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The analysis and interpretation of high-resolution computed tomography (HRCT) images of the chest in the presence of interstitial
lung disease (ILD) is a time-consuming task which requires experience. In this paper, a computer-aided diagnosis (CAD) scheme is
proposed to assist radiologists in the differentiation of lung patterns associated with ILD and healthy lung parenchyma. Regions of
interest were described by a set of texture attributes extracted using differential lacunarity (DLac) and classical methods of statistical
texture analysis. The proposed strategy to compute DLac allowed a multiscale texture analysis, while maintaining sensitivity to
small details. Support Vector Machines were employed to distinguish between lung patterns. Training and model selection were
performed over a stratified 10-fold cross-validation (CV). Dimensional reduction was made based on stepwise regression (𝐹-test, 𝑝
value < 0.01) during CV. An accuracy of 95.8 ± 2.2% in the differentiation of normal lung pattern from ILD patterns and an overall
accuracy of 94.5± 2.1% in amulticlass scenario revealed the potential of the proposed CAD in clinical practice. Experimental results
showed that the performance of the CAD was improved by combining multiscale DLac with classical statistical texture analysis.

1. Introduction

Interstitial lung disease (ILD) is a common name for a
heterogeneous group of complex disorders affecting lung
parenchyma. The ILD affects similar lung regions and has
identical clinical, radiological, and functional tests which
hinder the differential diagnosis. However, ILD subtypes have
different prognoses and treatments, so a correct diagnosis is
essential [1]. High-resolution computed tomography (HRCT)
imaging of the chest can offer such good image quality that it
has become essential in the detection, diagnosis, and follow-
up of ILD [2]. HRCT images of patients affected with ILD
have specific patterns whose distribution and visual content
analysis is particularly relevant in elaborating an accurate
diagnosis [3].

Multidetector row computed tomography (CT) scanners
generate a huge volume of data that must be visually
examined by radiologists. This task is very time-consuming

and requires experience, especially in the presence of ILD.
Computer-aided diagnosis (CAD) for ILD is seen as a
necessary tool to reduce interobserver and intraobserver vari-
ations, as well as to improve diagnostic accuracy by assisting
radiologists in the detection, characterization, and quantifi-
cation of pathological regions [3–13].

In this paper, a CAD scheme is presented allowing for
a classification of regions of interest (ROIs), from HRTC
images, in four classes of lung patterns: normal (NOR),
ground glass (GG), honeycombing (HC), and emphysema
(EMP). A scenario of binary differentiation, NOR class versus
pathological class, is also considered. A generic flowchart
of the proposed approach is shown in Figure 1. Classical
statistical methods were used to extract and quantify texture
information. The first-order (FO) analysis, the Spatial Gray
Level Dependence Method (SGLDM), and the Gray Level
Run-Length Method (GLRLM) allowed the estimate of
statistical properties of individual pixel values and of the
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Figure 1: The proposed CAD scheme.

spatial interaction between two or more pixel values. These
methods have frequently been used in texture analysis of
medical images, namely, in the description of ILD patterns
[4, 8–13]. Given the heterogeneity of lung parenchyma in
healthy subjects or in the presence of pathologies, amultiscale
texture analysis was proposed using differential lacunarity
(DLac). Lacunarity has been successfully used in analyzing
medical images of different organs or structures, acquired
by different types of equipment. In [14, 15], fractal lacu-
narity analysis was applied to lumbar vertebra magnetic
resonance images in order to extract relevant parameters,
allowing for differentiation among three types of trabecular
bone structure, from female subjects with different age and
physiopathological status. In [16], lacunarity was combined
with mean fractal dimension to differentiate between aggres-
sive and nonaggressive malignant lung tumors, in sequence
of contrast-enhanced CT images. An 83.3% accuracy can
be valuable information in the choice of the appropriate
treatment procedure. In [17], lacunarity analysis was applied
for discriminating endoscopic images, obtained through a
wireless capsule endoscopy technique, related to a common
interstitial disease: ulceration. A promising classification
accuracy of over 97% was obtained. In [18], lacunarity was
applied to HRCT images of the chest to differentiate between
normal and emphysematous regions of lung parenchyma.
The preliminary results showed the potential of the proposed
lacunarity features.

After a feature selection procedure, the obtained features
were used to classify each ROI through a Support Vector
Machines (SVM) algorithm. This learning algorithm has
its origin in statistical learning theory and structural risk
minimization [19, 20]. It emerged as an efficient technique
for solving classification problems. A comparative study

between SVM and other popular classifiers was performed
by Meyer et al. [21]. The results highlight that SVM classifiers
are among the best. In [5], five common classifiers were
compared according to their ability to differentiate six lung
tissue patterns inHRCT images.The results showed that SVM
provides the best trade-off between the error rate and the
capacity for generalization, an important aspect to take into
consideration given the diversity of pulmonary patterns.

2. Materials and Methods

2.1. Texture Analysis. Texture is a major component in the
interpretation of HRTC images in the presence of ILD. The
most difficult aspect of texture analysis is to define a set
of meaningful features that describe the texture associated
with different lung patterns. Each ROI of 𝑀 × 𝑁 pixels was
represented by a set of𝑚 features extracted using themethods
described in the sections below.

2.1.1. First-Order Statistics Analysis. The CT attenuation of
each ROI was described through FO statistical features
extracted from ROI normalized histogram. Considering that
𝐿 is the number of gray levels used in ROI quantization, the
normalized histogram ℎ(𝑧

𝑖
), 0 ≤ 𝑖 < 𝐿, gives the probability

of observing the gray level 𝑧
𝑖
in the ROI. From ℎ(𝑧

𝑖
),

six statistics features were computed: the mean, variance,
skewness, kurtosis, energy, and entropy [22].

2.1.2. Spatial Gray Level Dependence Method. Themethod of
texture analysis proposed by Haralick et al. [23] describes
the spatial dependence of gray level distribution between
neighboring pixels. In the SGLDM, the second-order joint
conditional probability distribution 𝑝(𝑖, 𝑗 | 𝑑𝑥, 𝑑𝑦) can be
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estimated for a defined length and along a defined direc-
tion given by offsets in 𝑥 and 𝑦 direction: 𝑑𝑥 and 𝑑𝑦. So,
𝑝(𝑖, 𝑗 | 𝑑𝑥, 𝑑𝑦) is the probability that two pixels at a distance
given by (𝑑𝑥, 𝑑𝑦) have the gray levels 𝑖 and 𝑗. The function
𝑝(𝑖, 𝑗 | 𝑑𝑥, 𝑑𝑦) is defined as follows:

𝑝 (𝑖, 𝑗 | 𝑑𝑥, 𝑑𝑦)

=

∑
𝑀

𝑘=1
∑
𝑁

𝑞=1
𝛿 (𝑖,ROI (𝑘, 𝑞)) ⋅ 𝛿 (𝑗,ROI (𝑘 + 𝑑𝑥, 𝑞 + 𝑑𝑦))

𝑇 (𝑑𝑥, 𝑑𝑦)
,

where 𝛿 (𝑖, 𝑗) =

{

{

{

1 if 𝑖 = 𝑗

0 if 𝑖 ̸= 𝑗.

(1)

ROI(𝑘, 𝑞) is the intensity at pixel (𝑘, 𝑞) and 𝑇(𝑑𝑥, 𝑑𝑦) is the
total number of pixels pairs belonging to theROI in the length
and direction given by (𝑑𝑥, 𝑑𝑦).The functions 𝑝(𝑖, 𝑗 | 𝑑𝑥, 𝑑𝑦)

can be written in matrix form Ω(𝑑𝑥, 𝑑𝑦) = 𝑝(𝑖, 𝑗 | 𝑑𝑥, 𝑑𝑦),
0 ≤ 𝑖, 𝑗 < 𝐿, where 𝐿 is the maximum gray level of the ROI.
For each pair (𝑑𝑥, 𝑑𝑦), a different matrix Ω(𝑑𝑥, 𝑑𝑦) can be
computed. Often, each matrix Ω(𝑑𝑥, 𝑑𝑦) is calculated taking
into account a given offset and its opposite, giving rise to
symmetrical matrices. In this study, from each matrix, six
textural measures were extracted: angular second moment,
entropy, inverse difference moment, correlation, contrast,
and variance [23, 24].

2.1.3. Gray Level Run-Length Method. Run-length primitives
were computed by the GLRLM [25]. A run-length primitive
is a consecutive and collinear set of pixels with the same gray
level. These primitives can be characterized by their length,
direction, and gray level. Each chosen direction gives rise
to a run-length matrix Ψ(𝜃) whose elements represent the
number of runs with gray level intensity 𝑎 and length 𝑟, along
the direction 𝜃:

Ψ (𝜃) = 𝑀 (𝑎, 𝑟 | 𝜃) , 0 ≤ 𝑎 < 𝐿, 0 < 𝑟 ≤ 𝑁
𝑟
, (2)

where 𝐿 is the number of gray levels and 𝑁
𝑟
is the possible

maximum run-length in ROI along 𝜃 direction. From each
run-lengthmatrixΨ(𝜃), eleven featureswere extracted, listed,
and described in [24–27].

2.1.4. Lacunarity Analysis. Most of the textures and natural
surfaces tend to have a fractal dimension (FD) that can be
seen as a measure of irregularity [28]. However, different
textures and natural surfaces can share identical FD. In order
to differentiate these types of fractal patterns, Mandelbrot
[29] proposed lacunarity, a complementary measure of FD
that describes the texture of a fractal or their deviation from
translational invariance [30]. More recent studies introduced
lacunarity analysis as a technique that can be used to describe
general spatial patterns, regardless of whether it is a fractal
[31]. By using lacunarity, it is possible to distinguish the
texture of spatial patterns through the analysis of their
distribution gap sizes, at different scales.

Due to the extensive range of gray levels used in CT
images acquisition, an appropriate algorithm to calculate
lacunarity is that proposed in [32], called DLac. It is based
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Figure 2: Differential box counting algorithm. Amoving window of
9 × 9 pixels and a gliding box of 3 × 3 pixels are used to compute the
box mass. A column of 3 cubic boxes is generated. The differential
height of the column is 𝑛 (1, 1) = 3 − 1 − 1 = 1.

on the gliding box [33] and the differential box counting
algorithms [34].

According to DLac algorithm, the ROI is divided into
overlapped windows of size 𝑤 × 𝑤 pixels, which scans the
entire ROI, and a box of size 𝑟 × 𝑟 pixels, which scans each
window (𝑟 < 𝑤). The box is placed on the left corner of the
window𝑤 and a column of accumulated cubes of size 𝑟×𝑟×𝑟

is used to cover the ROI intensity surface in the box place
(Figure 2). A sequential number is assigned to each cubic box,
frombottom to top. Considering that themaximumandmin-
imum pixel values lie in the cubic box V and 𝑢, respectively,
the differential height of the column is given by 𝑛(𝑖, 𝑗) =

V−𝑢−1, where (𝑖, 𝑗) is the box position.The boxmass𝑀 of the
window𝑤, at specific coordinates, is obtained gliding the box
inside the entire window 𝑤:

𝑀 = ∑

𝑖,𝑗

𝑛 (𝑖, 𝑗) . (3)

Considering 𝑛(𝑀, 𝑟), the number of windows𝑤with box
mass𝑀 calculated through a box 𝑟, the respective probability
function 𝑄(𝑀, 𝑟) is obtained by dividing 𝑛(𝑀, 𝑟) by the total
number of windows. The DLac of the ROI for a box 𝑟, given
a window 𝑤, is defined as follows:

Λ (𝑟) =
∑
𝑀

𝑀
2
𝑄 (𝑀, 𝑟)

[∑
𝑀

𝑀𝑄(𝑀, 𝑟)]
2
. (4)

2.2. Feature Selection. After performing feature extraction,
it is important to proceed with the selection of the most
informative features. The resulting set of optimal features
improves the classifier performance, while providing a reduc-
tion of the general data, as well as a better understanding
of the data. The feature selection methods can be divided
into two main groups: the filter methods and the wrapper
methods. In the filter methods, the features are ordered based
on a relevance index. In the wrapper methods, the process
of feature selection involves the predictor. In these methods,
subsets of features are scored during the learning machine
training according to their predictive power [35].
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In this work, the reduction of dimensionality was per-
formed using the filter method stepwise regression [36]. In
this systematic method, terms are added or removed from
the multilinear model based on their statistically significant
𝑝 value of 𝐹-statistics. The method begins with an initial
model to which terms that have𝑝 values less than an entrance
tolerance are added, step by step, and the model terms with
𝑝 values greater than an exit tolerance are removed from the
model.

2.3. SupportVectorMachines. Thereducednumber of param-
eters that need to be tuned as well as the good trade-off
between the error rate and the capability of generalization
of SVM classifier algorithm was decisive for its choice in the
classification of lung patterns [5, 21].

The SVMstrategy, known as the kernel trick, is tomap the
input data space into a higher dimension feature space, via a
nonlinear function kernel B : R𝑚 → I, where separability
between classes is improved. The distance between the near-
est points of the two classes (margin) is maximized, creating
an optimal separating hyperplane (OSH).

Considering the training data {x
𝑖
, 𝑦
𝑖
}, 𝑖 = 1, . . . , 𝑙, x

𝑖
∈

R𝑚, 𝑦
𝑖

∈ {+1, −1}, each instance x
𝑖
is characterized by a

vector of 𝑚 features (or attributes) and is associated with a
class +1 or−1.The SVMmachine learning solves the following
quadratic optimization problem:

min
𝑤,𝑏,𝜉

1

2
‖w‖
2
+ 𝐶

𝑙

∑

𝑖=1

𝜉
𝑖

subject to 𝑦
𝑖
(w ⋅B (x

𝑖
) + 𝑏) ≥ 1 − 𝜉

𝑖

𝜉
𝑖
≥ 0, 𝑖 = 1, . . . , 𝑙,

(5)

where w is a normal vector to OSH and 𝑏 is the bias. In hard
margin SVM all the examples have to stay outside the margin
and be well classified. However, in real datasets, it is necessary
to deal with outliers that can be inside the margin or on
the wrong side of the classification boundary. The solution
proposed in [37], as the soft margin SVM, is to introduce
constraint slack variables 𝜉

𝑖
in the optimization problem.

Ideally, these variables should be zero or have small values. So,
to minimize the contribution of the slack variables, a penalty
term 𝐶 is added to the objective function (5). This parameter
is a trade-off between the maximization of the margin and
the minimization of training errors. For a test example x, the
decision function is given by

𝑓 (x) = sgn (w ⋅B (x) + 𝑏) . (6)

There are several functions kernels𝐾(x, x
𝑖
) = Φ(x) ⋅Φ(x

𝑖
)

which can be selected to solve nonlinear problems. In this
work, the Gaussian Radial Basis Function (RBF) was used:
𝐾(x, y) = exp(−‖x − y‖2)/(2𝜎2). This function only has one
parameter (𝜎) that has to be tuned during the classifier train-
ing and model selection.

As the standard SVM is a binary classifier, several meth-
ods were developed to extend SVM to an 𝑛-class problem.
Typically, thesemethods are based on combinations of binary
classifiers such as one-versus-all and one-versus-one. In the

one-versus-all approach, 𝑛 binary classifiers are trained. For
example, the model of the 𝑛th classifier is trained using
the training instances of the 𝑛-class as positive and all the
instances of the other classes as negative. To classify a new
instance, all the 𝑛 classifiers are run on this instance. The
assigned class corresponds to the classifier which returns the
largest distance from the separating hyperplane. In the one-
versus-one approach 𝑛(𝑛−1)/2 classifiers are trained in a pair-
wise methodology, where each takes one class as positive and
the other class as negative. To classify a new example, each
classifier is run and a count is assigned to each class selected
by the classifier.The new instance is classified as belonging to
the class which obtains the greatest number of wins, such as
in a winner-takes-all voting scheme [38].

2.4. Dataset. The dataset D used in this work was acquired
in Radiology Department of Coimbra Hospital and Univer-
sitary Centre, Coimbra, Portugal. It contains examples of rep-
resentative regions associated with GG, HC, EMP, and NOR
lung patterns, obtained from the daily practice of the hos-
pital. The examples were acquired from subjects that agreed
with the use of their images for research purposes by awritten
consent.

A user friendly software was developed to visualize CT
exams, to outline freehand ROIs (FH-ROIs), and to label and
to characterize each FH-ROI [39].HRCT scanswere acquired
using multidetector row CT LightSpeed VCT 64, from Gen-
eral Electric Healthcare, with an average voxel size of 0.7 ×

0.7 × 1.3mm3, without contrast agent. Each image was stored
in a matrix of 512 × 512 pixels, with 16-bit gray level, using
DICOM standard. Each image was displayed using a lung
window with a centre in −700 Hounsfield Units (HU) and a
width of 1500HU. FromCT images of 57 subjects (#29 female;
#28 male) with an average age of 61 ± 16 years, radiologists
outlined FH-ROIs from patients in different stages of disease.

The area and shape of each FH-ROI depend on the size
and localization of the lung patterns. No more than one FH-
ROI was selected from each side of the lungs.The lung region
of each FH-ROI was sampled and covered with contiguous,
nonoverlapping ROIs of 40 × 40 pixels [24]. Each FH-ROI
was sequentially numbered and each ROI holds the reference
of the FH-ROI from where it was extracted. For example,
the FH-ROIxSy corresponds to ROI y extracted from FH-
ROI x. Only the ROIs one hundred percent inside the FH-
ROI boundary were considered in the train and test of the
classifier; all the other ROIs were discarded. For example, in
Figure 3 only the ROIs 8, 13, 14, and 18 respect the constraint.
Table 1 resumes the dataset used to train and evaluate the
proposed CAD system.

2.5.Model Selection and Performance Evaluation. Thedataset
D (#1261 ROIs) was divided into a training set and a testing
set in a proportion of 2/3–1/3, respectively. The samples were
randomly selected using a holdout strategywith stratification,
which ensures mutually exclusive partitions where the class
proportions are roughly the same as those in the original
dataset D [40]. The holdout procedure was based on FH-
ROIs in order to ensure that ROIs extracted from the same
FH-ROI are placed on only one of the sets, train or test.
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Table 1: Dataset used to train and evaluate the CAD system.

Class Normal Ground glass Honeycombing Emphysema

Visual aspect

# of patients 16 20 7 14
# of freehand ROIs 87 166 72 92
# of ROIs 253 396 217 395

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

Figure 3: Example of FH-ROI and the grid that allows the
extraction of ROIs. Only ROIs of one hundred percent inside FH-
ROI boundary were kept.

During SVM training, a search was carried out to find
optimal parameters to create the classifier model. In the
case of the selected RBF kernel function, the parameters
that have to be tuned were 𝜎 and 𝐶, the regularization
parameter that corresponds to a penalty over the training
errors.The search for the optimal parameters was done using
a grid search methodology in the hyperparameter space.
So, for every point of the hyperparameter space, a 𝑘-fold
stratified cross-validation (CV) was performed, with 𝑘 = 10

[40, 41]. The train set was randomly split into 𝑘 mutually
exclusive folds 𝐹

1
, 𝐹
2
, . . . , 𝐹

𝑘
, with approximately the same

proportion of each class as inD. During CV, the classifier was
trained and tested 𝑘 times. In each iteration, it was trained
on 𝑘 − 1 folds and tested in the remaining fold 𝐹

𝑡
, with

𝑡 ∈ {1, 2, . . . , 𝑘}. The average of the 𝑘-fold accuracy corre-
sponds to CV accuracy. To avoid the model overfitting, the
feature selection procedure was included in CV loop [35].
The parameters and features that allow the best CV accuracy
were selected and a fine grid search was carried out around
the selected parameters, for refinement. The final classifier
modelwas built using all the training set, the selected features,
and the optimal parameters previously found. The obtained
model was evaluated in the test set, which was not used
during classifier training.

Table 2: Generic contingency table for 𝑛-class scenario.

Actual Predicted
Class 1 ⋅ ⋅ ⋅ Class 𝑛

Class 1 𝑎
11

⋅ ⋅ ⋅ 𝑎
1𝑛

.

.

.
.
.
. d

.

.

.

Class 𝑛 𝑎
𝑛1

⋅ ⋅ ⋅ 𝑎
𝑛𝑛

The performance evaluation of the classifier was per-
formed based on a contingency table, as exemplified in
Table 2 for 𝑛-class. Each matrix element has two indices; the
first one corresponds to actual disease, while the second one
corresponds to predicted disease. The elements of the main
diagonal have equal indices representing correct classifica-
tions. All the other elements of the matrix correspond to
incorrect classifications. For example, 𝑎

31
means that a patient

with disease 3wasmisclassified as having disease 1. In the case
of a binary classification, there are only normal and patholog-
ical classes, in a one-versus-all configuration.

After classification, the contingency table was filled with
the obtained results. From these values, it is possible to
compute a set of metrics allowing for the evaluation of the
classifier performance. A common performance evaluation is
overall accuracy, which measures the proportion of correctly
classified instances for all the classes. Sensitivity of class 𝑖

measures the fraction of actual positive instances of that class
that are correctly classified, while precision measures the
correctness of the predictions for class 𝑖. Specificity of class
𝑖 measures the fraction of actual negative instances of class 𝑖
that are correctly classified. These metrics can be computed
by the following expressions [42]:

Sensitivity (𝑖) =
𝑎
𝑖𝑖

∑
𝑗
𝑎
𝑖𝑗

,

Precision (𝑖) =
𝑎
𝑖𝑖

∑
𝑗
𝑎
𝑗𝑖

,

Specificity (𝑖) =
1 − ∑

𝑗
𝑎
𝑖𝑗
− ∑
𝑗 ̸=𝑖

𝑎
𝑗𝑖

1 − ∑
𝑗
𝑎
𝑖𝑗

,

Overall Accuracy =

∑
𝑖=𝑗

𝑎
𝑖𝑗

∑
𝑖
∑
𝑗
𝑎
𝑖𝑗

.

(7)
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2.6. Feature Settings. Each ROIwas characterized by a feature
vector extracted using FO, SGLDM, GLRLM, and DLac.

The ROIs were quantized to 32 gray levels before the
extraction of FO, SGLDM, and GLRLM features. The mini-
mum and maximum HU values were calculated for all ROIs
ofD and each ROI was quantized according to this range. In
SGLDM and GLRLM, the directions 𝜃 = {0

∘
, 45
∘
, 90
∘
, 135
∘
}

were considered. In GLDM, the distance between neighbor-
ing pixels was 𝑑 = 1, in the four directions.

A multiscale approach was required due to the high
variability of the appearance of lung patterns, even for the
same pattern.The selected approach to calculate DLac allows
a texture analysis at different scales by changing the value of
𝑤, for a box size 𝑟. The size of the window 𝑤 determines the
coarseness of the scale.The size of 𝑟 should be relatively small
in order to maintain sensitivity to small details present in
the neighboring areas. Equation (8) illustrates the proposed
approach to extract DLac features:

Λ (𝑤, 𝑟) =
∑
𝑀

𝑀
2
𝑄 (𝑀, 𝑟, 𝑤)

[∑
𝑀

𝑀𝑄(𝑀, 𝑟, 𝑤)]
2
. (8)

DLac was computed for every box-window combination,
subject to the condition 𝑟 < 𝑤, in order to evaluate the DLac
features that better differentiate the lung patterns. A DLac
curve Λ(𝑤, 𝑟 = const) can be obtained by keeping the size
of the gliding box 𝑟 constant and by changing the size of the
window𝑤. To assure a common referential, DLac values were
normalized in relation to the DLac value corresponding to
the smallest window 𝑤: Λ(𝑤min, 𝑟 = const) [43]. In order to
take advantage of the extensive scale used in CT images, the
curves of normalized DLac were computed using Hounsfield
scale [−1000UH; +1000UH].

3. Results and Discussion

Two scenarios were considered in order to evaluate the
potential of the proposed CAD and the importance of DLac
features in the CAD performance improvement. In the first
approach, the differentiation between normal and ILD pat-
terns was considered.The next step was the differentiation of
the four classes. In both cases, the feature vector was obtained
using two different sets. Set 1 includes the features from
FO + SGLDM + GLRLM. Set 2 also englobes DLac features.

The DLac features were extracted from DLac normalized
curves. Various experiments have been conducted computing
DLac curves for every box-window size for 𝑟 = [2–34] pixels
and 𝑤 = [3–35] pixels. The ability to differentiate the four
classes was evaluated.The best results were obtained for DLac
normalized curves for 𝑟 = 4 pixels and 𝑤 = [5–35] pixels.

Figure 4 shows the average of normalized DLac curves
for patterns of all the dataset D. The results show that the
DLac normalized curves are able to distinguish between lung
patterns, being suitable to extract informative features.

The multiclass classification was performed using one-
versus-one implementation [44]. In the case of the RBF
kernel function, the parameters optimization was performed
for the pair (𝐶, 𝜎). First, the parameters were evaluated
using a coarse grid for 𝐶 = 2
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Figure 4: Averaged normalized DLac curves obtained for 𝑟 = 4
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Figure 5: Example of 10-fold CV accuracy (%) obtained along the
hyperparameter space for finding optimal parameters (𝐶, 𝜎). Results
were obtained using Set 1, for the binary classification scenario.

𝜎 = 2
−2
, 2
−1.5

, . . . , 2
7. Figure 5 depicts a graphic of contours

of CV accuracy, obtained over a 10-fold CV using features
of Set 1, for the binary classification scenario. A heuristic
analysis of these curves provides a clear understanding of
the influence of the parameters in the classifier performance,
as well as clues to reduce search space. The results showed
the importance of fine tuning the SVM parameters during
the classifier training phase to achieve an optimized model.
After some experiments, the search grid was reduced to
𝐶 = 2

3
, 2
3.5

, . . . , 2
13 and 𝜎 = 2

−2
, 2
−1.5

, . . . , 2
1. For every

coordinate of the hyperparameter space, a 𝑘-fold CV was
performed, with 𝑘 = 10. In each of the 𝑘 iterations feature
selection was performed (𝐹-test, 𝑝 value < 0.01) in the 𝑘 − 1

training folds. If the coordinates (2𝑐, 2𝜎) generate the best CV
accuracy, a finer search was performed around these values
with a step of 0.25 upward and downward.

After the classifier training, the selectedmodel was evalu-
ated in the testing set.The training and testing of the classifier
were repeated over fifty iterations. So, the training and eval-
uation of the classifier were performed in fifty different sets.
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Table 3: Mean (SD) accuracy, sensitivity, precision, and specificity
using Set 1 and Set 2, for the binary classification (normal versus
pathologic). Values in percentage, obtained for 50 iterations.

Set 1 Set 2
Accuracy 94.4 (2.0) 95.8 (2.2)
Sensitivity 96.7 (1.2) 97.9 (1.1)
Precision 96.0 (2.1) 96.9 (2.1)
Specificity 84.8 (8.6) 88.1 (8.0)

Table 4: Mean (SD) of class-specific sensitivity, precision, and
specificity using Set 1, for the multiclass classification. Values in
percentage, obtained for 50 iterations.

Classes
NOR GG HC EMP

Sensitivity 87.2 (4.6) 92.5 (2.4) 89.4 (4.6) 96.9 (1.7)
Precision 89.6 (3.8) 84.7 (4.5) 93.5 (2.6) 99.8 (0.5)
Specificity 97.3 (1.1) 93.4 (2.3) 98.6 (4.6) 99.9 (0.2)

The presented metrics are the average of the results obtained
over all the iterations.

In the binary classification scenario, the ROIs with nor-
mal pattern (#253) were considered as negative instances
and the other ones as positive instances (#1008). In Table 3,
the mean and standard deviation (SD) of overall accuracy,
sensitivity, precision, and specificity are shown.The classifier
performance obtained using features of Set 1 was 94.4 ± 2.0%
for accuracy, 96.7 ± 1.2% for sensitivity, 96.0 ± 2.1% for
precision, and 84.8 ± 8.6% for specificity. Using Set 2, the
results increased to 95.8 ± 2.2% for accuracy, 97.9 ± 1.1%
for sensitivity, 96.9 ± 2.1% for precision, and 88.1 ± 8.0%
for specificity. High sensitivity and small SD values showed
that the proposed CAD has the ability to signal the presence
of abnormal patterns using both sets of features; that is, the
number of false negatives is low. The integration of DLac
features has primarily increased the specificity value, 3.3%
on average, reducing the number of false positives. However,
the SD value remains high (8.0). The correct classification of
NOR class instances is not easy due the high variability of
healthy lung tissue.

The classifier performance in the multiclass scenario was
also improved using Set 2 (Tables 4 and 5). The overall
accuracy increased from 91.9±1.9% to 94.5±2.1%.Moreover,
the class-specific metrics for NOR, GG, and HC improved
in a higher or lower percentage. For class EMP sensitivity
slightly increased from 96.9% to 97.3%, the precision and the
specificity maintained excellent values of 99.9%. Sensitivity
of NOR class was the metric that most improved with a
mean increase of about 5.3%, changing from 87.2% to 92.5%.
In the case of NOR class these results mean that class-
specific false negatives decreased; that is, the number of
instances of NOR class that were categorized as pathological
instances is smaller. In a clinical environment, this means
that fewer patients are subjected to the stress of unnecessary
additional medical exams. NOR class-specific precision and
specificity improved from 89.6% to 92.3% and from 97.3% to
97.9%, respectively. These results mean that the number of

Table 5: Mean (SD) of class-specific sensitivity, precision, and
specificity using Set 2, for the multiclass classification. Values in
percentage, obtained for 50 iterations.

Classes
NOR GG HC EMP

Sensitivity 92.5 (3.8) 96.7 (3.0) 92.3 (4.0) 97.3 (1.8)
Precision 92.3 (3.4) 88.9 (3.9) 97.5 (2.5) 99.9 (0.3)
Specificity 97.9 (1.1) 95.2 (1.8) 99.5 (4.0) 99.9 (0.1)

NOR classified as GG GG classified as NOR

Figure 6: Examples of misclassified ROIs between GG and NOR
classes.

false positives for NOR class, that is, pathological instances
classified as normal, decreased with Set 2. This type of
misclassification has a serious meaning; that is, the CAD
system does not signal the presence of a pathological pattern.
The number of false negatives and false positives of GG
and HC classes also decreased with the presence of DLac
features increasing the correct classification of GG and HC
instances. SD decreases in all metrics and classes, except for
sensitivity of EMP class. So, the DLac features also improved
the classifier stability.

The highest percentage of misclassified examples
occurred among NOR and GG classes. Almost fifty percent
(47.8%) of all the classification errors were due to incorrect
classifications between these two classes. Figure 6 illustrates
some random examples of normal ROIs that were classified
as GG, on left column, and examples of ROIs withGGpattern
that were classified as NOR, on right column. Although GG
opacities are characterized by areas of increased attenuation,
sometimes they are not dense enough to “hide” the broncho-
vascular markings, especially in the initial phases of ILD dis-
eases, associated with the presence of GG patterns.

4. Conclusions

A CAD scheme applied to HRCT images of the chest was
proposed for the classification of healthy lung regions and
with the presence of ILD. A texture analysis was performed
to describe the lung patterns in study. Texture information
of each ROI was represented by features extracted using a
multiscale DLac approach combined with features obtained
by classical statistical texture analysis methods. Feature selec-
tion and SVM trainingwas performed over a 10-fold stratified
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CV. The performance evaluation of the classifier model was
assessed using an independent test set.

Experimental results showed that DLac features improve
the performance of the proposed CAD system in both sug-
gested scenarios: normal versus pathological and multiclass.
In this case, the number of false negatives and false positives
of NOR class decreased, as well as the misclassification
between instances of pathological classes. Differentiating
the normal pattern from pathological patterns, the classifier
accuracy improved with an average of 1.4% when DLac
features were considered, resulting in a correct classification
of 95.8 ± 2.2% of all instances. In the multiclass scenario the
overall accuracy was improved from 91.9 ± 1.9% to 94.5 ±

2.1% due to the presence of DLac features. The performance
of the proposed CAD highlights the good discriminatory
properties of extracted DLac features, making it suitable to
integrate clinical applications for the classification of patterns
associated with ILD.
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