
����������
�������

Citation: Yeo, J.-H.; Roh, D.-H.

Dexmedetomidine Co-Administered

with Lidocaine Decreases

Nociceptive Responses and

Trigeminal Fos Expression without

Motor Dysfunction and Hypotension

in a Murine Orofacial Formalin

Model. Life 2022, 12, 215. https://

doi.org/10.3390/life12020215

Academic Editors: Samir Nammour,

Aldo Brugnera Junior and Darinca

Carmen Todea

Received: 6 January 2022

Accepted: 28 January 2022

Published: 30 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

life

Article

Dexmedetomidine Co-Administered with Lidocaine Decreases
Nociceptive Responses and Trigeminal Fos Expression without
Motor Dysfunction and Hypotension in a Murine Orofacial
Formalin Model
Ji-Hee Yeo and Dae-Hyun Roh *

Department of Oral Physiology, School of Dentistry, Kyung Hee University, Seoul 02447, Korea;
duo9427@naver.com
* Correspondence: dhroh@khu.ac.kr; Tel.: +82-2-961-9464

Abstract: Administration of dexmedetomidine significantly induces sedation and anti-nociception
in several nociceptive models, but clinical trials are restricted due to adverse side effects, including
lethargy, hypotension, and bradycardia. Herein, we investigated whether intraperitoneal inoculation
of dexmedetomidine reduced the orofacial nociceptive response and affected motor coordination and
blood pressure and examined whether a lower dose of dexmedetomidine in combination with 0.5%
lidocaine produced an antinociceptive effect without any adverse side events in a murine model. To
perform the experiment, 5% formalin (10 µL) was subcutaneously inoculated into the right upper
lip, and the rubbing responses were counted for 45 min. Different doses of dexmedetomidine com-
bined with 0.5% lidocaine were administered 10 and 30 min before formalin injection, respectively.
Dexmedetomidine (10 µg/kg) significantly reduced orofacial nociceptive responses during the second
phase of the formalin test and decreased the expression of Fos in trigeminal nucleus caudalis (TNC).
Besides, a high dose of dexmedetomidine (30 µg/kg) induced lessening physical ability and signifi-
cantly reduced systolic pressure and heart rate. When 0.5% lidocaine was injected subcutaneously,
nociceptive responses were reduced only in the first phase. Interestingly, although a low dose of
dexmedetomidine (3 µg/kg) alone did not show an antinociceptive effect, its co-administration with
lidocaine significantly reduced the nociceptive response in both phases and decreased TNC Fos
expression without motor dysfunction and hypotension. This finding suggests that the combination
of a low-dose of systemic dexmedetomidine with lidocaine may be a safe medicinal approach for
acute inflammatory pain management in the orofacial region, particularly mucogingival pain.

Keywords: dexmedetomidine; lidocaine; mice; nociception; rotarod performance test; trigeminal
nuclei; blood pressure; adrenergic agonists

1. Introduction

Orofacial pain (OFP) disorders are highly prevalent and debilitating conditions can
arise from different regions and etiologies, including pathological conditions of the teeth
and related structures [1]. Besides, these conditions represent a real challenge in the clinic
since the orofacial region is complex. Therefore, the clinician must have a solid awareness
and insight of the pain mechanisms [2,3] that develop from these structures for proper
diagnosis; a multidisciplinary approach for OFP management is strongly recommended.

Dexmedetomidine, a potent α2-adrenoceptor agonist, was first authorized to be used
as a sedative agent in the intensive care unit. In addition, dexmedetomidine was used as
an adjuvant for pain treatment, mostly during the acute perioperative settings [4]. In ani-
mal studies, dexmedetomidine induced an antinociception effect at the spinal cord level
revealed by the tail-flick tests [5] and significantly attenuated both nociception and hyper-
algesia in acute and chronic pain rodent models [6,7]. Moreover, Nazarian et al. reported
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that dexmedetomidine attenuated intraplantar formalin-induced Fos-protein expression
in the ipsilateral superficial dorsal horn [8]. Although several studies have proven the
analgesic effect of dexmedetomidine, the improvement of nociception and hyperalgesia
by the activation of the α2-adrenoreceptor with dexmedetomidine in the orofacial region
remains unclear. Furthermore, the common side effects of dexmedetomidine, such as
impaired motor function, hypotension, and bradycardia, have been a common problem
with the currently available α2-adrenoceptor agonists after either systemic or spinal admin-
istration [9].

Lidocaine, a local anesthetic used in surgery and dentistry, can be administered in
multiple methods, most often as a nerve block or infiltration, depending on the nature of
care performed and the extent of the mouth being worked on [10]. The pharmacological
action of lidocaine leads to block the neuronal signal conduction by inactivating the voltage-
gated Na+ channels in the neuronal cell membrane [11]. Thus, its local administration
produces antinociceptive effects both in acute postoperative and chronic neuropathic
pain [12].

To date, local administration of dexmedetomidine has been focused on several clinical
studies [13–16]. On the other hand, systemic injection of dexmedetomidine (intraperitoneal,
i.p. or intravenous, i.v.) has been widely used as a sedative and, in particular, several
studies have reported that dexmedetomidine could be used for both non-invasive and
invasive procedural sedation in infants and children [17–19]. Therefore, we considered that
the systemic treatment of a lower dose of dexmedetomidine, which may induce analgesic
effects, but not sedation, is worthy of basic and clinical research in the fields of pediatric den-
tistry and dentistry for the disabled with OFP. In this study, we aimed at assessing whether
intraperitoneal injection of dexmedetomidine inhibits the facial nociceptive responses and
decreases the Fos-protein expression in the trigeminal nucleus caudalis (TNC) region us-
ing a mouse orofacial formalin model. Moreover, we aimed at investigating whether the
co-administration of dexmedetomidine with local anesthetic lidocaine could potentiate
its antinociceptive effects without creating any adverse effects, including impaired motor
coordination and a decrease in systolic blood pressure (SBP) and heart rate.

2. Materials and Methods
2.1. Animal

Male C57BL/6 mice (25–30 g, DBL Co., Seoul, Korea), housed in colony cages, were
allowed free access to food and water and were retained in the animal facility, which
was on a 12-h light/dark cycle, held at constant temperature (21–25 ◦C), and humidity
(45–50%) until the day of the experiment. All experimental procedures were in accordance
with the National Institutes of Health Guide for the Care and Use of Laboratory Animals
and approved by the Institutional Animal Care and Use at the Kyung Hee University
[KHUASP(SE)-16-014].

2.2. Drugs

Dexmedetomidine hydrochloride (Tocris, Bristol, UK) was dissolved in physiological
saline as a stock solution of 10 mg/211.2 µL and was then diluted in physiological saline at
doses of 3, 10, and 30 µg/kg. Lidocaine 2% (20 mg/mL, Huons, Seongnam, Korea) was
diluted in physiological saline to get the final concentration of 0.5% (5 mg/mL). Dexmedeto-
midine was inoculated i.p. 30 min before formalin injection and co-administered with
0.5% lidocaine subcutaneously (s.c.) into the right upper lip 20 min after dexmedetomidine
injection. All experiments were performed as blind tests.

2.3. Formalin-Induced Orofacial Pain Test

The orofacial formalin test, previously described [20,21], was performed using male C57BL/c
mice that were acclimatized for 30 min in an acrylic observation chamber (15 × 15 × 15 cm) and
inoculated with 10 µL of 5% formalin s.c. using a 30-gauge needle attached to a Hamilton
syringe into the right upper lip, lateral to the nose (Figure 1A). Animals were immediately
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placed back into the observation chamber; nociceptive responses were recorded for 45 min
in each animal using a video camera; a nociceptive score was established for each block
(3 min each) by measuring the number of seconds the animal spent cleaning the injected
area with the ipsilateral forepaw. The face wiping or rubbing behavior with the forepaw
was counted as a nociceptive response, while the scratching behavior with the hind paw
was excluded, as it was considered an itch reaction [22]. The duration of the responses
during the first two blocks represented the first phase (0–6 min postinjection), whereas
the duration of responses during the subsequent 13 blocks represented the second phase
(6–45 min postinjection) in the formalin-induced OFP test.
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Figure 1. Effect of dexmedetomidine (DEX) in the orofacial formalin test in mice. (A) Injection site of
the formalin solution. (B) 3 µg/kg of DEX did not restrain orofacial formalin-induced nociceptive
responses. Conversely, medium- and high dose of DEX (10 and 30 µg/kg, respectively) signifi-
cantly diminished nociceptive responses at 15–27 and 0–45 min after formalin injection, respectively.
Medium- and high dose of DEX (10 and 30 µg/kg) revealed potent antinociceptive effects in the
(C) first and (D) second phases compared with that in the saline (SAL)-treated group (* p < 0.05,
** p < 0.01, and *** p < 0.001 as compared with that in the SAL group, n = 5–10 per group).

2.4. Fos Immunohistochemistry

TNC Fos immunohistochemistry was conducted as previously described [21]. The ani-
mals used in pain behavioral tests were used for Fos immunohistochemistry study. To min-
imize animal sacrifice, the minimum number of animals required for statistical analysis
(n = 5–6) was randomly selected. Two hours after the formalin injection, animals were
deeply anesthetized with 5% isoflurane and transcardially perfused through the ascend-
ing aorta with 50 mL of 0.1 M phosphate-buffered saline (PBS) at pH 7.4, followed by
4% paraformaldehyde. After perfusion, the brainstem was immediately removed, stored at
4 ◦C overnight in the same fixative, and then placed in a cryoprotectant solution (30% su-
crose in PBS) for at least two nights at 4 ◦C before sectioning. Serial transverse sections
(30 µm) from the TNC were obtained using a cryostat (Leica Microsystems, Wetzlar, Ger-
many) and collected in PBS. Endogenous peroxidase activity was eliminated using 3% hy-
drogen peroxide diluted in PBS and tissues were pre-blocked with 3% normal goat serum
and 0.3% Triton X-100 in PBS. Sections were incubated with polyclonal rabbit anti-Fos
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antibody (1:1000 Santa Cruz Biotechnology Inc., Santa Cruz, CA, USA) overnight at 4 ◦C.
After several PBS washes, tissue sections were incubated with a secondary biotinylated
anti-rabbit antibody (1:200, Vector Laboratories, Burlingame, CA, USA) for 1 h at room
temperature and were processed using the avidin-biotin method (Elite ABC; Vector Lab-
oratories). Fos-immunoreactive (ir) cells were visualized using a 3-3-diaminobenzidine
reaction intensified with 0.2% nickel chloride.

2.5. Image Analysis

The TNC tissue sections were scanned using the brightfield and fluorescent microscope
ECLIPSE 80i (Nikon Corp., Kanagawa, Japan) and digitized using a cooled CCD camera
(Cool Snap ES model, Nihon Roper, Tokyo, Japan). Six nonadjacent tissue sections per
mouse were randomly selected and quantitatively analyzed using a computer-assisted
image analysis system (MetaMorph version 7.7.2.0, Westchester, PA, USA). The shape
factor was set to a range of 0.5 to 1.0 and Fos-ir cells were counted only if they were at
least 30% darker than the average gray level of each image [23]. The average number of
Fos-ir cells was obtained per section from each animal. These values were averaged across
each group and all analytical procedures described above were blindly performed without
knowing in advance the experimental conditions.

2.6. Rota-Rod Test

The rotarod test, commonly used to detect motor ataxia in rodents, was used in this
study to assess the potential sedative effects of dexmedetomidine. Briefly, mice were placed
on the horizontal bar with a rotation speed of four revolutions per minute. All mice were
tested 24 h before the actual rotarod test and those that stayed on the rod for at least 120 s
were included in the study. Thirty minutes after dexmedetomidine injection, each animal
was subsequently tested on the rotarod over a 2 min period, and their performance time on
the bar (in seconds) and the number of falls were quantified. The test was repeated three
times consecutively and the mean value for each animal was documented.

2.7. Assessment of Systolic Pressure and Heartbeat

SBP and heart rate were also assessed using a noninvasive computerized tail-cuff
system (PowerLab system; ADI Instrument Pry Ltd., Chain Hills, NSW, Australia) as
previously described [24]. Briefly, animals were acclimated for 1 h in a quiet test room,
and tthe SBP and heart rate were assessed. Each experiment was repeated three times,
and the mean value for each animal was recorded. SBP and heart rate were recorded 5 min
(PRE) before and 30 min (POST) after dexmedetomidine injection.

2.8. Statistical Analysis

All values are expressed as mean ± standard error of the mean (S.E.M). Either two-
way repeated-measures or one-way ANOVA followed by a posthoc Bonferroni test was
conducted for multiple comparisons in the formalin pain behavior test. Fos immunohis-
tochemistry, rotarod test, and SBP data were analyzed using one-way ANOVA, followed
by a post hoc Bonferroni test. All statistical analyses were performed using GraphPad
Prism (Version 6.0, GraphPad Software, San Diego, CA, USA) and all p-values of <0.05
were considered statistically significant.

3. Results
3.1. Dexmedetomidine Reduces Orofacial Formalin-Induced Nociceptive Responses

Mice injected with saline (SAL) i.p. and orofacial 5% formalin exhibited typical bipha-
sic pain behaviors during the 45 min observation period (phases 1 and 2). The injection
of low-dose dexmedetomidine (3 µg/kg) did not show an antinociceptive effect in oro-
facial formalin-induced nociceptive responses as compared with the SAL-treated group.
Conversely, the nociceptive responses in mice treated with 10 µg/kg of dexmedetomidine
significantly decreased at 15–30 and 36 min after formalin injection as compared with the
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SAL-treated group. Additionally, a high dose of dexmedetomidine (30 µg/kg) seemed to
reduce orofacial nociceptive responses at 12–36 min as compared to the SAL-treated group
(Figure 1B) but was considered a sedative effect because voluntary movement did not occur
in all mice treated with dexmedetomidine 30 µg/kg.

The total of orofacial formalin-induced nociceptive behavior time in the SAL-treated
group was 37.77 ± 6.49 s and 436.31 ± 36.81 s during the first and second phases, respec-
tively. Pretreatment with 10 µg/kg of dexmedetomidine reduced the sum of formalin-
induced nociceptive responses during the second phase, whereas a high dose of dexmedeto-
midine (30 µg/kg) appeared to induce a potent sedation rather than antinociception during
both phases. (Figure 1C,D and Table 1).

Table 1. Effect of dexmedetomidine (DEX) in the orofacial formalin-induced pain model.

Treatment First Phase (s) p-Value Second Phase (s) p-Value

SAL 37.77 ± 6.49 NA 436.36 ± 36.81 NA
DEX 3 44.43 ± 4.3 0.9989 415.34 ± 39.51 0.9805

DEX 10 38.49 ± 10.49 0.9176 195.20 ± 80.15 ** 0.0045
DEX 30 1.23 ± 0.75 ** 0.0018 0 ± 0 *** 0.0001

Notes: All values are mean ± S.E.M using one-way ANOVA followed by bonferroni test; ** p < 0.01 and
*** p < 0.001. Abbreviations: ANOVA, analysis of variance; NA, not applicable; S.E.M, standard error of the mean.

3.2. Dexmedetomidine Reduces the Increase of Fos-ir Cells in TNC

The number of Fos-ir cells was 103.69 ± 16.48 in the TNC of the SAL-treated group
(Figure 2A,D). Although a low dose of dexmedetomidine (3 µg/kg) did not decrease
the number of Fos-ir cells (79.35 ± 10.24; Figure 2B,D), 10 µg/kg of dexmedetomidine
had significantly suppressed the number of Fos expression (34.99 ± 5.64) in the TNC as
compared with those in the SAL-treated group (Figure 2C,D).
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Figure 2. The outcome of dexmedetomidine (DEX) on the Fos-ir cells in the trigeminal nucleus
caudalis (TNC). The number of Fos-ir cells increased in the TNC of the (A,D) SAL-treated group;
(B,D) 3 µg/kg of DEX did not defeat the increase of Fos-ir cells. Conversely, (C,D) a medium dose of
DEX (10 µg/kg) significantly reduced the increase of Fos-ir cells in the ipsilateral TNC (** p < 0.05 as
compared with that in the SAL group, n = 5–6 per group). The boundaries of the TNC are outlined by
the dotted line. Scale bar = 200 µm.
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3.3. High-Dose Dexmedetomidine Induces Motor Dysfunction and Decreases Both Systolic
Pressure and Heart Rate

The rotarod test revealed that both SAL or dexmedetomidine (3 and 10 µg/kg) injection
did not affect motor coordination. Conversely, 30 µg/kg of dexmedetomidine, inoculated
intraperitoneally, significantly decreased the performance time and increased the number
of falls (Figure 3A,B).

Similar results were observed during the assessment of SBP and heart rate, where SAL
or 3 and 10 µg/kg of dexmedetomidine injection did not affect the normal blood pressure
and heart rate. Conversely, 30 µg/kg of dexmedetomidine caused a significant decrease in
SBP and heart rate (74.01 ± 3.57 and 313.95 ± 14.66, respectively; Figure 3C,D).
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Figure 3. Effect of dexmedetomidine (DEX) on motor function and systolic blood pressure and heart
rate. High-dose DEX (30 µg/kg) lessened the (A) performance time, increased (B) the number of
falls and caused a significant drop in (C) systolic blood pressure and (D) heart rate (*** p < 0.001
as compared with that in the SAL group, n = 7 per group). Low- and medium-dose DEX (3 and
10 µg/kg) had no effect on motor coordination and blood pressure.

3.4. Co-Administration of Dexmedetomidine with 0.5% Lidocaine Reduces Orofacial
Formalin-Induced Nociceptive Responses

The effect of 0.5% lidocaine in orofacial formalin-induced pain has been evaluated.
Statistically, a significant difference in the time course of nociceptive responses was not
found when the co-administration of SAL with 0.5% lidocaine (SAL + 0.5% LIDO) group
was compared with that in the SAL + SAL group (Figure 4A). Conversely. there was a
significant decrease in nociceptive responses during the first phase in the SAL + 0.5% LIDO
group (17.47 ± 2.97 s; Figure 4B and Table 2). This decrease was not observed during the
second phase (Figure 4C and Table 2).

Taking into consideration the previous results, the co-administration of 0.5% lidocaine
with an ineffective lower dose of dexmedetomidine (3 µg/kg) generated a synergistic
antinociceptive effect has been subsequently investigated. Co-administration of 0.5% lido-
caine with 3 µg/kg of dexmedetomidine significantly decreased nociceptive responses at
18–27 and 33 min after formalin injection as compared with that in the SAL + SAL group
(Figure 4A). Moreover, co-administration of 0.5% lidocaine with 3 µg/kg of dexmedetomi-
dine triggered an antinociceptive effect in both phases (Figure 4B,C and Table 2).

3.5. Co-Administration of Dexmedetomidine with 0.5% Lidocaine Reduces Fos-ir Cells

Figure 5 shows the effect of co-administration of dexmedetomidine with 0.5% lidocaine
in TNC Fos expression. Either the co-administration of 3 µg/kg of dexmedetomidine with
SAL or the co-administration of SAL with 0.5% lidocaine did not diminish the increased
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number of Fos-ir cells in TNC (Figure 5B,C,E). Conversely, the co-administration of 3 µg/kg
of dexmedetomidine with 0.5% lidocaine significantly decreased the formalin-induced
increase in Fos expression in ipsilateral TNC as compared with that in the SAL + SAL and
DEX 3 + SAL groups (Figure 5D,E).
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Figure 4. Influence of co-administration of 0.5% lidocaine with saline (SAL) or dexmedetomidine
(DEX) in the orofacial formalin test in mice. (A) Co-administration of 0.5% lidocaine with SAL did
not inhibit the orofacial formalin-induced nociceptive response. (B) However, co-administration of
0.5% lidocaine with SAL reduced the nociceptive responses only in the first phase (** p < 0.05 as
compared with that in the SAL + SAL group, n = 8–9 per group). (A) Conversely, co-administration of
0.5% lidocaine with an ineffective lower dose of DEX (3 µg/kg) was significantly lowered 15–27 and
33 min after formalin injection. (B,C) Additionally, co-administration of 0.5% lidocaine with low-dose
DEX (3 µg/kg) produced a more potent antinociceptive effect during both phases (* p < 0.05, **
p < 0.01, and *** p < 0.001 as compared with that in the SAL + SAL group and ## p < 0.01, ### p < 0.001
as compared with that in the DEX 3 + SAL group, n = 7–10 per group).

Table 2. Effect of co-administration of 0.5% lidocaine with saline (SAL) or dexmedetomidine (DEX)
in the orofacial formalin-induced pain model.

Treatment First Phase (s) p-Value Second Phase (s) p-Value

SAL + SAL 44.54 ± 4.22 NA 486.32 ± 47.44 NA
DEX 3 + SAL 45.35 ± 4.85 0.7067 495.05 ± 52.61 0.9999
SAL + LIDO 17.47 ± 2.97 **, ## ** 0.0064, ## 0.0011 477.77 ± 79.28 0.9935

DEX 3 + LIDO 14.62 ± 3.09 **, ### ** 0.0041, ### 0.0007 232.88 ± 26.20 **, ## ** 0.0043, ## 0.0076
Notes: All values are mean ± S.E.M using one-way ANOVA followed by bonferroni test; ** p < 0.01 as compared
with SAL + SAL. ## p < 0.01, ### p < 0.001 as compared with DEX3 + SAL. Abbreviations: ANOVA, analysis of
variance; NA, not applicable; SEM, standard error of the mean.

3.6. Co-Administration of Dexmedetomidine with 0.5% Lidocaine Does Not Affect Motor
Performance, Blood Pressure, and Heart Rate

In the rotarod test, SAL or 3 µg/kg of dexmedetomidine with s.c. injection of SAL
did not affect motor coordination (SAL + SAL or DEX 3 + SAL). SAL or 3 µg/kg of
dexmedetomidine combined with 0.5% lidocaine also did not alter the motor performance
time (Figure 6A). Moreover, no fall in the rotarod has been observed in all treated mice
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(data not shown). Similarly, in the SBP test, SAL or 3 µg/kg of dexmedetomidine with
s.c. injection of SAL did not affect the normal blood pressure and heart rate (Figure 6B,C).
Furthermore, neither the co-administration of SAL nor 3 µg/kg of dexmedetomidine with
0.5% lidocaine lessened the SBP and heart rate (Figure 6B,C).
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Fos-ir cells in the trigeminal nucleus caudalis (TNC). (A–C,E) Either the co-administration of 3 µg/kg
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Figure 6. Effect of co-administration 0.5% lidocaine with dexmedetomidine (DEX) on motor coordi-
nation and systolic blood pressure. Neither the co-administration of 0.5% lidocaine with saline (SAL)
nor low-dose of DEX (3 µg/kg) injection impact (A) motor coordination and (B,C) systolic blood
pressure (as compared with that in the SAL + SAL group, n = 7 per group).
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4. Discussion

The study findings have shown that the administration of dexmedetomidine i.p. in-
duced antinociceptive effects during the second phase of the orofacial formalin test in
mice (Figure 1). Additionally, the number of Fos-ir cells in the ipsilateral TNC was re-
duced in the dexmedetomidine-treated mice as compared with those in the SAL-treated
group (Figure 2). Dexmedetomidine, a highly specific α2-adrenergic receptor agonist,
is mainly used clinically as an anxiolytic or sedative drug. However, the activation of
α2-adrenoceptors in peripheral tissue or spinal cord has also been recognized to mediate
the antinociceptive action of dexmedetomidine under several pain conditions [25]. In this
regard, dexmedetomidine was reported to trigger antinociceptive effects in several ani-
mal models [26–28]. In our previous study, the time-dependent anti-allodynic effects of
dexmedetomidine or clonidine, another α2-adrenergic receptor agonist, were also analyzed
in a spared nerve injury mouse model [29]. Nevertheless, whether dexmedetomidine could
reduce acute nociception rather than the sedative effects in the orofacial region was unclear;
hence, this study was the first to show that dexmedetomidine administration developed
antinociceptive effects in a mouse orofacial formalin model.

Generally, the activation of α2-adrenoceptors is correlated with a decrease in excitatory
neurotransmitters at the central afferent terminals or induction of hyperpolarization in the
spinal dorsal horn neurons through an increase in potassium conductance [25,30]. A recent
study also showed that dexmedetomidine inhibited voltage-gated sodium channels in
small-sized trigeminal ganglion neurons, by mediating α2-adrenoceptor activation [31].
Additionally, it was reported that dexmedetomidine produced a neuroprotective effect
on the nervous system via anti-inflammatory, anti-excitotoxicity, and anti-oxidative ac-
tions, as well as the inhibition of neuronal apoptosis [25]. Jang et al. showed that i.p.
injection of dexmedetomidine induced a significant antinociceptive effect, which might be
associated with the attenuation of splenic natural killer (NK) cell activation by formalin
injection [32]. However, they also found that the proliferative response of the lymphocytes
or the production of cytokines, such as tumor necrosis factor- α (TNF- α) and interleukin
1β (IL-1β), was not affected by i.p. dexmedetomidine injection (30 µg/kg) [32]. On the
other hand, Meng et al. demonstrated that dexmedetomidine (300 µg/kg) exhibited an
analgesic effect on 2,4,6-Trinitrobenzenesulfonic acid (TNBS)-induced chronic inflamma-
tory visceral pain in rats, which resulted in reduced pro-inflammatory cytokines via the
miR-34a-mediated histone deacetylase 2 (HDAC2) pathway [33]. Moreover, it was also
reported that dexmedetomidine (25 µg/kg) attenuated lipopolysaccharide (LPS)-induced
acute lung injury and increased inflammatory cytokines in mice [34]. In these studies,
although dexmedetomidine was reported to reduce inflammatory responses, including
increased cytokine concentrations, it is important that the sedative doses of dexmedeto-
midine (25–300 µg/kg) were used. In this regard, further studies are needed to determine
whether low or medium doses of dexmedetomidine may produce anti-inflammatory effects
in an animal model of orofacial inflammatory pain.

In addition, dexmedetomidine can suppress peripheral formalin stimulus-induced
increases of Fos-protein expression in TNC cells together with an antinociceptive effect.
There was a strong correlation between the Fos-protein expression in the TNC cells and the
intensity of nociceptive stimulation [35]. Since the trigeminal nervous system is activated by
calcitonin gene-related peptide, bradykinin, and substance P of the orofacial or meningeal
region, Fos-protein expression has been utilized as a sign of the functional activity of neu-
rons in the TNC [36,37]. The study findings have shown that orofacial formalin-induced
increase of Fos-ir cells in the TNC was significantly diminished in dexmedetomidine-treated
mice, implying that the orofacial antinociceptive effect of dexmedetomidine was closely re-
lated to modulation of neuronal activity in TNC (e.g., the inhibition of central sensitization).

As shown in Figure 1, although 30 µg/kg of dexmedetomidine seemed to strongly
suppress the nociceptive responses in both phases, its effect was sedative. During the
second phase, no spontaneous nociceptive reaction was observed. In this regard, the effect
of high-dose dexmedetomidine (30 µg/kg) was sedative, but not antinociceptive, in the
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formalin test. Therefore, the effects of dexmedetomidine on motor coordination have
been subsequently analyzed using the rotarod test. The rotarod test has been commonly
used to evaluate the motor coordination in animals in relation to the sedative action of
experimental substances [38–41]. In our previous studies, we have also performed a rotarod
test to investigate the sedative effect of α2 adrenoceptor-related drugs (e.g., clonidine,
dexmedetomidine or p38 mitogen-activated protein kinase inhibitor) on motor coordination
in animals with neuropathic pain [29,42,43]. Similarly, only animals that received high-dose
dexmedetomidine (30 µg/kg) showed a decline in performance time and a rise in the
number of falls on the rotating rotarod, respectively (Figure 3A,B). These results showed
that the powerful effects of high-dose dexmedetomidine are triggered by the impaired
motor function associated with the sedative effect. Moreover, high-dose dexmedetomidine
has been well established to be typically accompanied by significant adverse effects that
include hypotension, bradycardia, lethargy, and weakness [44,45]. The most common side
effects of dexmedetomidine include hypotension and bradycardia. Therefore, the effects of
multiple doses of dexmedetomidine on side effects, including SBP and bradycardia, were
investigated using a noninvasive computerized tail-cuff system. Interestingly, only mice
treated with high-dose dexmedetomidine (30 µg/kg) had significant declines in SBP and
heart rate, whereas the lower doses of dexmedetomidine (3 and 10 µg/kg) did not affect
either the blood pressure or heart rate. These findings demonstrate the dose-limiting effect
of dexmedetomidine treatment on analgesic action in clinical applications.

It is important to address whether the anti-nociceptive effect of medium dose of
dexmedetomidine was due to a sedative action. Several studies in the literature have
reported that similar doses of dexmedetomidine might produce anti-nociceptive effect in
various animal models [46,47]. Especially, Martin et al. found that 10 µg/kg of dexmedeto-
midine inhibited aggressive behaviors without a sedative effect [48]. In the present study,
a medium dose of dexmedetomidine did not appear to affect the motor coordination in the
rotarod test. Moreover, data from the immunohistochemistry for c-Fos protein, a biomarker
of nociceptive neuronal activation (Figures 2 and 5), also indicated that the anti-nociceptive
effect of a medium dose of dexmedetomidine was associated with neuronal modulation in
the TNC or spinal dorsal horn, but not the sedative action in higher brain center.

Lidocaine, widely used in medicating plaster, is recommended as a topical analgesic of
first-line therapy for topical, peripheral, and neuropathic pain [49]. In this regard, Ralf et al.
provided clinical evidence supporting the use of lidocaine in international guidelines for
the treatment of localized neuropathic pain [50]. Moreover, Jeff et al. reported that lidocaine
patches are recommended as first-line and second-line treatments for postherpetic neuralgia,
and many institutions have published guidelines for clinical practice [51]. In recent years,
lidocaine has been approved for intravenous use in clinical practice and is recognized
as a safe agent to relieve various pain symptoms [52]. Many studies have also reported
not only the effect of lidocaine alone on local anesthetic or analgesic potency but also
its synergic or additive effect combined with other analgesics in different animal models
or clinical trials [52–56]. Notably, several papers have shown that a low concentration
of lidocaine (0.5%) and its derivative (QX-572) decreased formalin-induced nociceptive
responses during the first phase, but not during the second phase [55,57]. This study also
found that s.c. injection of 0.5% lidocaine alone significantly diminished the orofacial
nociceptive response during the first phase (Figure 4B,C). Conversely, intrathecally or
intraperitoneally applied lidocaine produced suppression of activity for both phases in
the rat or mouse paw formalin test, respectively [54,58]. This discrepancy is believed to be
caused by differences in the route of application or the concentration of lidocaine.

Although s.c. injection of 0.5% lidocaine did not reduce the second phase orofacial no-
ciception and did not modify the rise in Fos-ir neurons in the TNC area, 0.5% lidocaine was
believed to be a safe local anesthetic without side effects including itching, rash, swelling,
or irritation. Therefore, the potential effects of the combination treatment of 0.5% lidocaine
with ineffective low-dose dexmedetomidine (3 µg/kg) have been subsequently investi-
gated. Interestingly, the co-administration of 0.5% lidocaine with an ineffective lower dose
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of dexmedetomidine caused an antinociceptive effect in both phases (Figure 4) as well as
a significant drop in Fos-ir cells in the TNC region (Figure 5). Furthermore, whether the
administration of 0.5% lidocaine alone or in combination with a low-dose of dexmedetomi-
dine had effects on motor coordination, blood pressure, and heart rate, respectively, has
been explored. Subcutaneous injection of 0.5% lidocaine alone did not affect the duration of
the rotarod test, blood pressure, and heart rate. Similarly, co-administration of ineffective
low-dose of dexmedetomidine and 0.5% lidocaine did not affect motor coordination nor the
cardiovascular system Figure 6). Recently, in a randomized controlled trial study, Yamane
et al. showed that co-administration of dexmedetomidine and lidocaine considerably
boosted the local anesthetic strength of lidocaine without any major influences on the
cardiovascular system when locally injected into the oral mucosa [56]. Moreover, in den-
tistry, the co-administration of dexmedetomidine and lidocaine blocked the maxillary and
mandibular nerve and significantly prolonged the block duration and shortened the onset
of action, as well as the need for fewer analgesics in the postoperative period [59,60].

The α2 adrenergic receptors in humans are widely distributed in the central ner-
vous system (CNS), peripheral nervous system, autonomic ganglia, and other organ tis-
sues. A few studies have shown that systemically administered α2 receptor agonist and
dexmedetomidine produce anti-nociceptive effects in human and animal studies, which
may be involved in neuronal modulation at the spinal and peripheral levels [51,61,62].
In this regard, Im et al. reported that inhibition of voltage-gated sodium channels in TG
neurons, mediated by the activation of G-protein-coupled α2 adrenoceptors, might con-
tribute to the analgesic effects of dexmedetomidine in the trigeminal system [31]. Taken
together, we considered that the mechanism underlying the effect of systemically injected
dexmedetomidine might involve the action of locally applied dexmedetomidine. In the
present study, the route of administration of dexmedetomidine was systemic injection,
and co-administration of 0.5% lidocaine with the ineffective lower dose of dexmedetomi-
dine (3 µg/kg) significantly reduced the increase of Fos-ir cells in the ipsilateral TNC. Thus,
it is reasonable that the antinociceptive effect of co-administration of 0.5% lidocaine with
the ineffective lower dose of dexmedetomidine may be associated with the underlying
mechanism at CNS, but not the peripheral site. In the further study, we plan to verify these
issues (i.e., the comparison between the effects of local dexmedetomidine versus systemic
dexmedetomidine and the investigation of centrally mediated mechanism underlying
anti-nociceptive effect of systemic dexmedetomidine injection). Clinically, these studies can
demonstrate which route can be more effective and safer when low-dose dexmedetomidine
and lidocaine are administered together during acute stomatitis, mucogingival surgery,
or after surgery. In addition, it can be further determined whether the co-treatment of lower
doses of dexmedetomidine and lidocaine induces analgesic effect by reducing acute in-
flammatory reaction (e.g., decreased production of inflammatory cytokines or suppression
of downstream signaling). Finally, the present study also suggests that co-administration
of low-dose dexmedetomidine with a low concentration of lidocaine reduces both acute
and inflammatory pain in the orofacial region, which may be a safe therapeutic strategy
for OFP management without adverse effects including motor dysfunction, hypotension,
and bradycardia.

5. Conclusions

This study has shown that dexmedetomidine significantly reduced nociceptive re-
sponses and TNC Fos expression in an orofacial formalin-induced pain model. Moreover,
the co-administration of systemic low-dose dexmedetomidine and 0.5% lidocaine produced
a strong antinociceptive effect, without causing any movement disorders, hypotension,
or bradycardia. Altogether, the findings suggest that the combination therapy of low-dose
of systemic dexmedetomidine with lidocaine might be safe and effective for the manage-
ment of acute inflammatory pain in the orofacial region, such as mucogingival surgery or
acute stomatitis.
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