
RESEARCH ARTICLE

pyPaSWAS: Python-based multi-core CPU and

GPU sequence alignment

Sven Warris1,2*, N. Roshan N. Timal3, Marcel Kempenaar1, Arne M. Poortinga1, Henri van

de Geest2, Ana L. Varbanescu3, Jan-Peter Nap1,2

1 Expertise Centre ALIFE, Institute for Life Science & Technology, Hanze University of Applied Sciences

Groningen, Groningen, the Netherlands, 2 Applied Bioinformatics, Wageningen University and Research,

Wageningen, the Netherlands, 3 Parallel and Distributed Systems, Delft University of Technology, Delft, the

Netherlands

* sven.warris@wur.nl

Abstract

Background

Our previously published CUDA-only application PaSWAS for Smith-Waterman (SW)

sequence alignment of any type of sequence on NVIDIA-based GPUs is platform-specific

and therefore adopted less than could be. The OpenCL language is supported more widely

and allows use on a variety of hardware platforms. Moreover, there is a need to promote the

adoption of parallel computing in bioinformatics by making its use and extension more sim-

ple through more and better application of high-level languages commonly used in bioinfor-

matics, such as Python.

Results

The novel application pyPaSWAS presents the parallel SW sequence alignment code fully

packed in Python. It is a generic SW implementation running on several hardware platforms

with multi-core systems and/or GPUs that provides accurate sequence alignments that also

can be inspected for alignment details. Additionally, pyPaSWAS support the affine gap pen-

alty. Python libraries are used for automated system configuration, I/O and logging. This

way, the Python environment will stimulate further extension and use of pyPaSWAS.

Conclusions

pyPaSWAS presents an easy Python-based environment for accurate and retrievable paral-

lel SW sequence alignments on GPUs and multi-core systems. The strategy of integrating

Python with high-performance parallel compute languages to create a developer- and user-

friendly environment should be considered for other computationally intensive bioinformat-

ics algorithms.

PLOS ONE | https://doi.org/10.1371/journal.pone.0190279 January 2, 2018 1 / 9

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Warris S, Timal NRN, Kempenaar M,

Poortinga AM, van de Geest H, Varbanescu AL, et

al. (2018) pyPaSWAS: Python-based multi-core

CPU and GPU sequence alignment. PLoS ONE 13

(1): e0190279. https://doi.org/10.1371/journal.

pone.0190279

Editor: Alexandre G. de Brevern, UMR-S1134,

INSERM, Université Paris Diderot, INTS, FRANCE

Received: July 22, 2017

Accepted: December 11, 2017

Published: January 2, 2018

Copyright: © 2018 Warris et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The source code and

data are available at the Github repository: https://

github.com/swarris/pyPaSWAS/ (DOI 10.5281/

zenodo.1042166: https://doi.org/10.5281/zenodo.

1042166). The wiki provides a complete

description of command line arguments and

examples: https://github.com/swarris/pyPaSWAS/

wiki.

Funding: This work was financed by the SIA Raak-

PRO (http://www.regieorgaan-sia.nl/content/RAAK-

regeling/raak-pro) grant BioCOMP, a Hanze

https://doi.org/10.1371/journal.pone.0190279
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0190279&domain=pdf&date_stamp=2018-01-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0190279&domain=pdf&date_stamp=2018-01-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0190279&domain=pdf&date_stamp=2018-01-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0190279&domain=pdf&date_stamp=2018-01-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0190279&domain=pdf&date_stamp=2018-01-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0190279&domain=pdf&date_stamp=2018-01-02
https://doi.org/10.1371/journal.pone.0190279
https://doi.org/10.1371/journal.pone.0190279
http://creativecommons.org/licenses/by/4.0/
https://github.com/swarris/pyPaSWAS/
https://github.com/swarris/pyPaSWAS/
https://doi.org/10.5281/zenodo.1042166
https://doi.org/10.5281/zenodo.1042166
https://github.com/swarris/pyPaSWAS/wiki
https://github.com/swarris/pyPaSWAS/wiki
http://www.regieorgaan-sia.nl/content/RAAK-regeling/raak-pro
http://www.regieorgaan-sia.nl/content/RAAK-regeling/raak-pro


Background

A major challenge in applied bioinformatics is the adoption of advanced high-performance

tools and algorithms by end-users with possibly low-to-moderate software engineering skills

in the context of their biological research questions. Earlier, we presented the CUDA-only

application PaSWAS [1] that performs Smith-Waterman (SW) sequence alignment for any

type of sequence on NVIDIA-based GPUs. PaSWAS is relatively fast and combined the accu-

racy of SW alignment with the possibility to retrieve alignment information relevant for biolo-

gists, in contrast to most other parallel SW implementations. Yet, adoption of PaSWAS can be

improved: it may be too complex to install and use. In addition, use of the application was lim-

ited to NVIDIA-based hardware. Also in other cases, the adoption of highly promising tools

and approaches is slower than expected. For example, the de novo assembly tool CloudBrush

[2] uses MapReduce on Hadoop [3,4], but has seen no biological applications yet. The three

versions of the NVIDIA CUDA-based sequence alignment tool CUDASW++ [5–7] are cited

often, but citations deal in the larger majority with novel software implementations. The latest

version CUDASW++ 3 [7], for example, has been cited 116 times (as of July 2017) but none of

these citations deal with a direct biological question. The lack of adoption of promising new

developments in algorithms and hardware may indicate that we as developers underestimated

the complexity of setting up and running such a new application, especially when it is limited

to a certain platform.

Another important limiting factor in the use of PaSWAS is the absence of the affine gap

penalty. This scoring method produces biologically more relevant alignments than using only

a gap open penalty [8]. It is therefore an important feature missing from the Smith-Waterman

implementation in PaSWAS.

To improve the accessibility and use of PaSWAS, we have developed an entirely new soft-

ware package, pyPaSWAS, based on OpenCL and CUDA integrated with Python. Python is a

platform-independent programming language, with many libraries appropriate for bioinfor-

matics, such as BioPython [9] and SciPy [10]. The open compute language OpenCL [11] is the

current standard for clusters and/or multi-core CPU/GPU’s to speed-up analyses up to several

orders of magnitude compared to single core CPU versions. OpenCL is similar to CUDA, but

is supported by a growing number of manufacturers, including Intel, NVIDIA, Apple and

IBM. By supporting both CUDA and OpenCL, pyPaSWAS runs on many platforms, including

CPUs, GPUs other than NVIDIA-based GPUs and so-called accelerator cards. We integrated

the PaSWAS CUDA [1] and OpenCL codebases with Python through pyCUDA [12] and pyO-

penCL [12]. The original PaSWAS code was extended to add support for the affine gap penalty

scoring method [8]. The result is a versatile Python-based user-friendly application for SW

sequence alignment on a variety of multi-core systems. We propose this strategy as showcase

for the integration of new software based on these compute languages with common program-

ming tools such as Python to promote the adoption of advanced tools and applications in

applied bioinformatics.

Implementation

The new software package pyPaSWAS is implemented in Python (2.7 and up) and is run from

the command line. It uses the libraries pyOpenCL [12] and pyCUDA [12] for device handling,

memory allocation and kernel invocations to run the core PaSWAS Smith-Waterman code on

the parallel device. pyPaSWAS depends on OpenCL 1.2+ [11] or Cuda 2.0+ [13], numpy[14]

and biopython [9]. All other processing, such as Input / Output handling, logging and excep-

tion handling, are done in standard Python. The SeqIO class from bioPython [9] is used for

file input. Its reference manual [15] lists all formats supported, including multi-fasta, genbank

Multi-core CPU and GPU sequence alignment

PLOS ONE | https://doi.org/10.1371/journal.pone.0190279 January 2, 2018 2 / 9

University of Applied Sciences Groningen PhD

grant and contributions from Wageningen

University and Research, University Medical Center

Groningen and the former Netherlands

Bioinformatics Centre. The funders had no role in

study design, data collection and analysis, decision

to publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0190279


and fastq. Input file formats not supported by bioPython can be implemented by extending

the Core.Reader class. Output can be formatted in a custom format by extending the Core.

DefaultFormatter class. The Core.SAMFormatter class generates SAM output and can also be

used as template for other custom output. The SAM descriptors (Table 1) are particularly use-

ful for further processing output data. File-based configurations allow for storing settings and

consistent reruns of the application. The user can supply appropriate scoring values for align-

ment, for example substitution matrices, to adjust the analyses to the desired specifications.

The Core.Score module can be adjusted to support any 255 by 255 scoring matrix. The accom-

panying wiki [16] provides a complete description of the command line arguments as well as

examples of how to run pyPaSWAS.

The structure of CPU hardware differs from GPU hardware and running OpenCL code

designed for GPUs is not optimal [17]. Therefore, two OpenCL versions based on the CUDA-

based implementation in PaSWAS were developed, one for GPUs and one for CPUs [18]. The

latter makes better use of CPU hardware for faster sequence alignments. The two OpenCL

implementations differ from the previous CUDA implementation only in the use of specific

OpenCL calls; no changes have been made to the underlying algorithms.

The OpenCL implementation runs on multi-core hardware supporting OpenCL 1.2, such

as Intel/AMD CPUs and accelerator cards (GPUs and Xeon Phi). With the CUDA implemen-

tation, pyPaSWAS runs on all NVIDIA GPUs with compute capability 1.2 and above, which

includes support for all recent NVIDIA GPUs, including laptop versions, Teslas and the GTX-

based cores. By default pyPaSWAS runs on the CPU using the CPU-optimized OpenCL code.

To use other parallel devices than the CPU, the user changes the configuration or selects the

appropriate device through command line options.

pyPaSWAS opens the platform selected, sets the appropriate memory usage and other

parameters relevant for the parallel device automatically, based on settings and data to be ana-

lyzed. pyPaSWAS allows for fine grained control over the use of the parallel device, such as

memory usage and number of compute cores to be used. CPU hardware allows for limiting

the number of cores used by an application. This enables using the computer for other tasks

and is necessary when pyPaSWAS runs in a cluster environment. This fine-grained control

Table 1. Options in PyPaSWAS for selecting and filtering the alignments.

Filter name� Value range�� Default SAM

descriptor

Description

lower_limit_score 0.0 < x < = 1.0 1.0 Allows for more hits per alignment. All hits with a score within this fraction of the maximum score

found are reported. Used during the backtracing procedure for reducing the number of alignments to

be processed.

minimum_score 0 < x 30 AS:i: Minimum score of an alignment. Used during the backtracing procedure for reducing the number

alignments to be processed..

filter_factor 0.0 < x < = 1.0 0.2 AS:i: For each alignment the theoretical maximum score is calculated: length of the shortest sequence

times the maximum score for a match (eg. the score for a perfect alignment). Only alignments with a

score above filter_factor times this theoretical maximum score are returned.

query_coverage 0.0 < = x < = 1.0 0.2 QC:f: Minimum fraction of the query covered in the alignment

query_identity 0.0 < = x < = 1.0 0.2 QI:f: Minimum fraction of matches relative to the query

relative_score 0.0 < x < = score

match

2.0 RS:f: Minimum score relative to the shortest sequence. A full match will give a relative score of the match

score, for DNA/RNA sequences the default is 5.0

base_score 0.0 < x < = score

match

2.0 BS:f: Score of the alignment divided by the length of the alignment.

�Filter name: all parameters available for filtering;

�� value range: the boundaries for the settings of the corresponding parameter.

https://doi.org/10.1371/journal.pone.0190279.t001

Multi-core CPU and GPU sequence alignment

PLOS ONE | https://doi.org/10.1371/journal.pone.0190279 January 2, 2018 3 / 9

https://doi.org/10.1371/journal.pone.0190279.t001
https://doi.org/10.1371/journal.pone.0190279


level presents a major improvement over the earlier PaSWAS [1] in addition to the integration

with Python. All options are listed on the wiki-page [16] and are accessible through the com-

mand line (‘-h’).

As its predecessor [1], pyPaSWAS documents all alignment details and allows for filtering

of the resulting alignments. Parameters for filtering are listed in Table 1. Parameters can be set

through the configuration file or through command line options. This gives the ability to select

which hits are relevant and will be sent to the output file. The scoring value and all related val-

ues, such as query coverage, are present in the output and can also be used to filter the results

further afterwards (Table 1).

Affine gap penalty

For biologically more relevant alignments, the affine gap penalty method [8] scores the open-

ing of a gap differently than for extending a gap. The original PaSWAS code only supported

the gap penalty scoring method, which means that each gap has the same score, no matter how

many gaps are in front of it. The affine gap penalty implementation requires a scoring matrix

M, to keep track of the match scores and scoring matrices I and J to keep track of the scores for

gaps in the target (I) and query (J) sequences. The PaSWAS implementation of the direction

matrix has been extended to record which of the three matrices resulted in the highest score.

The downside of using an affine gap method is that it requires creating two additional matrices

(I, J) of the same size as the already existing scorings matrix (M). This means that a 100x100

sequence alignment using the affine gap requires not 10,000 scoring values, but 30,000 scorings

values. Next to an increase in memory usage, additional calculations compared to the original

SW implementation are needed, making the affine gap method slower (see S3 Report). The

affine gap penalty method is not required in all cases, for example when the gaps originated

from technical (NGS) issues and do not have any biological meaning. In such cases, the PaS-

WAS code is used to perform a SW-alignment without a gap extension penalty. The user con-

trols the use of the affine gap penalties by setting a value other than zero for the gap extension

penalty (the ‘-g’ option).

Results and discussion

The performance of pyPaSWAS is expressed as the time required for the number of SW align-

ments processed. Six different configurations were tested for performance (Table 2), with vari-

ations in hardware (Intel or NVIDIA), parallel device (CPU or GPU), code usage (optimized

for CPU or GPU), number of cores used and the language involved (OpenCL or CUDA).

Table 2. Configurations for testing the performance of pyPaSWAS.

Configu-

ration

Hardware Parallel

device

Code optimized

for

Nr. of

cores

Language Time for 2720 alignments

(s)

GCUPS�� Speedup compared to

F

A Intel i7 CPU CPU 1 OpenCL 119.2 0.70 0.21

B 8 106.4 0.82 0.21

C GPU 1 812.6 0.10 0.03

D 8 192.3 0.44 0.12

E NVIDIA GTX

1070

GPU GPU 1920 OpenCL 57.8 1.48 0.36

F� CUDA 17.6 4.64 1.00

�Configuration (F) is equivalent to the earlier PaSWAS [1], and is therefore used as reference here. The last two columns give the amount of time spent on the largest set

of alignments in the performance analysis and the speedup compared to the configuration (F).

��GCUPS: giga cell updates per second.

https://doi.org/10.1371/journal.pone.0190279.t002

Multi-core CPU and GPU sequence alignment

PLOS ONE | https://doi.org/10.1371/journal.pone.0190279 January 2, 2018 4 / 9

https://doi.org/10.1371/journal.pone.0190279.t002
https://doi.org/10.1371/journal.pone.0190279


In all cases, pyPaSWAS was run on a standard desktop (Intel i7 -2600K) running Ubuntu

16.02 and holding an NVIDIA GeForce GTX 1070 GPU. Timing of alignments was done by

determining the run time of the application between first and last API calls to the Python

libraries (either pyOpenCL or pyCUDA), so overhead such as file I/O is not taken into

account. The full report is in S1 Report. Performance analysis with the same data set on a stan-

dard laptop is in S2 Report.

As test set for the performance analysis of pyPaSWAS on the different hardware configura-

tions, the Ankyrin repeat protein set from the domestic dog (Canis lupus familiaris; CanFAM

3.1, GCA_000002285.2), consisting of 348 proteins was used. For the performance analysis,

the eight proteins not labeled ‘PRED’ were selected and aligned to an increasing number of

proteins from the total data set. The time required to calculate the increasing number of SW

alignments by the six configurations is shown in Fig 1. The time for performing the maximum

of 2720 sequence alignments is also given in Table 2. As these protein sequences differ in

length, it is common to indicate the speed of the SW computations in giga cell updates per

Fig 1. Performance of six different configurations for pyPaSWAS in Smith Waterman (SW) alignments. The time

required (Y-axis) for processing an incremental number of alignments (X-axis) is plotted. For details of the different

configurations A-F see Table 2.

https://doi.org/10.1371/journal.pone.0190279.g001

Multi-core CPU and GPU sequence alignment

PLOS ONE | https://doi.org/10.1371/journal.pone.0190279 January 2, 2018 5 / 9

https://doi.org/10.1371/journal.pone.0190279.g001
https://doi.org/10.1371/journal.pone.0190279


second (GCUPS) to create an performance indicator independent of sequence length. The

alignment output itself and the biological context were not considered. In this example data

set the CUDA implementation running on the GPU (F) is the fastest configuration and is 2.8

times faster than the OpenCL version optimized for the GPU (E). The data also shows that the

fastest configuration (F) is 33.3 times faster than the for GPU optimized OpenCL version on

single CPU core, showing the advantages of parallel processing of SW alignments on a GPU.

The for CPUs optimized OpenCL version (B) is 1.8 times faster than the for GPUs optimized

version (D) on the same CPU. This shows that creating an OpenCL version of an application

optimized for a particular hardware platform can speed up the application further.

The performance tests using only a single core demonstrate the ability of pyPaSWAS to

scale-down the number of cores used for the sequence alignments.

The CUDA version (configuration F) is faster than the OpenCL version on a GPU (configu-

ration E), showing the added value of having a CUDA version in this case. There are several

other reasons for having CUDA support in pyPaSWAS. In general, CUDA is faster than

OpenCL [17]. Also, on some systems we tested, notably Apple Macs, OpenCL is not fully sup-

ported on NVIDIA GPUs, so CUDA is the only option available. Furthermore, several NVI-

DIA GPU products support only 32 bits memory allocation for OpenCL, which limits the

amount of usable memory to 2 GB, but allow 64 bits memory for CUDA.

Analyses of the impact of the affine gap penalty on overall performance when the using the

same data sets show that, on a desktop PC, all configurations are slower: from 1.14 times to 2.0

times slower (S3 Report). Combined with the fact that memory requirement is also three times

higher, it is therefore opportune to make sure that the affine gap is relevant for the task at

hand.

A major advantage of PaSWAS for biological analyses is that it documents all alignment

details necessary for further analysis, in marked contrast to other parallel SW implementations

that focus on computational speed of the best alignment[1]. When for example compared to

CUDASW++ version 3.0 getting the alignment profile comes with a performance penalty of

about 25x (119.0 GCUPS [7] compared to 4.64 GCUPS) on similar hardware. The novel imple-

mentation pyPaSWAS here presented is more versatile for biological analysis then the original

PaSWAS code-base: not only full alignment details are stored and available for inspection, it

also allows for gap extension penalties in scoring the alignment. In addition, the output can

now also be formatted as a SAM file. Also, pyPaSWAS has more command line options and

the output contains more relevant information, such as query coverage and query identity

scores. The Python codebase enables bioinformatics researchers to add other output formats,

store the alignments directly in a database or connect the application with workflow systems

such as Galaxy [19]. In addition, the source repository holds configuration files to build

Docker containers, including one Docker container with CUDA and OpenCL support, to

allow for easy installation of pyPaSWAS and the required drivers and libraries.

As data volumes continue to grow and analyses tend to become more complex in every

branch of bioinformatics, the added value of advanced high-performance IT solutions such as

multicore CPUs and GPUs is transforming into a need for such solutions. Multicore CPUs for

Blast [20] and BWA [21], cluster computing for Interproscan [22] and cloud infrastructure for

a wide range of biomedical / bioinformatics applications are available [23]. High performance

technology used in mathematics [24,25] and audio/video processing [26] rely on GPUs and

OpenCL. Wider acceptance of OpenCL -based GPU applications in bioinformatics is likely to

be promoted by packaging the C++ code for parallelization in a much more common used lan-

guage such as Python as demonstrated here. The pyPaSWAS integration of Python with

OpenCL should promote further use of advanced algorithms in bioinformatics. Given this suc-

cessful showcase for the integration of OpenCL with new or existing software in Python, it

Multi-core CPU and GPU sequence alignment

PLOS ONE | https://doi.org/10.1371/journal.pone.0190279 January 2, 2018 6 / 9

https://doi.org/10.1371/journal.pone.0190279


could be considered to port bioinformatics algorithms that make use of advanced high perfor-

mance technology to Python, R [27], Matlab [28] or Java [29] in a way similar to pyPaSWAS.

This will promote use, maintenance and development of high performance implementations

of bioinformatics applications further. Such an approach could benefit for example algorithms

for genome wide association studies [30], eQTL analyses [31] or phylogenetics [32].

Conclusion

pyPaSWAS is the implementation in Python of a general-purpose Smith-Waterman alignment

supporting both the basic gap penalty method as well as the affine gap penalty method. The

application runs fast on many multi-core systems, including GPUs and Xeon Phis, while

still offering the desired flexibility to inspect any given alignment and all its parameters. The

Python-based application will increase the use and utility of the parallel SW approach of PaS-

WAS. The smooth integration of Python with the much more complex languages OpenCL

and CUDA for parallel execution of the SW algorithm makes pyPaSWAS easier to develop

and maintain than its predecessor. The relative ease of Python, as well as the much larger com-

munity of programmers in Python, is likely to promote adoption and use, as well as facilitate

addition of novel features to pyPaSWAS.

Supporting information

S1 Report. pyOpenCL and pyCUDA performance data (Desktop system). Full report on the

timing measurement of the protein alignment analyses, run on a standard desktop PC.

(PDF)

S2 Report. pyOpenCL and pyCUDA performance data (Laptop). Full report on the timing

measurement of the protein alignment analyses, run on a high-performance laptop.

(PDF)

S3 Report. Analyses of the impact of the affine gap penalty on overall performance (Desk-

top system).

(PDF)

Acknowledgments

We thank Tim te Beek (former Netherlands Bioinformatics Centre) and Shruti Srivastava

(Wageningen University & Research) for support during the development process, as well as

Piet Plomp (Hanze University of Applied Sciences) for developing and maintaining the IT

infrastructure. This work was partly carried out on the Dutch national e-infrastructure with

the support of SURF Cooperative. Dick de Ridder (Wageningen University & Research) was

helpful in suggesting the performance experiments and discussing the results.

Author Contributions

Conceptualization: Sven Warris, Ana L. Varbanescu, Jan-Peter Nap.

Formal analysis: Sven Warris.

Funding acquisition: Sven Warris, Jan-Peter Nap.

Investigation: Sven Warris, Marcel Kempenaar, Ana L. Varbanescu.

Methodology: Sven Warris, N. Roshan N. Timal, Marcel Kempenaar, Ana L. Varbanescu.

Resources: Sven Warris, Ana L. Varbanescu, Jan-Peter Nap.

Multi-core CPU and GPU sequence alignment

PLOS ONE | https://doi.org/10.1371/journal.pone.0190279 January 2, 2018 7 / 9

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0190279.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0190279.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0190279.s003
https://doi.org/10.1371/journal.pone.0190279


Software: Sven Warris, N. Roshan N. Timal, Marcel Kempenaar, Arne M. Poortinga, Henri

van de Geest, Ana L. Varbanescu.

Supervision: Sven Warris, Jan-Peter Nap.

Validation: Sven Warris.

Writing – original draft: Sven Warris, Jan-Peter Nap.

Writing – review & editing: Sven Warris, N. Roshan N. Timal, Marcel Kempenaar, Ana L.

Varbanescu, Jan-Peter Nap.

References

1. Warris S, Yalcin F, Jackson KJL, Nap JP. Flexible, Fast and Accurate Sequence Alignment Profiling on

GPGPU with PaSWAS. Zhang M, editor. PLoS One. 2015; 10: e0122524. https://doi.org/10.1371/

journal.pone.0122524 PMID: 25830241

2. Chang Y-J, Chen C-C, Ho J-M, Chen C-L. De Novo Assembly of High-Throughput Sequencing Data

with Cloud Computing and New Operations on String Graphs. 2012 IEEE Fifth International Conference

on Cloud Computing. IEEE; 2012. pp. 155–161. 10.1109/CLOUD.2012.123

3. Hadoop—Apache Software Foundation project home page [Internet]. http://hadoop.apache.org/

4. Taylor RC. An overview of the Hadoop/MapReduce/HBase framework and its current applications in

bioinformatics. BMC Bioinformatics. 2010; 11 Suppl 1: S1. https://doi.org/10.1186/1471-2105-11-S12-

S1 PMID: 21210976

5. Liu Y, Maskell DL, Schmidt B. CUDASW++: optimizing Smith-Waterman sequence database searches

for CUDA-enabled graphics processing units. BMC Res Notes. BioMed Central; 2009; 2: 73.

6. Liu Y, Schmidt B, Maskell DL. CUDASW++2.0: enhanced Smith-Waterman protein database search on

CUDA-enabled GPUs based on SIMT and virtualized SIMD abstractions. BMC Res Notes. BioMed

Central; 2010; 3: 93. https://doi.org/10.1186/1756-0500-3-93 PMID: 20370891

7. Liu Y, Wirawan A, Schmidt B. CUDASW++ 3.0: accelerating Smith-Waterman protein database search

by coupling CPU and GPU SIMD instructions. BMC Bioinformatics. 2013; 14: 117. https://doi.org/10.

1186/1471-2105-14-117 PMID: 23557111

8. Gotoh O. An improved algorithm for matching biological sequences. J Mol Biol. 1982; 162: 705–708.

https://doi.org/10.1016/0022-2836(82)90398-9 PMID: 7166760

9. Cock PJA, Antao T, Chang JT, Chapman BA, Cox CJ, Dalke A, et al. Biopython: freely available Python

tools for computational molecular biology and bioinformatics. Bioinformatics. 2009; 25: 1422–3. https://

doi.org/10.1093/bioinformatics/btp163 PMID: 19304878

10. Jones E, Oliphant T, Peterson P. SciPy: Open source scientific tools for Python [Internet]. 2001. http://

www.scipy.org

11. Munshi A, others. The opencl specification. Khronos OpenCL Work Gr. p. l1—15; 2009;1: l1—15.

12. Klöckner A, Pinto N, Lee Y, Catanzaro B, Ivanov P, Fasih A. PyCUDA and PyOpenCL: A scripting-

based approach to GPU run-time code generation. Parallel Comput. 2012; 38: 157–174. https://doi.org/

10.1016/j.parco.2011.09.001

13. NVIDIA. CUDA Download. In: http://developer.nvidia.com/cuda-downloads [Internet]. [cited 1 Sep

2016].

14. NumPy. In: http://numpy.scipy.org/ [Internet]. 2001.

15. bioPython. In: http://biopython.org/wiki/Biopython [Internet].

16. Warris S. pyPaSWAS Wiki [Internet]. [cited 1 Sep 2016]. https://github.com/swarris/pyPaSWAS/wiki

17. Fang J, Varbanescu AL, Sips H. A Comprehensive Performance Comparison of CUDA and OpenCL.

2011 International Conference on Parallel Processing. IEEE; 2011. pp. 216–225. 10.1109/

ICPP.2011.45

18. Timal NRN. Accelerating Protein Sequence Alignment with Different Parallel Hardware Platforms (MSc

Thesis). TU Delft, Delft University of Technology. 2015.

19. Goecks J, Nekrutenko A, Taylor J. Galaxy: a comprehensive approach for supporting accessible, repro-

ducible, and transparent computational research in the life sciences. Genome Biol. 2010; 11: R86.

https://doi.org/10.1186/gb-2010-11-8-r86 PMID: 20738864

20. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol.

Elsevier; 1990; 215: 403–410. https://doi.org/10.1006/jmbi.1990.9999

Multi-core CPU and GPU sequence alignment

PLOS ONE | https://doi.org/10.1371/journal.pone.0190279 January 2, 2018 8 / 9

https://doi.org/10.1371/journal.pone.0122524
https://doi.org/10.1371/journal.pone.0122524
http://www.ncbi.nlm.nih.gov/pubmed/25830241
http://hadoop.apache.org/
https://doi.org/10.1186/1471-2105-11-S12-S1
https://doi.org/10.1186/1471-2105-11-S12-S1
http://www.ncbi.nlm.nih.gov/pubmed/21210976
https://doi.org/10.1186/1756-0500-3-93
http://www.ncbi.nlm.nih.gov/pubmed/20370891
https://doi.org/10.1186/1471-2105-14-117
https://doi.org/10.1186/1471-2105-14-117
http://www.ncbi.nlm.nih.gov/pubmed/23557111
https://doi.org/10.1016/0022-2836(82)90398-9
http://www.ncbi.nlm.nih.gov/pubmed/7166760
https://doi.org/10.1093/bioinformatics/btp163
https://doi.org/10.1093/bioinformatics/btp163
http://www.ncbi.nlm.nih.gov/pubmed/19304878
http://www.scipy.org
http://www.scipy.org
https://doi.org/10.1016/j.parco.2011.09.001
https://doi.org/10.1016/j.parco.2011.09.001
http://developer.nvidia.com/cuda-downloads
http://numpy.scipy.org/
http://biopython.org/wiki/Biopython
https://github.com/swarris/pyPaSWAS/wiki
https://doi.org/10.1186/gb-2010-11-8-r86
http://www.ncbi.nlm.nih.gov/pubmed/20738864
https://doi.org/10.1006/jmbi.1990.9999
https://doi.org/10.1371/journal.pone.0190279


21. Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics.

2010; 26: 589–95. https://doi.org/10.1093/bioinformatics/btp698 PMID: 20080505

22. Zdobnov EM, Apweiler R. InterProScan—an integration platform for the signature-recognition methods

in InterPro. Bioinformatics. 2001; 17: 847–848. https://doi.org/10.1093/bioinformatics/17.9.847 PMID:

11590104

23. Luo J, Wu M, Gopukumar D, Zhao Y. Big Data Application in Biomedical Research and Health Care: A

Literature Review. Biomed Inform Insights. 2016; 8: 1. https://doi.org/10.4137/BII.S31559 PMID:

26843812

24. Demidov D, Ahnert K, Rupp K, Gottschling P. Programming CUDA and OpenCL: A Case Study Using

Modern C++ Libraries. SIAM J Sci Comput. Society for Industrial and Applied Mathematics; 2013; 35:

C453–C472. https://doi.org/10.1137/120903683

25. OpenCL Libraries and toolkits [Internet]. http://www.iwocl.org/resources/opencl-libraries-and-toolkits/

26. Kola G, Kosar T, Livny M. A Fully Automated Fault-tolerant System for Distributed Video Processing

and Off-site Replication. Proceedings of the 14th International Workshop on Network and Operating

Systems Support for Digital Audio and Video. Kinsale, Ireland; 2004.

27. Urbanek S. R OpenCL [Internet]. [cited 1 Sep 2016]. https://cran.r-project.org/web/packages/OpenCL/

index.html

28. MathWorks. MathWorks GPU Computing [Internet]. [cited 1 Sep 2016]. http://nl.mathworks.com/

discovery/matlab-gpu.html

29. Jocl.org. JOCL [Internet]. [cited 1 Sep 2016]. http://www.jocl.org/

30. Standish KA, Carland TM, Lockwood GK, Pfeiffer W, Tatineni M, Huang CC, et al. Group-based variant

calling leveraging next-generation supercomputing for large-scale whole-genome sequencing studies.

BMC Bioinformatics. BioMed Central; 2015; 16: 304. https://doi.org/10.1186/s12859-015-0736-4 PMID:

26395405

31. Jansen RC, Nap JP. Genetical genomics: the added value from segregation. Trends Genet. Elsevier;

2001; 17: 388–91. https://doi.org/10.1016/s0168-9525(01)02310-1

32. Stivala AD, Stuckey PJ, Wirth AI. Fast and accurate protein substructure searching with simulated

annealing and GPUs. BMC Bioinformatics. BioMed Central; 2010; 11: 446. https://doi.org/10.1186/

1471-2105-11-446 PMID: 20813068

Multi-core CPU and GPU sequence alignment

PLOS ONE | https://doi.org/10.1371/journal.pone.0190279 January 2, 2018 9 / 9

https://doi.org/10.1093/bioinformatics/btp698
http://www.ncbi.nlm.nih.gov/pubmed/20080505
https://doi.org/10.1093/bioinformatics/17.9.847
http://www.ncbi.nlm.nih.gov/pubmed/11590104
https://doi.org/10.4137/BII.S31559
http://www.ncbi.nlm.nih.gov/pubmed/26843812
https://doi.org/10.1137/120903683
http://www.iwocl.org/resources/opencl-libraries-and-toolkits/
https://cran.r-project.org/web/packages/OpenCL/index.html
https://cran.r-project.org/web/packages/OpenCL/index.html
http://nl.mathworks.com/discovery/matlab-gpu.html
http://nl.mathworks.com/discovery/matlab-gpu.html
http://www.jocl.org/
https://doi.org/10.1186/s12859-015-0736-4
http://www.ncbi.nlm.nih.gov/pubmed/26395405
https://doi.org/10.1016/s0168-9525(01)02310-1
https://doi.org/10.1186/1471-2105-11-446
https://doi.org/10.1186/1471-2105-11-446
http://www.ncbi.nlm.nih.gov/pubmed/20813068
https://doi.org/10.1371/journal.pone.0190279

