practice published by John Wiley & Sons Ltd, World Obesity and The Obesity Society. Obesity Science & Practice



Funding

Support for this study was provided by the Eunice
Kennedy Shriver National Institute for Child Health and
Human Development grant R01 HD-074565.

Conflict of Interest Statement

The authors declare no conflict of interest.

Acknowledgements

We would like to thank the University of Arizona
Collaboratory for Metabolic Disease Prevention and
Treatment Center, where this investigation was com-
pleted, and the Arizona Cancer Center Imaging Core
for support with the development of image processing
tools.

We would like to thank Dr Hagio for developing the MRI
segmentation program used to quantify VF for this study.
Dr Hagio is currently at the U.S. Food and Drug Adminis-
tration. The work herein was carried out when she was at
the University of Arizona.

References

1. Hales CM, Carroll MD, Fryar CD, Ogden CL. Prevalence of obesity

among adults and youth: United States, 2015–2016. NCHS Data

Brief 2017: 1–8.

2. Kelly AS, Dengel DR, Hodges J, et al. The relative contributions of

the abdominal visceral and subcutaneous fat depots to cardiomet-

abolic risk in youth. Clin Obes 2014; 4: 101–107.
3. Gower BA, Nagy TR, Goran MI. Visceral fat, insulin sensitivity, and

lipids in prepubertal children. Diabetes 1999; 48: 1515–1521.
4. Goran MI, Gower BA. Relation between visceral fat and disease

risk in children and adolescents. Am J Clin Nutr 1999; 70:
149S–156S.

5. Goran MI, Gower BA. Abdominal obesity and cardiovascular risk in

children. Coron Artery Dis 1998; 9: 483–487.
6. Goran MI, Ball GD, Cruz ML. Obesity and risk of type 2 diabetes and

cardiovascular disease in children and adolescents. J Clin

Endocrinol Metab 2003; 88: 1417–1427.
7. Katzmarzyk PT, Bouchard C. Where is the beef? Waist circumfer-

ence is more highly correlated with BMI and total body fat than with

abdominal visceral fat in children. Int J Obes (Lond) 2014; 38:
753–754.

8. Goodwin K, Syme C, Abrahamowicz M, et al. Routine clinical

measures of adiposity as predictors of visceral fat in adolescence: a

population-based magnetic resonance imaging study. PLoS One

2013; 8: e79896.
9. Ribeiro-Filho FF, Faria AN, Azjen S, Zanella MT, Ferreira SR.

Methods of estimation of visceral fat: advantages of ultrasonogra-

phy. Obes Res 2003; 11: 1488–1494.
10. Shuster A, Patlas M, Pinthus JH, Mourtzakis M. The clinical impor-

tance of visceral adiposity: a critical review of methods for visceral

adipose tissue analysis. Br J Radiol 2012; 85: 1–10.
11. Sasai H, Brychta RJ, Wood RP, et al. Does visceral fat estimated

by dual-energy X-ray absorptiometry independently predict

cardiometabolic risks in adults? J Diabetes Sci Technol 2015; 9:
917–924.

12. Bertin E, Marcus C, Ruiz JC, Eschard JP, Leutenegger M. Mea-

surement of visceral adipose tissue by DXA combined with an-

thropometry in obese humans. Int J Obes Relat Metab Disord 2000;

24: 263–270.
13. Clasey JL, Bouchard C, Teates CD, et al. The use of anthropometric

and dual-energy X-ray absorptiometry (DXA) measures to estimate

total abdominal and abdominal visceral fat in men and women.

Obes Res 1999; 7: 256–264.

14. Mirwald RL, Baxter-Jones AD, Bailey DA, Beunen GP. An assess-

ment of maturity from anthropometric measurements. Med Sci

Sports Exerc 2002; 34: 689–694.

15. Kaul S, Rothney MP, Peters DM, et al. Dual-energy X-ray absorpti-

ometry for quantification of visceral fat. Obesity (Silver Spring)

2012; 20: 1313–1318.
16. Going S, Lohman T, Houtkooper L, et al. Effects of exercise on bone

mineral density in calcium-replete postmenopausal women with

and without hormone replacement therapy. Osteoporos Int 2003;

14: 637–643.
17. Ma J. Dixon techniques for water and fat imaging. J Magn Reson

Imaging 2008; 28: 543–558.

18. Bosch TA, Dengel DR, Kelly AS, Sinaiko AR, Moran A, Steinberger

J. Visceral adipose tissue measured by DXA correlates with mea-

surement by CT and is associated with cardiometabolic risk factors

in children. Pediatr Obes 2015; 10: 172–179.

19. Brown RE, Kuk JL, Lee S. Measurement site influences

abdominal subcutaneous and visceral adipose tissue in obese

adolescents before and after exercise. Pediatr Obes 2015; 10:
98–104.

20. Ellis KJ, Grund B, Visnegarwala F, et al. Visceral and subcutaneous

adiposity measurements in adults: influence of measurement site.

Obesity (Silver Spring) 2007; 15: 1441–1447.

21. Maislin G, Ahmed MM, Gooneratne N, et al. Single slice vs. volu-

metric MR assessment of visceral adipose tissue: reliability and

validity among the overweight and obese. Obesity (Silver Spring)

2012; 20: 2124–2132.

22. Kuk JL, Church TS, Blair SN, Ross R. Measurement site and the

association between visceral and abdominal subcutaneous adi-

pose tissue with metabolic risk in women. Obesity (Silver Spring)

2010; 18: 1336–1340.

23. O’Connor M, Ryan J, Foley S. Best single-slice location to measure

visceral adipose tissue on paediatric CT scans and the relationship

between anthropometric measurements, gender and VAT volume in

children. Br J Radiol 2015; 88 20140711.

24. Schaudinn A, Linder N, Garnov N, et al. Predictive accuracy of

single- and multi-slice MRI for the estimation of total visceral adi-

pose tissue in overweight to severely obese patients. NMR Biomed

2015; 28: 583–590.

25. Shen W, Punyanitya M, Wang Z, et al. Visceral adipose tissue: re-

lations between single-slice areas and total volume. Am J Clin Nutr

2004; 80: 271–278.
26. Sun J, Xu B, Freeland-Graves J. Automated quantification of ab-

dominal adiposity by magnetic resonance imaging. Am J Hum Biol

2016; 28: 757–766.

27. Fryar CD, Gu Q, Ogden CL, Flegal KM. Anthropometric reference

data for children and adults: United States, 2011–2014. Vital and

Health Statistics 2016; 3: 1–46.

28. Neeland IJ, Grundy SM, Li X, Adams-Huet B, Vega GL. Comparison

of visceral fat mass measurement by dual-X-ray absorptiometry

446 Estimation of visceral fat in girls V. Lee et al. Obesity Science & Practice

© 2018 The Authors
Obesity Science & Practice published by John Wiley & Sons Ltd, World Obesity and The Obesity Society. Obesity Science & Practice



and magnetic resonance imaging in a multiethnic cohort: the Dallas

Heart Study. Nutr Diabetes 2016; 6: e221.
29. Taylor AE, Kuper H, Varma RD, et al. Validation of dual energy X-ray

absorptiometry measures of abdominal fat by comparison with

magnetic resonance imaging in an Indian population. PLoS One

2012; 7: e51042.
30. Cheung AS, de Rooy C, Hoermann R, et al. Correlation of visceral

adipose tissue measured by Lunar Prodigy dual X-ray absorptiom-

etry with MRI and CT in older men. Int J Obes (Lond) 2016; 40:
1325–1328.

31. Mohammad A, De Lucia RE, Sleigh A, et al. Validity of visceral adi-

posity estimates from DXA against MRI in Kuwaiti men and women.

Nutr Diabetes 2017; 7: e238.
32. Ross R, Leger L, Morris D, de Guise J, Guardo R. Quantification of

adipose tissue by MRI: relationship with anthropometric variables. J

Appl Physiol (1985) 1992; 72: 787–795.
33. Brambilla P, Bedogni G, Moreno LA, et al. Crossvalidation of an-

thropometry against magnetic resonance imaging for the assess-

ment of visceral and subcutaneous adipose tissue in children. Int J

Obes (Lond) 2006; 30: 23–30.

Obesity Science & Practice Estimation of visceral fat in girls V. Lee et al. 447

© 2018 The Authors
Obesity Science & Practice published by John Wiley & Sons Ltd, World Obesity and The Obesity Society. Obesity Science & Practice


