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Abstract Videos of animal behavior are used to quantify researcher-defined behaviors of interest 
to study neural function, gene mutations, and pharmacological therapies. Behaviors of interest 
are often scored manually, which is time-consuming, limited to few behaviors, and variable across 
researchers. We created DeepEthogram: software that uses supervised machine learning to convert 
raw video pixels into an ethogram, the behaviors of interest present in each video frame. DeepEth-
ogram is designed to be general-purpose and applicable across species, behaviors, and video-
recording hardware. It uses convolutional neural networks to compute motion, extract features from 
motion and images, and classify features into behaviors. Behaviors are classified with above 90%  
accuracy on single frames in videos of mice and flies, matching expert-level human performance. 
DeepEthogram accurately predicts rare behaviors, requires little training data, and generalizes 
across subjects. A graphical interface allows beginning-to-end analysis without end-user program-
ming. DeepEthogram’s rapid, automatic, and reproducible labeling of researcher-defined behaviors 
of interest may accelerate and enhance supervised behavior analysis. Code is available at: https://​
github.​com/​jbohnslav/​deepethogram.

Introduction
The analysis of animal behavior is a common approach in a wide range of biomedical research fields, 
including basic neuroscience research (Krakauer et al., 2017), translational analysis of disease models, 
and development of therapeutics. For example, researchers study behavioral patterns of animals to 
investigate the effect of a gene mutation, understand the efficacy of potential pharmacological thera-
pies, or uncover the neural underpinnings of behavior. In some cases, behavioral tests allow quantifi-
cation of behavior through tracking an animal’s location in space, such as in the three-chamber assay, 
open-field arena, Morris water maze, and elevated plus maze (EPM) (Pennington, 2019). Increasingly, 
researchers are finding that important details of behavior involve subtle actions that are hard to quan-
tify, such as changes in the prevalence of grooming in models of anxiety (Peça et al., 2011), licking a 
limb in models of pain (Browne, 2017), and manipulation of food objects for fine sensorimotor control 
(Neubarth, 2020; Sauerbrei et al., 2020). In these cases, researchers often closely observe videos 
of animals and then develop a list of behaviors they want to measure. To quantify these observations, 
the most commonly used approach, to our knowledge, is for researchers to manually watch videos 
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with a stopwatch to count the time each behavior of interest is exhibited (Figure 1A). This approach 
takes immense amounts of researcher time, often equal to or greater than the duration of the video 
per individual subject. Also, because this approach requires manual viewing, often only one or a small 
number of behaviors are studied at a time. In addition, researchers often do not label the video frames 
when specific behaviors occur, precluding subsequent analysis and review of behavior bouts, such as 
bout durations and the transition probability between behaviors. Furthermore, scoring of behaviors 
can vary greatly between researchers especially as new researchers are trained (Segalin, 2020) and 
can be subject to bias. Therefore, it would be a significant advance if a researcher could define a list 
of behaviors of interest, such as face grooming, tail grooming, limb licking, locomoting, rearing, and 
so on, and then use automated software to identify when and how frequently each of the behaviors 
occurred in a video.

Researchers are increasingly turning to computational approaches to quantify and analyze animal 
behavior (Datta et al., 2019; Anderson and Perona, 2014; Gomez-Marin et al., 2014; Brown and de 
Bivort, 2017; Egnor and Branson, 2016). The task of automatically classifying an animal’s actions into 
user-defined behaviors falls in the category of supervised machine learning. In computer vision, this 
task is called ‘action detection,’ ‘temporal action localization,’ ‘action recognition,’ or ‘action segmen-
tation.’ This task is distinct from other emerging behavioral analysis methods based on unsupervised 
learning, in which machine learning models discover behavioral modules from the data, irrespective 
of researcher labels. Although unsupervised methods, such as Motion Sequencing (Wiltschko, 2015; 
Wiltschko et al., 2020), MotionMapper (Berman et al., 2014), BehaveNet (Batty, 2019), B-SOiD 
(Hsu and Yttri, 2019), and others (Datta et al., 2019), can discover behavioral modules not obvious 
to the researcher, their outputs are not designed to perfectly match up to behaviors of interest in 
cases in which researchers have strong prior knowledge about the specific behaviors relevant to their 
experiments.

Pioneering work, including JAABA (Kabra et al., 2013), SimBA (Nilsson, 2020), MARS (Segalin, 
2020), Live Mouse Tracker (de Chaumont et al., 2019), and others (Segalin, 2020; Dankert et al., 
2009; Sturman et al., 2020), has made important progress toward the goal of supervised classi-
fication of behaviors. These methods track specific features of an animal’s body and use the time 
series of these features to classify whether a behavior is present at a given timepoint. In computer 
vision, this is known as ‘skeleton-based action detection.’ In JAABA, ellipses are fit to the outline 
of an animal’s body, and these ellipses are used to classify behaviors. SimBA classifies behaviors 
based on the positions of ‘keypoints’ on the animal’s body, such as limb joints. MARS takes a similar 
approach with a focus on social behaviors (Segalin, 2020). These approaches have become easier 
with recent pose estimation methods, including DeepLabCut (Mathis, 2018; Nath, 2019; Lauer, 
2021) and similar algorithms (Pereira, 2018a; Graving et al., 2019). Thus, these approaches utilize 
a pipeline with two major steps. First, researchers reduce a video to a set of user-defined features 
of interest (e.g., limb positions) using pose estimation software. Second, these pose estimates are 
used as inputs to classifiers that identify the behaviors of interest. This approach has the advantage 
that it provides information beyond whether a behavior of interest is present or absent at each 
timepoint. Because the parts of the animal’s body that contribute to the behavior are tracked, 
detailed analyses of movement and how these movements contribute to behaviors of interest can 
be performed.

Here, we took a different approach based on models that classify behaviors directly from the raw 
pixel values of videos. Drawing from extensive work in this area in computer vision (He et al., 2015; 
Piergiovanni and Ryoo, 2018; Zhu et al., 2017; Simonyan and Zisserman, 2014), this approach 
has the potential to simplify the pipeline for classifying behaviors. It requires only one type of human 
annotation – labels for behaviors of interest – instead of labels for both pose keypoints and behaviors. 
In addition, this approach requires only a single model for behavior classification instead of models 
for pose estimation and behavior classification. Classification from raw pixels is in principle generally 
applicable to any dataset that has video frames and training data for the model in the form of frame-
by-frame binary behavior labels. Some recent work has performed behavior classification from pixels 
but only focused on motor deficits (Ryait, 2019) or one species and setup (van Dam et al., 2020). 
Other recent work uses image and motion features, similar to the approaches we developed here, 
except with a focus on classifying the timepoint at which a behavior starts, instead of classifying every 
frame into one or more behaviors (Kwak et al., 2019).

https://doi.org/10.7554/eLife.63377
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Figure 1. DeepEthogram overview. (A) Workflows for supervised behavior labeling. Left: a common traditional approach based on manual labeling. 
Middle: workflow with DeepEthogram. Right: Schematic of expected scaling of user time for each workflow. (B) Ethogram schematic. Top: example 
images from Mouse-Ventral1 dataset. Bottom: ethogram with human labels. Dark colors indicate which behavior is present. Example shown is from 
Mouse-Ventral1 dataset. Images have been cropped, brightened, and converted to grayscale for clarity. (C) DeepEthogram-fast model schematic. 
Example images are from the Fly dataset. Left: a sequence of 11 frames is converted into 10 optic flows. Middle: the center frame and the stack of 10 
optic flows are converted into 512-dimensional representations via deep convolutional neural networks (CNNs). Right: these features are converted into 
probabilities of each behavior via the sequence model.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Optic flow.

https://doi.org/10.7554/eLife.63377
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Our method, called DeepEthogram, is a modular pipeline for automatically classifying each frame 
of a video into a set of user-defined behaviors. It uses a supervised deep-learning model that, with 
minimal user-based training data, takes a video with T frames and a user-defined set of K behaviors 
and generates a binary [T, K] matrix (Figure 1A; Piergiovanni and Ryoo, 2018; Zhu et al., 2017). This 
matrix indicates whether each behavior is present or absent on each frame, which we term an ‘etho-
gram’: the set of behaviors that are present at a given timepoint (Figure 1B). We use convolutional 
neural networks (CNNs), specifically Hidden Two-Stream Networks (Zhu et al., 2017) and Temporal 
Gaussian Mixture (TGM) networks (Piergiovanni and Ryoo, 2018), to detect actions in videos, and we 
pretrained the networks on large open-source datasets (Deng, 2008; Carreira et al., 2019). Previous 
work has introduced the methods we use here (He et al., 2015; Piergiovanni and Ryoo, 2018; Zhu 
et al., 2017; Simonyan and Zisserman, 2014), and we have adapted and extended these methods 
for application to biomedical research of animal behavior. We validated our approach’s performance 
on nine datasets from two species, with each dataset posing distinct challenges for behavior classifi-
cation. DeepEthogram automatically classifies behaviors with high performance, often reaching levels 
obtained by expert human labelers. High performance is achieved with only a few minutes of positive 
example data and even when the behaviors occur at different locations in the behavioral arena and at 
distinct orientations of the animal. Importantly, specialized video recording hardware is not required, 
and the entire pipeline requires no programming by the end-user because we developed a graphical 
user interface (GUI) for annotating videos, training models, and generating predictions.

Results
Modeling approach
Our goal was to take a set of video frames as input and predict the probability that each behavior 
of interest occurs on a given frame. This task of automated behavior labeling presents several chal-
lenges that framed our solution. First, in many cases, the behavior of interest occurs in a relatively 
small number of video frames, and the accuracy must be judged based on correct identification of 
these low-frequency events. For example, if a behavior of interest is present in 5%   of frames, an 
algorithm could guess that the behavior is ‘not present’ on every frame and still achieve 95%  overall 
accuracy. Critically, however, it would achieve 0%  accuracy on the frames that matter, and an algo-
rithm does not know a priori which frames matter. Second, ideally a method should perform well after 
being trained on only small amounts of user-labeled video frames, including across different animals, 
and thus require little manual input. Third, a method should be able to identify the same behavior 
regardless of the position and orientation of the animal when the behavior occurs. Fourth, methods 
should require relatively low computational resources in case researchers do not have access to large 
compute clusters or top-level GPUs.

We modeled our approach after temporal action localization methods used in computer vision 
aimed to solve related problems (Zeng, 2019; Xie et al., 2019; Chao, 2018; El-Nouby and Taylor, 
2018). The overall architecture of our solution includes (1) estimating motion (optic flow) from a 
small snippet of video frames, (2) compressing a snippet of optic flow and individual still images 
into a lower dimensional set of features, and (3) using a sequence of the compressed features to 
estimate the probability of each behavior at each frame in a video (Figure 1C). We implemented 
this architecture using large, deep CNNs. First, one CNN is used to generate optic flow from a 
set of images. We incorporate optic flow because some behaviors are only obvious by looking at 
the animal’s movements between frames, such as distinguishing standing still and walking. We call 
this CNN the flow generator (Figure 1C, Figure 1—figure supplement 1). We then use the optic 
flow output of the flow generator as input to a second CNN to compress the large number of 
optic flow snippets across all the pixels into a small set of features called flow features (Figure 1C). 
Separately, we use a distinct CNN, which takes single video frames as input, to compress the 
large number of raw pixels into a small set of spatial features, which contain information about 
the values of pixels relative to one another spatially but lack temporal information (Figure 1C). 
We include single frames separately because some behaviors are obvious from a single still image, 
such as identifying licking just by seeing an extended tongue. Together, we call these latter two 
CNNs feature extractors because they compress the large number of raw pixels into a small set of 
features called a feature vector (Figure 1C). Each of these feature extractors is trained to produce a 

https://doi.org/10.7554/eLife.63377
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probability for each behavior on each frame based only on their input (optic flow or single frames). 
We then fuse the outputs of the two feature extractors by averaging (Materials and methods). To 
produce the final probabilities that each behavior was present on a given frame – a step called 
inference – we use a sequence model, which has a large temporal receptive field and thus utilizes 
long timescale information (Figure 1C). We use this sequence model because our CNNs only ‘look 
at’ either 1 frame (spatial) or about 11 frames (optic flow), but when labeling videos, humans know 
that sometimes the information present seconds ago can be useful for estimating the behavior of 
the current frame. The final output of DeepEthogram is a ‍

[
T, K

]
‍ matrix, in which each element is 

the probability of behavior k occurring at time t. We threshold these probabilities to get a binary 
prediction for each behavior at each timepoint, with the possibility that multiple behaviors can 
occur simultaneously (Figure 1B).

For the flow generator, we use the MotionNet (Zhu et  al., 2017) architecture to generate 10 
optic flow frames from 11 images. For the feature extractors, we use the ResNet family of models 
(He et al., 2015; Hara et al., 2018) to extract both flow features and spatial features. Finally, we use 
TGM (Piergiovanni and Ryoo, 2018) models as the sequence model to perform the ultimate classi-
fication. Each of these models has many variants with a large range in the number of parameters and 
the associated computational demands. We therefore created three versions of DeepEthogram that 
use variants of these models, with the aim of trading off accuracy and speed: DeepEthogram-fast, 
DeepEthogram-medium, and DeepEthogram-slow. DeepEthogram-fast uses TinyMotionNet (Zhu 
et al., 2017) for the flow generator and ResNet18 (He et al., 2015) for the feature extractors. It has 
the fewest parameters, the fastest training of the flow generator and feature extractor models, the 
fastest inference time, and the smallest requirement for computational resources. As a tradeoff for 
this speed, DeepEthogram-fast tends to have slightly worse performance than the other versions 
(see below). In contrast, DeepEthogram-slow uses a novel architecture TinyMotionNet3D for its 
flow generator and 3D-ResNet34 (He et al., 2015; Simonyan and Zisserman, 2014; Hara et al., 
2018) for its feature extractors. It has the most parameters, the slowest training and inference times, 
and the highest computational demands, but it has the capacity to produce the best performance. 
DeepEthogram-medium is intermediate and uses MotionNet (Zhu et al., 2017) and ResNet50 (He 
et  al., 2015) for its flow generator and feature extractors. All versions of DeepEthogram use the 
same sequence model. All variants of the flow generators and feature extractors are pretrained on 
the Kinetics700 video dataset (Carreira et al., 2019), so that model parameters do not have to be 
learned from scratch (Materials and methods). TGM networks represent the state of the art on various 
action detection benchmarks as of 2019 (Piergiovanni and Ryoo, 2018). However, recent work based 
on multiple temporal resolutions (Feichtenhofer et al., 2019; Kahatapitiya and Ryoo, 2021), graph 
convolutional networks (Zeng, 2019), and transformer architectures (Nawhal and Mori, 2021) has 
exceeded this performance. We carefully chose DeepEthogram’s components based on their perfor-
mance, parameter count, and hardware requirements. DeepEthogram as a whole and its component 
parts are not aimed to be the state of the art on standard computer vision temporal action localization 
datasets and instead are focused on practical application to biomedical research of animal behavior.

In practice, the first step in running DeepEthogram is to train the flow generator on a set of videos, 
which occurs without user input (Figure 1A). In parallel, a user must label each frame in a set of 
training videos for the presence of each behavior of interest. These labels are then used to train inde-
pendently the spatial feature extractor and the flow feature extractor to produce separate estimates 
of the probability of each behavior. The extracted feature vectors for each frame are then saved and 
used to train the sequence models to produce the final predicted probability of each behavior at each 
frame. We chose to train the models in series, rather than all at once from end-to-end, due to a combi-
nation of concerns about backpropagating error across diverse models, overfitting with extremely 
large models, and computational capacity (Materials and methods).

Diverse datasets to test DeepEthogram
To test the performance of our model, we used nine different neuroscience research datasets that 
span two species and present distinct challenges for computer vision approaches. Please see the 
examples in Figure 2, Figure 2—figure supplements 1–6, and Videos 1–9 that demonstrate the 
behaviors of interest and provide an intuition for the ease or difficulty of identifying and distinguishing 
particular behaviors.

https://doi.org/10.7554/eLife.63377
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Figure 2. Datasets and behaviors of interest. (A) Left: raw example images from the Mouse-Ventral1 dataset for each of the behaviors of interest. Right: 
time spent on each behavior, based on human labels. Note that the times may add up to more than 100%  across behaviors because multiple behaviors 
can occur on the same frame. Background is defined as when no other behaviors occur. (B–I) Similar to (A), except for the other datasets.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Example images from the datasets, part 1.

Figure supplement 2. Example images from the datasets, part 2.

Figure supplement 3. Example images from the datasets, part 3.

Figure supplement 4. Example images from the datasets, part 4.

Figure supplement 5. Example images from the datasets, part 5.

Figure supplement 6. Example images from the datasets, part 6.

https://doi.org/10.7554/eLife.63377
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We collected five datasets of mice in various 
behavioral arenas. The ‘Mouse-Ventral1’ and 

‘Mouse-Ventral2’ datasets are bottom-up videos of a mouse in an open field and small chamber, 
respectively (Figure 2A,B, Figure 2—figure supplement 1A, B, Videos 1–2). The ‘Mouse-Openfield’ 
dataset includes commonly used top-down videos of a mouse in an open arena (Figure 2C, Figure 2—
figure supplement 2A, Video 3). The ‘Mouse-Homecage’ dataset are top-down videos of a mouse 
in its home cage with bedding, a hut, and two objects (Figure 2D, Figure 2—figure supplement 3, 
Video 4). The ‘Mouse-Social’ dataset are top-down videos of two mice interacting in an open arena 
(Figure 2E, Figure 2—figure supplement 4, Video 5). We also tested three datasets from published 
work by Sturman et al., 2020 that consist of mice in common behavior assays: the EPM, forced swim 
test (FST), and open field test (OFT) (Figure 2F–H, Figure 2—figure supplements 5–6, Videos 6–8). 
Finally, we tested a different species in the ‘Fly’ dataset that includes side view videos of a Drosophila 
melanogaster and aims to identify a coordinated walking pattern (Fujiwara et al., 2017; Figure 2D, 
Figure 2—figure supplement 2B, Video 9).

Collectively, these datasets include distinct view angles, a variety of illumination levels, and different 
resolutions and video qualities. They also pose various challenges for computer vision, including the 
subject occupying a small fraction of pixels (Mouse-Ventral1, Mouse-Openfield, Mouse-Homecage, 
Sturman-EPM, Sturman-OFT), complex backgrounds with non-uniform patterns (bedding and objects 
in Mouse-Homecage) or irrelevant motion (moving water in Sturman-FST), objects that occlude the 
subject (Mouse-Homecage), poor contrast of body parts (Mouse-Openfield, Sturman-EPM, Stur-
man-OFT), little motion from frame-to-frame (Fly, due to high video rate), and few training examples 
(Sturman-EPM, only five videos and only three that contain all behaviors). Furthermore, in most data-
sets, some behaviors of interest are rare and occur in only a few percent of the total video frames.

In each dataset, we labeled a behavior as present regardless of the location where it occurred and 
the orientation of the subject when it occurred. We did not note position or direction information, 

Video 1. DeepEthogram example from the Mouse-
Ventral1 dataset. Video is from the test set. Top: 
raw image. Title indicates frame number in video. 
Tick legends indicate pixels. Middle: human 
labels. Black box indicates the current frame. 
Bottom: DeepEthogram predictions from a trained 
DeepEthogram-medium model.

https://elifesciences.org/articles/63377/figures#video1

Video 2. DeepEthogram example from the Mouse-
Ventral2 dataset. Video is from the test set. Top: 
raw image. Title indicates frame number in video. 
Tick legends indicate pixels. Middle: human 
labels. Black box indicates the current frame. 
Bottom: DeepEthogram predictions from a trained 
DeepEthogram-medium model.

https://elifesciences.org/articles/63377/figures#video2

https://doi.org/10.7554/eLife.63377
https://elifesciences.org/articles/63377/figures#video1
https://elifesciences.org/articles/63377/figures#video2
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and we did not spatially crop the video frames or 
align the animal before training our model. In all datasets, we labeled the frames on which none of the 
behaviors of interest were present as ‘background,’ following the convention in computer vision. Each 
video in a dataset was recorded using a different individual mouse or fly, and thus training and testing 
the model across videos measured generalization across individual subjects. The video datasets and 
researcher annotations are available at the project website: https://​github.​com/​jbohnslav/​deepetho-
gram (copy archived at swh:1:rev:ffd7e6bd91f52c7d1dbb166d1fe8793a26c4cb01), Bohnslav, 2021.

DeepEthogram achieves high performance approaching expert-level 
human performance
We split each dataset into three subsets: training, validation, and test (Materials and methods). The 
training set was used to update model parameters, such as the weights of the CNNs. The validation 
set was used to set appropriate hyperparameters, such as the thresholds used to turn the probabilities 
of each behavior into binary predictions about whether each behavior was present. The test set was 
used to report performance on new data not used in training the model. We generated five random 
splits of the data into training, validation, and test sets and averaged our results across these five 
splits, unless noted otherwise (Materials and methods). We computed three complementary metrics 
of model performance using the test set. First, we computed the accuracy, which is the fraction of 
elements of the ‍

[
T, K

]
‍ ethogram that were predicted correctly. We note that in theory accuracy could 

be high even if the model did not perform well on each behavior. For example, in the Mouse-Ventral2 
dataset, some behaviors were incredibly rare, occurring in only ~2%  of frames (Figure 2B). Thus, the 
model could in theory achieve ~98%  accuracy simply by guessing that the behavior was absent on all 
frames. Therefore, we also computed the F1 score, a metric ranging from 0 (bad) to 1 (perfect) that 
takes into account the rates of false positives and false negatives. The F1 score is the geometric mean 
of the precision and recall of the model. Precision is the fraction of frames labeled by the model as 

Video 3. DeepEthogram example from the Mouse-
Openfield dataset. Video is from the test set. 
Top: raw image. Title indicates frame number in 
video. Tick legends indicate pixels. Middle: human 
labels. Black box indicates the current frame. 
Bottom: DeepEthogram predictions from a trained 
DeepEthogram-medium model.

https://elifesciences.org/articles/63377/figures#video3

Video 4. DeepEthogram example from the Mouse-
Homecage dataset. Video is from the test set. 
Top: raw image. Title indicates frame number in 
video. Tick legends indicate pixels. Middle: human 
labels. Black box indicates the current frame. 
Bottom: DeepEthogram predictions from a trained 
DeepEthogram-medium model.

https://elifesciences.org/articles/63377/figures#video4

https://doi.org/10.7554/eLife.63377
https://github.com/jbohnslav/deepethogram
https://github.com/jbohnslav/deepethogram
https://archive.softwareheritage.org/swh:1:dir:d1e96891cb40f5b08b500a1de3ba92d372ac6b35;origin=https://github.com/jbohnslav/deepethogram;visit=swh:1:snp:533bf2df888313ada5443ac928c0d044941c726a;anchor=swh:1:rev:ffd7e6bd91f52c7d1dbb166d1fe8793a26c4cb01
https://elifesciences.org/articles/63377/figures#video3
https://elifesciences.org/articles/63377/figures#video4
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a given behavior that are actually that behavior 
(true positives/(true positives + false positives)). 

Recall is the fraction of frames actually having a given behavior that are correctly labeled as that 
behavior by the model (true positives/(true positives + false negatives)). We report the F1 score in 
the main figures and show precision and recall performance in the figure supplements. Because the 
accuracy and F1 score depend on our choice of a threshold to turn the probability of a given behavior 
on a given frame into a binary prediction about the presence of that behavior, we also computed the 
area under the receiver operating curve (AUROC), which summarizes performance as a function of 
the threshold.

We first considered the entire ethogram, including all behaviors. DeepEthogram performed 
with greater than 85%  accuracy on the test data for all datasets (Figure 3A). Overall metrics were 
calculated for each element of the ethogram. The model achieved high overall F1 scores, with high 
precision and recall (Figure 3B, Figure 3—figure supplement 1A, Figure 3—figure supplement 
2A). Similarly, high overall performance was observed with the AUROC measures (Figure 3—figure 
supplement 3A). These results indicate that the model was able to capture the overall patterns of 
behavior in videos.

We also analyzed the model’s performance for each individual behavior. The model achieved 
F1 scores of 0.7 or higher for many behaviors, even reaching F1 scores above 0.9 in some cases 
(Figure 3C–K). DeepEthogram’s performance significantly exceeded chance levels of performance 
on nearly all behaviors across datasets (Figure 3C–K). Given that F1 scores may not be intuitive to 
understand in terms of their values, we examined individual snippets of videos with a range of F1 
scores and found that F1 scores similar to the means for our datasets were consistent with overall 
accurate predictions (Figure 3P, Figure 3—figure supplements 4–11). We note that the F1 score is a 
demanding metric, and even occasional differences on single frames or a small number of frames can 
substantially decrease the F1 score. Relatedly, the model achieved high precision, recall, and AUROC 

Video 5. DeepEthogram example from the 
Mouse-Social dataset. Video is from the test set. 
Top: raw image. Title indicates frame number in 
video. Tick legends indicate pixels. Middle: human 
labels. Black box indicates the current frame. 
Bottom: DeepEthogram predictions from a trained 
DeepEthogram-medium model.

https://elifesciences.org/articles/63377/figures#video5

Video 6. DeepEthogram example from the Sturman-
EPM dataset. Video is from the test set. Top: raw image. 
Title indicates frame number in video. Tick legends 
indicate pixels. Middle: human labels. Black box 
indicates the current frame. Bottom: DeepEthogram 
predictions from a trained DeepEthogram-medium 
model.

https://elifesciences.org/articles/63377/figures#video6

https://doi.org/10.7554/eLife.63377
https://elifesciences.org/articles/63377/figures#video5
https://elifesciences.org/articles/63377/figures#video6
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values for individual behaviors (Figure 3—figure 
supplement 1B–J, Figure  3—figure supple-

ment 2B–J, Figure 3—figure supplement 3B–J). The performance of the model depended on the 
frequency with which a behavior occurred (c.f. Figure 2 right panels and Figure 3C–J). Strikingly, 
however, performance was relatively high even for behaviors that occurred rarely, that is, in less than 
10%  of video frames (Figure 3M, Figure 3—figure supplement 1L, Figure 3—figure supplement 2L, 
and Figure 3—figure supplement 3K ). The performance tended to be highest for DeepEthogram-
slow and worst for DeepEthogram-fast, but the differences between model versions were generally 
small and varied across behaviors (Figure 3A,B, Figure 3—figure supplement 1A, Figure 3—figure 
supplement 2A, Figure 3—figure supplement 3A). The high-performance values are, in our opinion, 
impressive given that they were calculated based on single-frame predictions for each behavior, and 
thus performance will be reduced if the model misses the onset or offset of a behavior bout by even a 
single frame. These high values suggest that the model not only correctly predicted which behaviors 
happened and when but also had the resolution to correctly predict the onset and offset of bouts.

To better understand the performance of DeepEthogram, we benchmarked the model by comparing 
its performance to the degree of agreement between expert human labelers. Multiple researchers 
with extensive experience in monitoring and analyzing mouse behavior videos independently labeled 
the same set of videos for the Mouse-Ventral1, Mouse-Ventral2, Mouse-Openfield, Mouse-Social, 
and Mouse-Homecage datasets, allowing us to measure the consistency across human experts. Also, 
Sturman et al. released the labels of each of three expert human labelers (Sturman et al., 2020). The 
Fly dataset has more than 3 million frames and thus was too large to label multiple times. Human-
human performance was calculated by defining one labeler as the ‘ground truth’ and the other labelers 
as ‘predictions’ and then computing the same performance metrics as for DeepEthogram. In this way, 
‘human accuracy’ is the same as the percentage of scores on which two humans agreed. Strikingly, 
the overall accuracy, F1 scores, precision, and recall for DeepEthogram approached that of expert 

Video 7. DeepEthogram example from the Sturman-
FST dataset. Video is from the test set. Top: raw image. 
Title indicates frame number in video. Tick legends 
indicate pixels. Middle: human labels. Black box 
indicates the current frame. Bottom: DeepEthogram 
predictions from a trained DeepEthogram-medium 
model.

https://elifesciences.org/articles/63377/figures#video7

Video 8. DeepEthogram example from the Sturman-
OFT dataset. Video is from the test set. Top: raw image. 
Title indicates frame number in video. Tick legends 
indicate pixels. Middle: human labels. Black box 
indicates the current frame. Bottom: DeepEthogram 
predictions from a trained DeepEthogram-medium 
model.

https://elifesciences.org/articles/63377/figures#video8

https://doi.org/10.7554/eLife.63377
https://elifesciences.org/articles/63377/figures#video7
https://elifesciences.org/articles/63377/figures#video8
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human labelers (Figure 3A, B, C, E, H, I, J and 
L, Figure 3—figure supplement 1A,B,D,G,H,I,K, 
Figure 3—figure supplement 2). In many cases, 
DeepEthogram’s performance was statistically 
indistinguishable from human-level performance, 
and in the cases in which humans performed 
better, the difference in performance was gener-
ally small. Notably, the behaviors for which 
DeepEthogram had the lowest performance 
tended to be the behaviors for which humans had 
less agreement (lower human-human F1 score) 
(Figure  3L, Figure  3—figure supplement 1K, 
Figure  3—figure supplement 2K). Relatedly, 
DeepEthogram performed best on the frames in 
which the human labelers agreed and did more 
poorly in the frames in which humans disagreed 
(Figure 3N and O, Figure 3—figure supplement 
1M, Figure  3—figure supplement 2M). Thus, 
there is a strong correlation between DeepEtho-
gram and human performance, and the values for 
DeepEthogram’s performance approach those of 
expert human labelers.

The behavior with the worst model perfor-
mance was ‘defecate’ from the Mouse-Openfield 
dataset (Figures 2C and 3E). Notably, defeca-
tion was incredibly rare, occurring in only 0.1%  
of frames. Furthermore, the act of defecation 
was not actually visible from the videos. Rather, 
human labelers marked the ‘defecate’ behavior 
when new fecal matter appeared, which involved 
knowledge of the foreground and background, 

tracking objects, and inferring unseen behavior. This type of behavior is expected to be chal-
lenging for DeepEthogram because the model is based on images and local motion and thus will 
fail when the behavior cannot be directly observed visually.

The model was able to accurately predict the presence of a behavior even when that behavior 
happened in different locations in the environment and with different orientations of the animal 
(Figure  3—figure supplement 12). For example, the model predicted face grooming accurately 
both when the mouse was in the top-left quadrant of the chamber and facing north and when the 
mouse was in the bottom-right quadrant facing west. This result is particularly important for many 
analyses of behavior that are concerned with the behavior itself, rather than where that behavior 
happens.

One striking feature was DeepEthogram’s high performance even on rare behaviors. From our 
preliminary work building up to the model presented here, we found that simpler models performed 
well on behaviors that occurred frequently and performed poorly on the infrequent behaviors. Given 
that, in many datasets, the behaviors of interest are infrequent (Figure 2), we placed a major emphasis 
on performance in cases with large class imbalances, meaning when some behaviors only occurred 
in a small fraction of frames. In brief, we accounted for class imbalances in the initialization of the 
model parameters (Materials and methods). We also changed the cost function to weight errors on 
rare classes more heavily than errors on common classes. We used a form of regularization specific 
to transfer learning to reduce overfitting. Finally, we tuned the threshold for converting the model’s 
probability of a given behavior into a classification of whether that behavior was present. Without 
these added features, the model simply learned to ignore rare classes. We consider these steps 
toward identifying rare behaviors to be of major significance for effective application in common 
experimental datasets.

Video 9. DeepEthogram example from the Flies 
dataset. Video is from the test set. Top: raw image. Title 
indicates frame number in video. Tick legends indicate 
pixels. Middle: human labels. Black box indicates the 
current frame. Bottom: DeepEthogram predictions 
from a trained DeepEthogram-medium model.

https://elifesciences.org/articles/63377/figures#video9

https://doi.org/10.7554/eLife.63377
https://elifesciences.org/articles/63377/figures#video9
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Figure 3. DeepEthogram performance. All results are from the test sets only. (A) Overall accuracy for each model size and dataset. Error bars indicate 
mean ± SEM across five random splits of the data (three for Sturman-EPM). (B) Similar to (A), except for overall F1 score. (C) F1 score for DeepEthogram-
medium for individual behaviors on the Mouse-Ventral1 dataset. Gray bars indicate shuffle (Materials and methods). *p≤0.05, **p≤0.01, ***p≤0.001, 
repeated measures ANOVA with a post-hoc Tukey’s honestly significant difference test. (D) Similar to (C), but for Mouse-Ventral2. Model and shuffle 

Figure 3 continued on next page

https://doi.org/10.7554/eLife.63377
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DeepEthogram accurately predicts behavior bout statistics
Because DeepEthogram produces predictions on individual frames, it allows for subsequent analyses 
of behavior bouts, such as the number of bouts, the duration of bouts, and the transition proba-
bility from one behavior to another. These statistics of bouts are often not available if researchers 
only record the overall time spent on a behavior with a stopwatch, rather than providing frame-by-
frame labels. We found a strong correspondence for the statistics of behavior bouts between the 
predictions of DeepEthogram and those from human labels. We first focused on results at the level 
of individual videos for the Mouse-Ventral1 dataset, comparing the model predictions and human 
labels for the percent of time spent on each behavior, the number of bouts per behavior, and the 
mean bout duration (Figure 4A–C). Note that the model was trained on the labels from Human 1. 
For the time spent on each behavior, the model predictions and human labels were statistically indis-
tinguishable (one-way ANOVA, p>0.05; Figure 4A). For the number of bouts and bout duration, the 
model was statistically indistinguishable from the labels of Human 1, on which it was trained. Some 
differences were present between the model predictions and the other human labels not used for 
training (Figure 4B,C). However, the magnitude of these differences was within the range of differ-
ences between the multiple human labelers (Figure 4B,C).

To summarize the performance of DeepEthogram on bout statistics for each behavior in all data-
sets, we averaged the time spent, number of bouts, and bout duration for each behavior across the 
five random splits of the data into train, validation, and test sets. This average provides a quantity 
similar to an average across multiple videos, and an average across multiple videos is likely how some 
end-users will report their results. The values from the model were highly similar to the those from 
the labels on which it was trained (Human 1 labels) for the time spent per behavior, the number of 
bouts, and the mean bout duration (Figure 4D–F). Together, these results show that DeepEthogram 
accurately predicts bout statistics that might be of interest to biologist end-users.

DeepEthogram approaches expert-level human performance for bout 
statistics and transitions
Next, we benchmarked DeepEthogram’s performance on bout statistics by comparing its performance 
to the level of agreement between expert human labelers. We started by looking at the time spent on 

were compared with paired t-tests with Bonferroni correction. (E) Similar to (C), but for Mouse-Openfield. (F) Similar to (D), but for Mouse-Homecage. 
(G) Similar to (D), but for Mouse-Social. (H) Similar to (C), but for Sturman-EPM. (I) Similar to (C), but for Sturman-FST. (J) Similar to (C), but for Sturman-
OFT. (K) Similar to (D), but for Fly dataset. (L) F1 score on individual behaviors (circles) for DeepEthogram-medium vs. human performance. Circles 
indicate the average performance across splits for behaviors in datasets with multiple human labels. Gray line: unity. Model vs. human performance: 
p=0.067, paired t-test. (M) Model F1 vs. the percent of frames in the training set with the given behavior. Each circle is one behavior for one split of 
the data. (N) Model accuracy on frames for which two human labelers agreed or disagreed. Paired t-tests with Bonferroni correction. (O) Similar to (N), 
but for F1. (P) Ethogram examples. Dark color indicates the behavior is present. Top: human labels. Bottom: DeepEthogram-medium predictions. The 
accuracy and F1 score for each behavior, and the overall accuracy and F1 scores are shown. Examples were chosen to be similar to the model’s average 
by behavior.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. DeepEthogram performance, precision.

Figure supplement 2. DeepEthogram performance, recall.

Figure supplement 3. DeepEthogram performance, area under the receiver operating characteristic curve (AUROC).

Figure supplement 4. Ethogram examples for the Mouse-Ventral1 dataset.

Figure supplement 5. Ethogram examples for the Mouse-Ventral2 dataset.

Figure supplement 6. Ethogram examples for the Mouse-Openfield dataset.

Figure supplement 7. Ethogram examples for the Mouse-Homecage dataset.

Figure supplement 8. Ethogram examples for the Mouse-Social dataset.

Figure supplement 9. Ethogram examples for the Sturman-EPM dataset.

Figure supplement 10. Ethogram examples for the Sturman-FST dataset.

Figure supplement 11. Ethogram examples for the Sturman-OFT dataset.

Figure supplement 12. DeepEthogram exhibits position and heading invariance.

Figure 3 continued

https://doi.org/10.7554/eLife.63377
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each behavior in single videos for the Mouse-Ventral1 and Sturman-OFT datasets. We compared the 
labels from Human 1 to the model predictions and to the labels from Humans 2 and 3 (Figure 5A,B). 
In general, there was strong agreement between the model and Human 1 and among human labelers 
(Figure 5A,B, left and middle). To directly compare model performance to human-human agreement, 
we plotted the absolute difference between the model and Human 1 versus the absolute difference 
between Human 1 and Humans 2 and 3 (Figure 5A,B, right). Model agreement was significantly worse 
than human-human agreement when considering individual videos. However, the magnitude of this 
difference was small, implying that discrepancies in behavior labels introduced by the model were 
only marginally larger than the variability between multiple human labelers.
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Figure 4. DeepEthogram performance on bout statistics. All results from DeepEthogram-medium, test set only. (A–C) Comparison of model predictions 
and human labels on individual videos from the Mouse-Ventral1 dataset. Each point is one behavior from one video. Colors indicate video ID. Error 
bars: mean ± SEM (n = 18 videos). Asterisks indicate p<0.05, one-way ANOVA with Tukey’s multiple comparison test. No asterisk indicates p>0.05. (D–F) 
Comparison of model predictions and human labels on all behaviors for all datasets. Each circle is one behavior from one dataset, averaged across splits 
of the data. Gray line: unity.
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Figure 5. Comparison of model performance to human performance on bout statistics. All model data are from DeepEthogram-medium, test set data. 
r values indicate Pearson’s correlation coefficient. (A) Performance on Mouse-Ventral1 dataset for time spent. Each circle is one behavior from one video. 
Left: Human 1 vs. model. Middle: Human 1 vs. Humans 2 and 3. Both Humans 2 and 3 are shown on the y-axis. Right: absolute error between Human 
1 and model vs. absolute error between Human 1 and each of Humans 2 and 3. Model difference vs. human difference: p<0.001, paired t-test. (B) 
Similar to (A), but for Sturman-OFT dataset. Right: model difference vs. human difference: p<0.001, paired t-test. (C–E) Performance on all datasets with 
multiple human labelers (Mouse-Ventral1, Mouse-Openfield, Sturman-OFT, Sturman-EPM, Sturman-FST). Each point is one behavior from one dataset, 
averaged across data splits. Performance for Humans 2 and 3 were averaged. Similar to Figure 4D–F, but only for datasets with multiple labelers. Left: 
Human 1 vs. model. Middle: Human 1 vs. Humans 2 and 3. Right: absolute error between Human 1 and model vs. absolute error between Human 1 and 
each of Humans 2 and 3. p>0.05, paired t-test with Bonferroni correction, in (C–E) right panels. (F–H) Example transition matrices for Mouse-Ventral1 
dataset. For humans and models, transition matrices were computed for each data split and averaged across splits.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Performance of keypoint-based behavior classification on the Mouse-Openfield dataset.

Figure 5 continued on next page
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To summarize our benchmarking of model performance on bout statistics for each behavior in 
all datasets with multiple human labelers, we again averaged the time spent, number of bouts, and 
bout duration for each behavior across the five random splits of the data to obtain a quantity similar 
to an average across multiple videos (Figure 5C–E). For time spent per behavior, number of bouts, 
and mean bout length, the human-model differences were similar, and not significantly different, in 
magnitude to the differences between humans (Figure 5C–E, right column). The transition proba-
bilities between behaviors were also broadly similar between Human 1, Human 2, and the model 
(Figure 5F–H). Furthermore, model-human differences and human-human differences were signifi-
cantly correlated (Figure 5C–E, right column), again showing that DeepEthogram models are more 
reliable for situations in which multiple human labelers agree (see Figure 3N–O, Figure 3—figure 
supplement 1M, Figure 3—figure supplement 2M).

Therefore, the results from Figure 5A,B indicate that the model predictions are noisier than human-
human agreement on the level of individual videos. However, when averaged across multiple videos 
(Figure 5C–E), this noise averages out and results in similar levels of variability for the model and 
multiple human labelers. Given that DeepEthogram performed slightly worse on F1 scores relative to 
expert humans but performed similarly to humans on bout statistics, it is possible that for rare behav-
iors DeepEthogram misses a small number of bouts, which would minimally affect bout statistics but 
could decrease the overall F1 score.

Together, our results from Figures  3–5 and Figure  3—figure supplements 1–3 indicate that 
DeepEthogram’s predictions match well the labels defined by expert human researchers. Further, 
these model predictions allow easy post-hoc analysis of additional statistics of behaviors, which may 
be challenging to obtain with traditional manual methods.

Comparison to existing methods based on keypoint tracking
While DeepEthogram operates directly on the raw pixel values in the videos, other methods exist that 
first track body keypoints and then perform behavior classification based on these keypoints (Segalin, 
2020; Kabra et al., 2013; Nilsson, 2020; Sturman et al., 2020). One such approach that is appealing 
due to its simplicity and clarity was developed by Sturman et al. and was shown to be superior to 
commercially available alternatives (Sturman et al., 2020). In their approach, DeepLabCut (Mathis, 
2018) is used to estimate keypoints and then a multilayer perceptron architecture is used to classify 
features of these keypoints into behaviors. We compared the performance of DeepEthogram and this 
alternate approach using our custom implementation of the Sturman et al. methods (Figure 5—figure 
supplement 1). We focused our comparison on the Mouse-Openfield dataset, which is representative 
of videos used in a wide range of biological studies. We used DeepLabCut (Mathis, 2018) to identify 
the position of the four paws, the base of the tail, the tip of the tail, and the nose. These keypoints 
could be used to distinguish behaviors. For example, the distance between the nose and the base of 
the tail was highest when the mouse was locomoting (Figure 5—figure supplement 1C). However, 
the accuracy and F1 scores for DeepEthogram generally exceeded those identified from classifiers 
based on features of these keypoints (Figure 5—figure supplement 1D–G). For bout statistics, the 
two methods performed similarly well (Figure 5—figure supplement 1F–J). Thus, for at least one 
type of video and dataset, DeepEthogram outperformed an established approach.

There are several reasons why DeepEthogram might have done better on accuracy and F1 score. 
First, the videos tested were relatively low resolution, which restricted the number of keypoints on 
the mouse’s body that could be labeled. High-resolution videos with more keypoints may improve 
the keypoint-based classification approach. Second, our videos were recorded with a top-down view, 
which means that the paw positions were often occluded by the mouse’s body. A bottom-up or side 
view could allow for better identification of keypoints and may result in improved performance for the 
keypoint-based methods.

An alternative approach to DeepEthogram and other supervised classification pipelines could be 
to use an unsupervised behavior classification followed by human labeling of behavior clusters. In this 
approach, an unsupervised algorithm identifies behavior clusters without user input, and then the 
researcher identifies the cluster that most resembles their behavior of interest (e.g., ‘cluster 3 looks 

Figure supplement 2. Comparison with unsupervised methods.

Figure 5 continued
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like face grooming’). The advantage of this approach is that it involves less researcher time due to the 
lack of supervised labeling. However, this approach is not designed to identify predefined behaviors 
of interest and thus, in principle, might not be well suited for the goal of supervised classification. We 
tested one such approach starting with the Mouse-Openfield dataset and DeepLabCut-generated 
keypoints (Figure 5—figure supplement 1A, C). We used B-SoID (Hsu and Yttri, 2019), an unsuper-
vised classification pipeline for animal behavior, which identified 11 behavior clusters for this dataset 
(Figure 5—figure supplement 2A, B). These clusters were separable in a low-dimensional behavior 
space (Figure 5—figure supplement 2B), and B-SoID’s fast approximation algorithm showed good 
performance (Figure  5—figure supplement 2C). For every frame in our dataset, we had human 
labels, DeepEthogram predictions, and B-SoID cluster assignments. By looking at the joint distribu-
tions of B-SoID clusters and human labels, there appeared to be little correspondence (Figure 5—
figure supplement 2D). To assign human labels to B-SoID clusters, for each researcher-defined 
behavior, we picked the B-SoID cluster that had the highest overlap with the behavior of interest (red 
boxes, Figure 5—figure supplement 2D, right). We then evaluated these ‘predictions’ compared to 
DeepEthogram. For most behaviors, DeepEthogram performed better than this alternative pipeline 
(Figure 5—figure supplement 2E).

We note that the unsupervised clustering with post-hoc assignment of human labels is not the use 
for which B-SoID (Hsu and Yttri, 2019) and other unsupervised algorithms (Wiltschko, 2015; Berman 
et al., 2014) were designed. Unsupervised approaches are designed to discover repeated behavior 
motifs directly from data, without humans predefining the behaviors of interest (Datta et al., 2019; 
Egnor and Branson, 2016), and B-SoID succeeded in this goal. However, if one’s goal is the auto-
matic labeling of human-defined behaviors, our results show that DeepEthogram or other supervised 
machine learning approaches are better choices.

DeepEthogram requires little training data to achieve high 
performance
We evaluated how much data a user must label to train a reliable model. We selected 1, 2, 4, 8, 12, 
or 16 random videos for training and used the remaining videos for evaluation. We only required 
that each training set had at least one frame of each behavior. We trained the feature extractors, 
extracted the features, and trained the sequence models for each split of the data into training, vali-
dation, and test sets. We repeated this process five times for each number of videos, resulting in 30 
trained models per dataset. Given the large number of dataset variants for this analysis, to reduce 
overall computation time, we used DeepEthogram-fast and focused on only the Mouse-Ventral1, 
Mouse-Ventral2, and Fly datasets. Also, we trained the flow generator only once and kept it fixed for 
all experiments. For all but the rarest behaviors, the models performed at high levels even with only 
one labeled video in the training set (Figure 6A–C). For all the behaviors studied across datasets, 
the performance measured as accuracy or F1 score approached seemingly asymptotic levels after 
training on approximately 12 videos. Therefore, a training set of this size or less is likely sufficient for 
many cases.

We also analyzed the model’s performance as a function of the number of frames of a given 
behavior present in the training set. For each random split, dataset, and behavior, we had a wide 
range of the number of frames containing a behavior of interest. Combining all these splits, data-
sets, and behaviors together, we found that the model performed with more than 90%   accuracy 
when trained with only 80 example frames of a given behavior and over 95%   accuracy with only 
100 positive example frames (Figure 6D). Furthermore, DeepEthogram achieved an F1 score of 0.7 
with only 9000 positive example frames, which corresponds to about 5 min of example behavior at 
30 frames per second (Figure 6E, see Figure 3P for an example of ~0.7 F1 score). The total number 
of frames required to reach this number of positive example frames depends on how frequent the 
behavior is. If the behavior happens 50%  of the time, then 18,000 total frames are required to reach 
9000 positive example frames. Instead, if the behavior occurs 10%  of the time, then 90,000 total 
frames are required. In addition, when the sequence model was used instead of using the predictions 
directly from the feature extractors, model performance was higher (Figure 6F,G) and required less 
training data (data not shown), emphasizing the importance of using long timescale information in 
the prediction of behaviors. Therefore, DeepEthogram models require little training to achieve high 
performance. As expected, as more training data are added, the performance of the model improves, 
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Figure 6. DeepEthogram performance as a function of training set size. (A) Accuracy (top) and F1 score (bottom) for DeepEthogram-fast as a function 
of the number of videos in the training set for Mouse-Ventral1, shown for each behavior separately. The mean is shown across five random selections 
of training videos. (B, C) Similar to (A), except for the Mouse-Ventral2 dataset and Fly dataset. (D) Accuracy of DeepEthogram-fast as a function of the 
number of frames with the behavior of interest in the training set. Each point is one behavior for one random split of the data, across datasets. The 
black line shows the running average. For reference, 104 frames is ~5 min of behavior at 30 frames per second.(E) Similar to (D), except for F1 score. (F) 
Accuracy for the predictions of DeepEthogram-fast using the feature extractors only or using the sequence model. Each point is one behavior from one 
split of the data, across datasets, for the splits used in (D, E). (G) Similar to (F), except for F1 score.
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but this rather light dependency on the amount of training data makes DeepEthogram amenable for 
even small-scale projects.

DeepEthogram allows rapid inference time
A key aspect of the functionality of the software is the speed with which the models can be trained 
and predictions about behaviors made on new videos. Although the versions of DeepEthogram vary 
in speed, they are all fast enough to allow functionality in typical experimental pipelines. On modern 
computer hardware, the flow generator and feature extractors can be trained in approximately 24 hr. 
In many cases, these models only need to be trained once. Afterwards, performing inference to make 
predictions about the behaviors present on each frame can be performed at ~150 frames per second 
for videos at 256 × 256 resolution for DeepEthogram-fast, at 80 frames per second for DeepEthogram-
medium, and 13 frames per second for DeepEthogram-slow (Table 1). Thus, for a standard 30 min 
video collected at 60 frames per second, inference could be finished in 12 min for DeepEthogram-fast 
or 2 hr for DeepEthogram-slow. Importantly, the training of the models and the inference involve zero 
user time because they do not require manual input or observation from the user. Furthermore, this 
speed is rapid enough to get results quickly after experiments to allow fast analysis and experimental 
iteration. However, the inference time is not fast enough for online or closed-loop experiments.

A GUI for beginning-to-end management of experiments
We developed a GUI for labeling videos, training models, and running inference (Figure 7). Our GUI 
is similar in behavior to those for BORIS (Friard et al., 2016) and JAABA (Kabra et al., 2013). To train 
DeepEthogram models, the user first defines which behaviors of interest they would like to detect in 
their videos. Next, the user imports a few videos into DeepEthogram, which automatically calculates 
video statistics and organizes them into a consistent file structure. Then the user clicks a button to 
train the flow generator model, which occurs without user time. While this model is training, the user 
can go through a set of videos frame-by-frame and label the presence or absence of all behaviors in 
these videos. Labeling is performed with simple keyboard or mouse clicks at the onset and offset of 
a given behavior while scrolling through a video in a viewing window. After a small number of videos 
have been labeled and the flow generator is trained, the user then clicks a button to train the feature 
extractors, which occurs without user input and saves the extracted features to disk. Finally, the 
sequence model can be trained automatically on these saved features by clicking another button. All 
these training steps could in many cases be performed once per project. With these trained models, 
the user can import new videos and click the predict button, which estimates the probability of each 
behavior on each frame. This GUI therefore presents a single interface for labeling videos, training 
models, and generating predictions on new videos. Importantly, this interface requires no program-
ming by the end-user.

Table 1. Inference speed.

Dataset Resolution

Inference time (FPS)

Titan RTX Geforce 1080 Ti

DEG_f DEG_m DEG_s DEG_f DEG_m DEG_s

Mouse-Ventral1 256 × 256 235 128 34 152 76 13

Mouse-Ventral2 256 × 256 249 132 34 157 79 13

Mouse-Openfield 256 × 256 211 117 33 141 80 13

Mouse-Homecage 352 × 224 204 102 28 132 70 11

Mouse-Social 224 × 224 324 155 44 204 106 17

Sturman-EPM 256 × 256 240 123 34 157 83 13

Sturman-FST 224 × 448 157 75 21 106 51 9

Sturman-OFT 256 × 256 250 125 34 159 84 13

Flies 128 × 192 623 294 89 378 189 33

https://doi.org/10.7554/eLife.63377
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The GUI also includes an option for users to manually check and edit the predictions output by 
the model. The user can load into the GUI a video and predictions made by the model. By scrolling 
through the video, the user can see the predicted behaviors for each frame and update the labels of 
the behavior manually. This allows users to validate the accuracy of the model and to fix errors should 
they occur. This process is expected to be fast because the large majority of frames are expected 
to be labeled correctly, based on our accuracy results, so the user can focus on the small number 
of frames associated with rare behaviors or behaviors that are challenging to detect automatically. 

2. Train flow generator
automatically
4. Train feature extractors
automatically
5. Train sequence model
automatically

3. Label frames with each behavior with
keyboard/mouse clicks in scrollable 
video and ethogram viewer/labeler 

1. Load videos, define behaviors
Training DeepEthogram:

1. Load videos
Generating predictions on new videos:

2. Generate predictions
automatically

3. Optional: view and correct DeepEthogram 
predictions using video and ethogram viewer/labeler

A

B

Figure 7. Graphical user interface. (A) Example DeepEthogram window with training steps highlighted. (B) Example DeepEthogram window with 
inference steps highlighted.
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Importantly, these new labels can then be used to retrain the models to obtain better performance 
on future experimental videos. Documentation for the GUI will be included on the project’s website.

Discussion
We developed a method for automatically classifying each frame of a video into a set of user-defined 
behaviors. Our open-source software, called DeepEthogram, provides the code and user interface 
necessary to label videos and train DeepEthogram models. We show that modern computer vision 
methods for action detection based on pretrained deep neural networks can be readily applied to 
animal behavior datasets. DeepEthogram performed well on multiple datasets and generalized across 
videos and animals, even for identifying rare behaviors. Importantly, by design, CNNs ignore abso-
lute spatial location and thus are able to identify behaviors even when animals are in different loca-
tions and orientations within a behavioral arena (Figure 3—figure supplement 12). We anticipate 
this software package will save researchers great amounts of time, will lead to more reproducible 
results by eliminating inter-researcher variability, and will enable experiments that may otherwise not 
be possible by increasing the number of experiments a lab can reasonably perform or the number 
of behaviors that can be investigated. DeepEthogram joins a growing community of open-source 
computer vision applications for biomedical research (Datta et  al., 2019; Anderson and Perona, 
2014; Egnor and Branson, 2016).

The models presented here performed well for all datasets tested. In general, we expect the 
models will perform well in cases in which there is a high degree of agreement between separate 
human labelers, as our results in Figures 3–5 indicate. As we have shown, the models do better with 
more training data. We anticipate that a common use of DeepEthogram will be to make automated 
predictions for each video frame followed by rapid and easy user-based checking and editing of the 
labels in the GUI for the small number of frames that may be inaccurately labeled. We note that these 
revised labels can then be used as additional training data to continually update the models and thus 
improve the performance on subsequent videos.

One of our goals for DeepEthogram was to make it general-purpose and applicable to all videos 
with behavior labels. DeepEthogram operates directly on the raw video pixels, which is advantageous 
because preprocessing is not required and the researcher does not need to make decisions about 
which features of the animal to track. Skeleton-based action recognition models, in which keypoints 
are used to predict behaviors, require a consistent skeleton as their input. A crucial step in skeleton-
based action recognition is feature engineering, which means turning the x and y coordinates of 
keypoints (such as paws or joints) into features suitable for classification (such as the angle of specific 
joints). With different skeletons (such as mice, flies, or humans) or numbers of animals (one or more), 
these features must be carefully redesigned. Using raw pixel values as inputs to DeepEthogram allows 
for a general-purpose pipeline that can be applied to videos of all types, without the need to tailor 
preprocessing steps depending on the behavior of interest, species, number of animals, video angles, 
resolution, and maze geometries. However, DeepEthogram models are not expected to generalize 
across videos that differ substantially in any of these parameters. For example, models that detect 
grooming in top-down videos are unlikely to identify grooming in side-view videos.

Because DeepEthogram is a general-purpose pipeline, it will not perform as well as pipelines that 
are engineered for a specific task, arena, or species. For example, MARS was exquisitely engineered 
for social interactions between a black and white mouse (Segalin, 2020) and thus is expected to 
outperform DeepEthogram on videos of this type. Moreover, because DeepEthogram operates on 
raw pixels, it is possible that our models may perform more poorly on zoomed-out videos in which the 
animal is only a few pixels. Also, if the recording conditions change greatly, such as moving the camera 
or altering the arena background, it is likely that DeepEthogram will have to be retrained.

An alternate approach is to use innovative methods for estimating pose, including DeepLabCut 
(Mathis, 2018; Nath, 2019; Lauer, 2021), LEAP (Pereira, 2018b), and others (Graving et  al., 
2019), followed by frame-by-frame classification of behaviors based on pose in a supervised 
(Segalin, 2020; Nilsson, 2020; Sturman et al., 2020) or unsupervised (Hsu and Yttri, 2019) way. 
Using pose for classification could make behavior classifiers faster to train, less susceptible to 
overfitting, and less demanding of computational resources. Using pose as an intermediate feature 
could allow the user to more easily assess model performance. Depending on the design, such 
skeleton-based action recognition could aid multi-animal experiments by more easily predicting 

https://doi.org/10.7554/eLife.63377


 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Bohnslav et al. eLife 2021;0:e63377. DOI: https://​doi.​org/​10.​7554/​eLife.​63377 � 22 of 39

behaviors separately for each animal, as JAABA does (Kabra et al., 2013). While we demonstrated 
that DeepEthogram can accurately identify social interactions, it does not have the ability to track 
the identities of multiple mice and identify behaviors separately for each mouse. Furthermore, 
tracking keypoints on the animal gives valuable, human-understandable information for further 
analysis, such as time spent near the walls of an arena, distance traveled, and measures of velocity 
(Pennington, 2019; Sturman et al., 2020). In addition, specific aspects of an animal’s movements, 
such as limb positions and angles derived from keypoint tracking, can be directly related to each 
behavior of interest, providing an additional layer of interpretation and analysis of the behavior. 
DeepEthogram does not track parts of the animal’s body or position and velocity information, 
and instead it focuses only on the classification of human-defined behaviors. Finally, because 
DeepEthogram uses 11 frames at a time for inputs, as well as relatively large models, it is not easily 
applicable to real-time applications, such as the triggering of optogenetic stimulation based on 
ongoing behaviors.

DeepEthogram may prove to be especially useful when a large number of videos or behaviors 
need to be analyzed in a given project. These cases could include drug discovery projects or projects 
in which multiple genotypes need to be compared. Additionally, DeepEthogram could be used for 
standardized behavioral assays, such as those run frequently in a behavioral core facility or across 
many projects with standardized conditions. Importantly, whereas user time scales linearly with the 
number of videos for manual labeling of behaviors, user time for DeepEthogram is limited to only the 
labeling of initial videos for training the models and then can involve essentially no time on the user’s 
end for all subsequent movies. In our hands, it took approximately 1–3 hr for an expert researcher to 
label five behaviors in a 10 min movie from the Mouse-Openfield dataset. This large amount of time 
was necessary for researchers to scroll back and forth through a movie to mark behaviors that are 
challenging to identify by eye. If only approximately 10 human-labeled movies are needed for training 
the model, then only approximately 10–30 hr of user time would be required. Subsequently, tens of 
movies could be analyzed, across projects with similar recording conditions, without additional user 
time. DeepEthogram does require a fair amount of computer time (see Inference time above, Mate-
rials and methods); however, we believe that trading increasingly cheap and available computer time 
for valuable researcher effort is worthwhile. Notably, the use of DeepEthogram should make results 
more reproducible across studies and reduce variability imposed by inter-human labeling differences. 
Furthermore, in neuroscience experiments, DeepEthogram could aid identification of the starts and 
stops of behaviors to relate to neural activity measurements or manipulations.

Future extensions could continue to improve the accuracy and utility of DeepEthogram. First, 
DeepEthogram could be easily combined with an algorithm to track an animal’s location in an envi-
ronment (Pennington, 2019), thus allowing the identification of behaviors of interest and where those 
behaviors occur. Also, it would be interesting to use DeepEthogram’s optic flow snippets as inputs to 
unsupervised behavior pipelines, where they could help to uncover latent structure in animal behavior 
(Wiltschko, 2015; Berman et al., 2014; Batty, 2019). In addition, while the use of CNNs for clas-
sification is standard practice in machine learning, recent works in temporal action detection use 
widely different sequence modeling approaches and loss functions (Piergiovanni and Ryoo, 2018; 
Zeng, 2019; Monfort, 2020). Testing these different approaches in the DeepEthogram pipeline could 
further improve performance. Importantly, DeepEthogram was designed in a modular way to allow 
easy incorporation of new approaches as they become available. While inference is already fast, further 
development could improve inference speed by using low-precision weights, model quantization, 
or pruning. Furthermore, although our model is currently designed for temporal action localization, 
DeepEthogram could be extended by incorporating models for spatiotemporal action localization, in 
which there can be multiple actors (i.e., animals) performing different behaviors on each frame.

Materials and methods
DeepEthogram pipeline
Along with this publication, we are releasing open-source Python code for labeling videos, training all 
DeepEthogram models, and performing inference on new videos. The code, associated documenta-
tion, and files for the GUI can be found at https://​github.​com/​jbohnslav/​deepethogram.

https://doi.org/10.7554/eLife.63377
https://github.com/jbohnslav/deepethogram
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Implementation
We implemented DeepEthogram in the Python programming language (version 3.7 or later; Rossum 
et al., 2010). We used PyTorch (Paszke, 2018; version 1.4.0 or greater) for all deep-learning models. 
We used PyTorch Lightning for training (Falcon, 2019). We used OpenCV (Bradski, 2008) for image 
reading and writing. We use Kornia (Riba et al., 2019) for GPU-based image augmentations. We used 
scikit-learn (Pedregosa, 2021) for evaluation metrics, along with custom Python code. CNN diagram 
in Figure  1 was generated using PlotNeuralNet (Iqbal, 2018). Other figures were generated in 
Matplotlib (Caswell, 2021). For training, we used one of the following Nvidia GPUs: GeForce 1080Ti, 
Titan RTX, Quadro RTX6000, or Quadro RTX8000. Inference speed was evaluated on a computer 
running Ubuntu 18.04, an AMD Ryzen Threadripper 2950  X CPU, an Nvidia Titan RTX, an Nvidia 
Geforce 1080Ti, a Samsung 970 Evo hard disk, and 128 GB DDR4 memory.

Datasets
All experimental procedures were approved by the Institutional Animal Care and Use Committees 
at Boston Children’s Hospital (protocol numbers 17-06-3494R and 19-01-3809R) or Massachusetts 
General Hospital (protocol number 2018N000219) and were performed in compliance with the Guide 
for the Care and Use of Laboratory Animals.

For human-human comparison, we relabeled all videos for Mouse-Ventral1, Mouse-Ventral2, 
Mouse-Openfield, Mouse-Social, and Mouse-Homecage using the DeepEthogram GUI. Previous 
labels were not accessible during relabeling. Criteria for relabeling were written in detail by the orig-
inal experimenters, and example labeled videos were viewed extensively before relabeling. Mouse-
Ventral1 was labeled three times and the other datasets were labeled twice.

Videos and human annotations are available at the project website: https://​github.​com/​jbohnslav/​
deepethogram.

Kinetics700
To pretrain our models for transfer to neuroscience datasets, we use the Kinetics700 (Carreira et al., 
2019) dataset. The training split of this dataset consisted of 538,523 videos and 141,677,361 frames. 
We first resized each video so that the short side was 256 pixels. During training, we randomly cropped 
224 × 224 pixel images, and during validation, we used the center crop.

Mouse-Ventral1
Recordings of voluntary behavior were acquired for 14 adult male C57BL/6J  mice on the PalmReader 
device (Roberson et al., submitted). In brief, images were collected with infrared illumination and frus-
trated total internal reflectance (FTIR) illumination on alternate frames. The FTIR channel highlighted 
the parts of the mouse’s body that were in contact with the floor. We stacked these channels into an 
RGB frame: red corresponded to the FTIR image, green corresponded to the infrared image, and 
blue was the pixel-wise mean of the two. In particular, images were captured as a ventral view of mice 
placed within an opaque 18 cm long × 18 cm wide × 15 cm high chamber with a 5 -mm-thick borosili-
cate glass floor using a Basler acA2000-50gmNIR GigE near-infrared camera at 25 frames per second. 
Animals were illuminated from below using nonvisible 850 nm near-infrared LED strips. All mice were 
habituated to investigator handling in short (~5 min) sessions and then habituated to the recording 
chamber in two sessions lasting 2 hr on separate days. On recording days, mice were habituated in a 
mock recording chamber for 45 min and then moved by an investigator to the recording chamber for 
30 min. Each mouse was recorded in two of these sessions spaced 72 hr apart. The last 10 min of each 
recording was manually scored on a frame-by-frame basis for defined actions using a custom interface 
implemented in MATLAB. The 28 approximately 10 min videos totaled 419,846 frames (and labels) in 
the dataset. Data were recorded at 1000 × 1000 pixels and down-sampled to 250 × 250 pixels. We 
resized to 256 × 256 pixels using bilinear interpolation during training and inference.

Mouse-Ventral2
Recordings of voluntary behavior were acquired for 16 adult male and female C57BL/6J  mice. These 
data were collected on the iBob device. Briefly, the animals were enclosed in a device containing an 
opaque six-chambered plastic enclosure atop a glass floor. The box was dark and illuminated with 
only infrared light. Animals were habituated for 1 hr in the device before being removed to clean 

https://doi.org/10.7554/eLife.63377
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the enclosure. They were then habituated for another 30 min and recorded for 30 min. Recorded 
mice were either wild type or contained a genetic mutation predisposing them to dermatitis. Thus, 
scratching and licking behavior were scored. Up to six mice were imaged from below simultaneously 
and subsequently cropped to a resolution of 270 × 240 pixels. Images were resized to 256 × 256 
pixels during training and inference. Data were collected at 30 frames per second. There were 16 
approximately 30 min videos for a total of 863,232 frames.

Mouse-Openfield
Videos for the Mouse-Openfield dataset were obtained from published studies (Orefice, 2019; 
Orefice, 2016) and unpublished work (Clausing et al., unpublished). Video recordings of voluntary 
behavior were acquired for 20 adult male mice.

All mice were exposed to a novel empty arena (40 cm × 40 cm × 40 cm) with opaque plexiglass 
walls. Animals were allowed to explore the arena for 10 min, under dim lighting. Videos were recorded 
via an overhead-mounted camera at either 30 or 60 frames per second. Videos were acquired with 
2–4 mice simultaneously in separate arenas and cropped with a custom Python script such that each 
video contained the behavioral arena for a single animal. Prior to analysis, some videos were bright-
ened in FIJI (Schindelin, 2012), using empirically determined display range cutoffs that maximized the 
contrast between the mouse’s body and the walls of the arena. Twenty of the 10 min recordings were 
manually scored on a frame-by-frame basis for defined actions in the DeepEthogram interface. All 
data were labeled by an experimenter. The 20 approximately 10 min videos totaled 537,534 frames 
(and labels).

Mouse-Homecage
Videos for the mouse home cage behavior dataset were obtained from unpublished studies (Clausing 
et al., unpublished). Video recordings of voluntary behavior were acquired for 12 adult male mice. All 
animals were group-housed in cages containing four total mice. On the day of testing, all mice except 
for the experimental mouse were temporarily removed from the home cage for home cage behavior 
testing. For these sessions, experimental mice remained alone in their home cages, which measured 
28 cm × 16.5  cm × 12.5  cm and contained bedding and nesting material. For each session, two 
visually distinct novel wooden objects and one novel plastic igloo were placed into the experimental 
mouse’s home cage. Animals were allowed to interact with the igloo and objects for 10 min, under 
dim lighting. Videos were recorded via an overhead-mounted camera at 60 frames per second. Videos 
were acquired of two mice simultaneously in separate home cages. Following recordings, videos were 
cropped using a custom Python script such that each video contained the home cage for a single 
animal. Prior to analysis, all videos were brightened in FIJI48, using empirically determined display 
range cutoffs that maximized the contrast between each mouse’s body and the bedding and walls 
of the home cage. Twelve of the 10 min recordings were manually scored on a frame-by-frame basis 
for defined actions in the DeepEthogram interface. Data were labeled by two experimenters. The 12 
approximately 10 min videos totaled 438,544 frames (and labels).

Mouse-Social
Videos for the mouse reciprocal social interaction test dataset were obtained from unpublished studies 
(Clausing et al., unpublished; Dai et al., unpublished). Video recordings of voluntary behavior were 
acquired for 12 adult male mice. All mice were first habituated to a novel empty arena (40 cm × 40 cm 
× 40 cm) with opaque plexiglass walls for 10 min per day for two consecutive days prior to testing. 
For each test session, two sex-, weight-, and age-matched mice were placed into the same arena. 
Animals were allowed to explore the arena for 10 min under dim lighting. Videos were recorded via 
an overhead-mounted camera at 60 frames per second. Videos were acquired with 2–4 pairs of mice 
simultaneously in separate arenas. Following recordings, videos were cropped using a custom Python 
script, such that each video only contained the behavioral arena for two interacting animals. Prior to 
analysis, all videos were brightened in FIJI48 using empirically determined display range cutoffs that 
maximized the contrast between each mouse’s body and the walls of the arena. Twelve of the 10 min 
recordings were manually scored on a frame-by-frame basis for defined actions in the DeepEtho-
gram interface. Data were labeled by two experimenters. The 12 approximately 10 minvideos totaled 
438,544 frames (and labels).

https://doi.org/10.7554/eLife.63377
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Sturman datasets
All Sturman datasets are from Sturman et al., 2020. For more details, please read their paper. Videos 
were downloaded from an online repository (https://​zenodo.​org/​record/​3608658#.​YFt8-​f4pCEA). 
Labels were downloaded from GitHub (https://​github.​com/​ETHZ-​INS/​DLCAnalyzer, Lukas von, 
2021). We arbitrarily chose ‘Jin’ as the labeler for model training; the other labelers were used for 
human-human evaluation (Figures 4 and 5).

Sturman-EPM
This dataset consists of five videos. Only three contain one example of all behaviors. Therefore, we 
could only perform three random train-validation-test splits for this dataset (as our approach requires 
at least one example in each set). Images were resized to 256 × 256 during training and inference. 
Images were flipped up-down and left-right each with a probability of 0.5.

Sturman-FST
This dataset consists of 10 recordings. Each recording has two videos, one top-down and one side 
view. To make this multiview dataset suitable for DeepEthogram, we closely cropped the mice in each 
view, resized each to 224 × 224, and concatenated them horizontally so that the final resolution was 
448 × 224. We did not perform flipping augmentation.

Sturman-OFT
This dataset consists of 20 videos. Images were resized to 256 × 256 for training and inference. 
Images were flipped up-down and left-right with probability 0.5 during training.

Fly
Wild type DL adult male flies (D. melanogaster), 2–4 days post-eclosion were reared on a standard 
fly medium and kept on a 12 hr light-dark cycle at 25°. Flies were cold anesthetized and placed in a 
fly sarcophagus. We glued the fly head to its thorax and finally to a tungsten wire at an angle around 
60°  (UV cured glue, Bondic). The wire was placed in a micromanipulator used to position the fly on 
top of an air-suspended ball. Side-view images of the fly were collected at 200 Hz with a Basler A602f 
camera. Videos were down-sampled to 100 Hz. There were 19 approximately 30 min videos for a total 
of 3,419,943 labeled frames. Images were acquired at 168 × 100 pixels and up-sampled to 192 × 128 
pixels during training and inference. Images were acquired in grayscale but converted to RGB (cv2.
cvtColor, cv2.COLOR_GRAY2RGB) so that input channels were compatible with pretrained networks 
and other datasets.

Models
Overall setup
Problem statement
Our input features were a set of images with dimensions ‍

[
T, C, H, W

]
‍ , and our goal was to output the 

probability of each behavior on each frame, which is a matrix with dimensions ‍
[
T, K

]
‍ . ‍T ‍ is the number 

of frames in a video. ‍C‍ is the number of input channels – in typical color images, this number is 3 for 
the red, green, and blue (RGB) channels. ‍H, W ‍ are the height and width of the images in pixels. ‍K ‍ is 
the number of user-defined behaviors we aimed to estimate from our data.

Training protocol
We used the ADAM optimizer (Kingma and Ba, 2017) with an initial learning rate of 1 × 10–4 for all 
models. When validation performance saturated for 5000 training steps, we decreased the learning 
rate by a factor of 

‍
1√
10‍

 on the Kinetics700 dataset, or by a factor of 0.1 for neuroscience datasets (for 

speed), ‍5e − 7.‍ For Kinetics700, we used the provided train and validation split. For neuroscience 
datasets, we randomly picked 60%  of videos for training, 20%  for validation, and 20%  for test (with 
the exception of the subsampling experiments for Figure 5, wherein we only used training and valida-
tion sets to reduce overall training time). Our only restriction on random splitting was ensuring that at 
least one frame of each class was included in each split. We were limited to five random splits of the 
data for most experiments due to the computational and time demands of retraining models. We save 

https://doi.org/10.7554/eLife.63377
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both the final model weights and the best model weights; for inference, we load the best weights. 
Best is assessed by the minimum validation loss for flow generator models or the mean F1 across all 
non-background classes for feature extractor and sequence models.

Stopping criterion
For Kinetics700 models, we stopped when the learning rate dropped below 5e-7. This required about 
800,000 training steps. For neuroscience dataset flow generators, we stopped training at 10,000 
training steps. For neuroscience dataset feature extractors, we stopped when the learning rate 
dropped below 5e-7, when 20,000 training steps were complete, or 24 hr elapsed, whichever came 
first. For sequence models, we stopped when the learning rate dropped below 5e-7, or when 100,000 
training steps were complete, whichever came first.

End-to-end training
We could, in theory, train the entire DeepEthogram pipeline end-to-end. However, we chose to train 
the flow generator, feature extractor, and then sequence models sequentially. By backpropagating the 
classification loss into the flow generator (Zhu et al., 2017), we risk increasing the overall number of 
parameters and overfitting. Furthermore, we designed the sequence models to have a large temporal 
receptive window. We therefore train on long sequences (see below). Very long sequences of raw 
video frames take large amounts of VRAM and exceed our computational limits. By illustration, to 
train on sequences of, for example, 180 frame snippets of 11 images, our tensor would be of shape 
[N × 33 × 180 × 256 × 256]. This corresponds to 24 GB of VRAM at a batch size of 16, just for the 
data and none of the neural activations or gradients, which is impractical. Therefore, we first extract 
features to disk and subsequently train sequence models.

Augmentations
To improve the robustness and generalization of our models, we augmented the input images with 
random perturbations for all datasets during training. We used Kornia (Riba et al., 2019) for GPU-
based image augmentation to improve training speed. We perturbed the image brightness and 
contrast, rotated each image by up to 10° , and flipped horizontally and vertically (depending on the 
dataset). The input to the flow generator model is a set of 11 frames; the same augmentations were 
performed on each image in this stack. On Mouse-Ventral1 and Mouse-Ventral2, we also flipped 
images vertically with a probability of 0.5. We calculated the mean and standard deviation of the RGB 
input channels and standardized the input channel-wise.

Pretraining + transfer learning
All flow generators and feature extractors were first trained to classify videos in the Kinetics700 dataset 
(see below). These weights were used to initialize models on neuroscience datasets. Sequence models 
were trained from scratch.

Flow generators
For optic flow extraction, a common algorithm to use is TV-L1 (Carreira and Zisserman, 2017). 
However, common implementations of this algorithm (Bradski, 2008) require compilation of C++, 
which would introduce many dependencies and make installation more difficult. Furthermore, recent 
work (Zhu et  al., 2017) has shown that even simple neural-network-based optic flow estimators 
outperform TV-L1 for action detection. Therefore, we used CNN-based optic flow estimators. Further-
more, we found that saving optic flow as JPEG images, as is common, significantly degraded perfor-
mance. Therefore, we computed optic flows from a stack of RGB images at runtime for both training 
and inference. This method is known as Hidden Two-Stream Networks (Zhu et al., 2017).

Architectures
For summary, see Table 2.

TinyMotionNet
For every timepoint, we extracted features based on one RGB image and up to 10 optic flow frames. 
Furthermore, for large datasets like Kinetics700 (Carreira et al., 2019), it was time-consuming and 

https://doi.org/10.7554/eLife.63377
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required a large amount of disk space to extract and save optic flow frames. Therefore, we imple-
mented TinyMotionNet (Zhu et al., 2017) to extract 10 optic flow frames from 11 RGB images ‘on 
the fly,’ as we extracted features. TinyMotionNet is a small and fast optic flow model with 1.9 million 
parameters. Similar to a U-Net (Ronneberger et  al., 2015), it consists of a downward branch of 
convolutional layers of decreasing resolution and increasing depth. It is followed by an upward branch 
of increasing resolution. Units from the downward branch are concatenated to the upward branch. 
During training, estimated optic flows were output at 0.5, 0.25, and 0.125 of the original resolution.

MotionNet
MotionNet is similar to TinyMotionNet except with more parameters and more feature maps per layer. 
During training, estimated optic flows were output at 0.5, 0.25, and 0.125 of the original resolution. 
See the original paper (Zhu et al., 2017) for more details.

TinyMotionNet3D
This novel architecture is based on TinyMotionNet (Zhu et  al., 2017), except we replaced all 2D 
convolutions with 3D convolutions. We maintained the height and width of the kernels. On the 
encoder and decoder branches, we used a temporal kernel size of 3, meaning that each filter spanned 
three images. On the last layer of the encoder and the iconv layers that connect the encoder and 
decoder branches, we used a temporal kernel of 2, meaning the kernels spanned two consecutive 
images. We aimed to have the model learn the displacement between two consecutive images (i.e., 
the optic flow). Due to the large memory requirements of 3D convolutional layers, we used 16, 32, and 
64 filter maps per layer. For this architecture, we noticed large estimated flows in texture-less regions 
in neuroscience datasets after training on Kinetics. Therefore, we added a L1 sparsity penalty on the 
flows themselves (see ‘Loss functions,’ below).

Modifications
For the above models, we deviated from the original paper. First, each time the flows were up-sampled 
by a factor of 2, we multiplied the values of the neural activations by 2. If the flow size increased from 
0.25 to 0.5 of the original resolution, a flow estimate of 1 corresponds to four pixels and two pixels 
in the original image, respectively. To compensate for this distortion, we multiplied the up-sampled 
activations by 2. Secondly, when used in combination with the CNN feature extractors (see below), 
we did not compress the flow values to the discrete values between 0 and 255 (Zhu et al., 2017). In 
fact, we saw performance increases when keeping the continuous float32 values. Third, we did not 
backpropagate the classifier loss function into the flow generators as the neuroscience datasets likely 
did not have enough training examples to make this a sensible strategy. Finally, for MotionNet, we 
only output flows at three resolutions (rather than five) for consistency.

Loss functions
In brief, we train flow generators to minimize reconstruction errors and minimize high-frequency 
components (to encourage smooth flow outputs).

MotionNet loss
For full details, see original paper (Zhu et al., 2017). For clarity, we reproduce the loss functions here. 
We estimate the current frame given the next frame and an estimated optic flow as follows:

	﻿‍ Î0
(
i, j
)

= I1
(
i + Vx (i, j

)
, j + Vy (i, j

))
‍�

where ‍I0, I1‍ are the current and next image. ‍i, j‍ are the indices of the given pixel in rows and columns. 

‍V
x (i, j

)
, Vy (i, j

)
‍ are the estimated x and y displacements between ‍I0, I1‍ , which means ‍V ‍ is the optic 

flow. We use Spatial Transformer Networks (Jaderberg et al., 2015) to perform this sampling opera-
tion in a differentiable manner (PyTorch function ​torch.​nn.​functional.​grid_​sample).

The image loss is the error between the reconstructed ‍̂I0‍ and original ‍I0‍ .

	﻿‍ Lpixel = 1
N
∑N

i,j ρ (I0 − Î0)‍�
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where ‍ρ‍ is the generalized Charbonnier penalty 
‍
ρ
(
x
)

=
(

x2 + ϵ2
)
‍
 , which reduces the influence of 

outliers compared to a simple L1 loss. Following (Zhu et al., 2017), we use ‍α = 0.4, ϵ = 1e−7‍ .
The structural similarity (SSIM, Wang et al., 2004) loss encourages the reconstructed ‍̂I0‍ and orig-

inal ‍I0‍ to be perceptually similar:

	﻿‍
LSSIM = 1

N
∑

1 − SSIM
(

I0, Î0

)
‍�

The smoothness loss encourages smooth flow estimates by penalizing the ‍x‍ and ‍y‍ gradients of the 
optic flow:

	﻿‍ Lsmooth = 1
N
∑

ρ
(
∇Vx

x

)
+ ρ

(
∇Vx

x

)
+ ρ

(
∇Vy

x

)
+ ρ

(
∇Vy

y

)
‍�

We set the Charbonnier ‍α = 0.3‍.
For the TinyMotionNet3D architecture only, we added a flow sparsity loss that penalizes unneces-

sary flows:

	﻿‍ Lsparsity = 1
N
∑��V��‍�

Regularization
With millions of parameters and far fewer data points, it is likely that our models will overfit to the 
training data. Transfer learning (see above) ameliorates this problem somewhat, as does using dropout 
(see below). However, increasing dropout to very high levels reduces the representational space of the 
feature vector. To reduce overfitting, we used ‍L2SP‍ regularization (Li et al., 2018). A common form of 
regularization is weight decay, in which the sum of squared weights is penalized. However, this simple 
term could cause the model to ‘forget’ its initial knowledge from transfer learning. Therefore, ‍L2SP‍ 
regularization uses the initial weights from transfer learning as the target.

	﻿‍
Lregularization

(
w
)

= α
2

���ws − w0
s

���
2

2
+ β

2 ∥ws∥2
2 ‍�

For details, see the L2-SP paper (Li et al., 2018). ‍w‍ are all trainable parameters of the network, 
excluding biases and batch normalization parameters. ‍α‍ is a hyperparameter governing how much to 
decay weights towards their initial values (from transfer learning). ‍ws‍ are current model weights, and 

‍w0
s ‍ are their values from pre-training. ‍β‍ is a hyperparameter decaying new weights ‍ws‍ (such as the final 

linear readout layers in feature extractors) towards zero. For flow generator models, ‍α = 1e−5‍ . There 
are no new weights, so ‍β‍ is unused.

The final loss is the weighted sum of the previous components:

	﻿‍ Ldata = λ0Lpixel + λ1LSSIM + λ2Lsmooth + λ3Lsparsity + Lregularization‍�

Following Zhu et al., 2017, we set ‍λ0 = 1,λ1 = 1‍. During training, the flow generator’s output flows 
at multiple resolutions. From largest to smallest, we set ‍λ2‍ to be 0.01, 0.02, 0.04. For TinyMotion-
Net3D, we set ‍λ3‍ to 0.05 and reduced ‍λ2‍ by a factor of 0.25.

Feature extractors
The goal of the feature extractor was to model the probability that each behavior was present in the 
given frame of the video (or optic flow stack). We used two-stream CNNs (Zhu et al., 2017; Simonyan 
and Zisserman, 2014) to classify inputs from both RGB frames and optic flow frames. These CNNs 
reduced an input tensor from ‍

(
N, C, H, W

)
‍ pixels to ‍

(
N, 512

)
‍ features. Our final fully connected layer 

estimated probabilities for each behavior, with output shape ‍
(
N, K

)
‍ . Here, ‍N ‍ is the batch size. We 

trained these CNNs on our labels, and then used the penultimate ‍
(
N, 512

)
‍ spatial features or flow 

features as inputs to our sequence models (below).

Architectures
For summary, see Table 2. We used the ResNet (He et al., 2015; Hara et al., 2018) family of models 
for our feature extractors, one for the spatial stream and one for the flow stream. For DeepEthogram-
fast, we used ResNet18 with  ~11  million parameters. For DeepEthogram-medium, we used a 
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ResNet50 with ~23 million parameters. We added dropout (Hinton et al., 2012) layers before the 
final fully connected layer. For DeepEthogram-medium, we added an extra fully connected layer of 
shape ‍

(
2048, 512

)
‍ after the global average pooling layer to reduce the file size of stored features. For 

DeepEthogram-slow, we used a 3D ResNet34 (Hara et al., 2018) with ~63 million parameters. For 
DeepEthogram-fast and DeepEthogram-medium, these models were pretrained on ImageNet (Deng, 
2008) with three input channels (RGB). We stacked 10 optic flow frames, for 20 input channels. To 
leverage ImageNet weights with this new number of channels, we used the mean weight across all 
three RGB channels and replicated it 20 times (Wang et al., 2015). This was only performed when 
adapting ImageNet weights to Kinetics700 models to resolve the input-frame-number discrepancy; 
the user will never need to perform this averaging.

Loss functions
Our problem is a multi-label classification task. Each timepoint can have multiple positive examples. 
For example, if a mouse is licking its forepaw and scratching itself with its hindlimb, both ‘lick’ and 
‘scratch’ should be positive. Therefore, we used a focal binary loss (Lin et al., 2018; Marks, 2020). 
The focal loss is the binary cross-entropy loss, weighted by probability, to de-emphasize the loss for 
already well-classified examples and to encourage the model to ‘focus’ on misclassified examples. 
Combined with up-weighting rare, positive examples, the data loss function is

	﻿‍ Ldata =
∑

t,k wk

(
1 − p

)γ · yt,klog
(
p
(
k|xt

))
+ pγ

(
1 − yt,k

)
log

(
1 − p

(
k|xt

))
‍�

where ‍yt,k‍ is the ground truth label and was 1 if class ‍k‍ occurred at time ‍t‍, or otherwise was 0. ‍p
(
k|xt

)
‍ 

is our model output for class ‍k‍ at time ‍t‍. Note that for the feature extractor we only considered one 
timepoint at a time, so ‍t = 0‍. ‍γ‍ is a focal loss term (Lin et al., 2018); if ‍γ = 0‍, this equation is simply 
the weighted binary cross-entropy loss. The larger the ‍γ‍, the more the model down-weights correctly 
classified but insufficiently confident predictions. See the focal loss paper for more details (Lin et al., 
2018). We chose ‍γ = 1‍ for all feature extractor and sequence models for all datasets; see ‘Hyperpa-
rameter optimization’ section. We also use label smoothing (Müller et al., 2019), so that the target 
was 0.05 if ‍yt,k = 0‍ and 0.95 if ‍yt,k = 1‍. ‍wk‍ is a weight given to positive examples – note that there was 
no corresponding weight in the second term when our ground truth is 0. Intuitively, if we had a very 
rare behavior, we wanted to penalize the model more for an error on positive examples because there 
were so few examples of the behavior. We calculated the weight as follows:

	﻿‍
wk =

∑
i=1 : N yi,k∑

i=1 : N 1−yi,k

β

‍�

The numerator is the total number of positive examples in our training set, and the denominator is 
the total number of negative examples in our training set. ‍β‍ is a hyperparameter that we tuned manu-
ally. If ‍β = 1‍, positive examples were weighted fully by their frequency in the training set. If ‍β = 0‍, all 
training examples were weighted equally. By illustration, if only 1%  of our training set had a positive 
example for a given behavior, with ‍β = 1‍ our weight was 100 and with ‍β = 0‍ this ‍wk = 1.‍ We empirically 
found that with rare behaviors ‍β = 1‍ drastically increased the levels of false positives, while with ‍β = 0‍ 
many false negatives occurred. For all datasets, we set ‍β = 0.25‍. This ‍wk‍ argument corresponds to 
pos_weight in ​torch.​nn.​BCEWithLogitsLoss.

We used L2-SP regularization as above. For feature extractors, we used ‍α = 1e−5‍ and ‍β = 1e−3
‍ . 

See ‘Hyperparameter optimization’ section.
The final loss term is the sum of the data term and the regularization term:

	﻿‍ L = Ldata + Lregularization‍�

Bias initialization
To combat the effects of class imbalance, we set the bias parameters on the final layer to approximate 
the class imbalance (https://www.​tensorflow.​org/​tutorials/​structured_​data/​imbalanced_​data). For 
example, if we had 99 negative examples and 1 positive example, we wanted to set our initial biases 
such that the model guessed ‘positive’ around 1%  of the time. Therefore, we initialized the bias term 
as the log ratio of positive examples to negative examples:

https://doi.org/10.7554/eLife.63377
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	﻿‍
bk = loge

∑
i=1 : N yi,k∑

i=1 : N 1−yi,k ‍�

Fusion
There are many ways to fuse together the outputs of the spatial and motion stream in two-stream 
CNNs (Feichtenhofer et al., 2016). For simplicity, we used late, average fusion. We averaged together 
the K-dimensional output vectors of the CNNs before the sigmoid function:

	﻿‍
p
(
K|xt

)
= σ

(
fspatial

(
xt
)

+fmotion
(

xt
)

2

)
‍�

Inference time
To improve inference speed, we use a custom inference video pipeline that uses only sequential 
video reading, batched model predictions, and multiprocessed data loading. Inference speed time is 
strongly related to input resolution and GPU hardware. We report timing on both a Titan RTX graphics 
card and a GeForce 1080 Ti graphics card.

Sequence models
Architecture
For summary, see Table 2. The goal of the sequence model was to have a wide temporal receptive 
field for classifying timepoints into behaviors. For human labelers, it is much easier to classify the 
behavior at time ‍t‍ by watching a short clip centered at ‍t‍ rather than viewing the static image. There-
fore, we used a sequence model that takes as input a sequence of spatial features and flow features 
output by the feature extractors. Our criteria were to find a model that had a large temporal receptive 
field as context can be useful for classifying frames. However, we also wanted a model that had rela-
tively few parameters as this model was trained from scratch on small neuroscience datasets. There-
fore, we chose TGM (Piergiovanni and Ryoo, 2018) models, which are designed for temporal action 
detection. Unless otherwise noted, we used the following hyperparameters:

•	 Filter length:‍L = 15‍
•	 Number of input layers:‍C = 1‍
•	 Number of output layers:‍Cout = 8‍
•	 Number of TGM layers: 3
•	 Input dropout: 0.5
•	 Dropout of output features: 0.5
•	 Input dimensionality (concatenation of flow and spatial):‍D = 1024‍
•	 Number of filters: 8
•	 Sequence length: 180
•	 Soft attention, not 1D convolution
•	 We do not use super-events
•	 For more details, see Piergiovanni and Ryoo, 2018.

Modifications
TGM models use two main features to make the final prediction: the ‍

[
T, D

]
‍ input features (in our 

case, spatial and flow features from the feature extractors); and the ‍
[
T, D

]
‍ learned features output 

by the TGM layers. The original TGM model performed ‘early fusion’ by concatenating these two 
features into shape ‍

[
T, 2D

]
‍ before the 1D convolution layer. We found in low-data regimes that the 

model ignored the learned features, and therefore reduced to a simple 1D convolution. Therefore, we 
performed ‘late fusion’ – we used separate 1D convolutions on the input features and on the learned 
features. We averaged the output of these two layers (both ‍

[
T, K

]
‍ activations before the sigmoid 

function). Secondly, in the original TGM paper, the penultimate layer was a standard 1D convolutional 
layer with 512 output channels. We found that this dramatically increased the number of parameters 
without improving performance significantly. Therefore, we reduced output channels to 128. The total 
number of parameters was ~264,000.

https://doi.org/10.7554/eLife.63377
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Loss function
The data loss term is the weighted, binary focal loss as for the feature extractor above. For the regu-
larization loss, we used simple L2 regularization because we do not pretrain the sequence models.

	﻿‍ Lregularization

(
w
)

= α
2 ∥ws∥2

2 ‍�

We used ‍α = 0.01‍ for all datasets.

Keypoint-based classification
We compared pixel-based (DeepEthogram) and skeleton-based behavioral classification on the 
Mouse-Openfield dataset. Our goal was to replicate Sturman et al., 2020 as closely as possible. We 
chose this dataset because videos with this resolution of mice in an open field arena are a common form 
of behavioral measurement in biology. We first used DeepLabCut (Mathis, 2018) to label keypoints 
on the mouse and train pose estimation models. Due to the low resolution of the videos (200–300 
pixels on each side), we could only reliably estimate seven keypoints: nose, left and right forepaw (if 
visible, or shoulder area), left and right hindpaw (if visible, or hip area), the base of the tail, and the 
tip of the tail. See Figure 5—figure supplement 1A for details. We labeled 1800 images and trained 
models using the DeepLabCut Colab notebook (ResNet50). Example performance on held-out data 
for unlabeled frames can be seen in Figure 5—figure supplement 1B. We used linear interpolation 
for keypoints with confidence below 0.9.

Using these seven keypoints for all videos, we computed a number of pose and behavioral features 
(Python, NumPy). As a check, we plotted the distribution of these features for each human-labeled 
behavior (Figure 5—figure supplement 1C). These features contained signal that can reliably discrim-
inate behaviors. For example, the distance between the nose and the tailbase is larger during locomo-
tion than during face grooming (Figure 5—figure supplement 1C, left).

We attempted to replicate Sturman et al., 2020 as closely as possible. However, due to technical 
considerations, using the exact codebase was not possible. Our dataset is multilabel, meaning that 
two behaviors can present, and be labeled, on a single frame. Therefore, we could not use cross-
entropy loss. Our videos are lower resolution, and therefore we used seven keypoints instead of 10. 
We normalized pixels by the width and height of the arena. We computed the centroid as the mean 
of all paw locations. Due to the difference in keypoints we selected, we had to perform our own 
behavioral feature expansion. (See ‘Time-resolved skeleton representation,’ Sturman et  al., 2020 
supplementary methods.) We used the following features:

•	 x and y coordinates of all keypoints in the arena
•	 x and y coordinates after aligning relative to the body axis, such that the nose was to the right 

and the tailbase to the left
•	 Angles between

•	 tail and body axis
•	 each paw and the body axis

•	 Distances between
•	 nose and tailbase
•	 tail base and tip
•	 left forepaw and left hindpaw, right forepaw and hindpaw, averaged
•	 forepaw and nose
•	 left and right forepaw
•	 left and right hindpaw

•	 The area of the body (polygon enclosed by the paws, nose, and tailbase)

This resulted in 44 behavioral features for each frame. Following Sturman et al., we used T-15 
frames to T + 15 frames as input to our classifier, which is 1364 features in total (44 * 31). We also used 
the same model architecture as Sturman et al.: a multilayer perceptron with 1364 neurons in the input 
layer, two hidden layers with 256 and 128 neurons, respectively, and ReLU activations. For simplicity, 
we used Dropout (Srivastava et al., 2014) with probability 0.35 between each layer.

To make the comparison as fair as possible, we implemented training tricks from DeepEthogram 
sequence models to train these keypoint-based models. These include the loss function (binary focal 
loss with up-weighting of rare behaviors), the stopping criterion (100 epochs or when learning rate 
reduces below 5e-7), learning rate scheduling based on validation F1 saturation, L2 regularization, 

https://doi.org/10.7554/eLife.63377
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thresholds optimized based on F1, postprocessing based on bout length statistics, and inference 
using the best weights during training (as opposed to the final weights).

Unsupervised classification
To compare DeepEthogram to unsupervised classification, we used B-SoID (Hsu and Yttri, 2019; 
version 2.0, downloaded January 18, 2021). We used the same DeepLabCut outputs as for the super-
vised classifiers. We used the Streamlit GUI for feature computation, UMAP embedding, model 
training, and classification. Our Mouse-Openfield dataset contained videos with a mixture of 30 and 
60 frames-per-second videos. The B-SoID app assumed constant framerates; therefore, we down-
sampled the poses from 60 Hz to 30  Hz, performed all embedding and classification, and then 
up-sampled classified behaviors back to 60  Hz using nearest-neighbor up-sampling (PyTorch, see 
Figure 5—figure supplement 2A). B-SoID identified 11 clusters in UMAP space (Figure 5—figure 
supplement 2B, left). To compare unsupervised with post-hoc assignment to DeepEthogram, we 
first computed a simple lookup table that mapped human annotations to B-SoID clusters by counting 
the frames on which they co-occurred (Figure 5—figure supplement 2D). For each human label, we 
picked the B-SoID cluster with the maximum number of co-occurring labels; this defines a mapping 
between B-SoID clusters and human labels. We used this mapping to ‘predict’ human labels on the 
test set (Figure 5—figure supplement 2E). We compared B-SoID to the DeepEthogram-fast model 
for a fair comparison as B-SoID inference is relatively fast.

Hyperparameter optimization
There are many hyperparameters in DeepEthogram models that can dramatically affect performance. 
We optimized hyperparameters using Ray Tune (Liaw, 2018), a software package for distributed, asyn-
chronous model selection and training. Our target for hyperparameter optimization was the F1 score 
averaged over classes on the validation set, ignoring the background class. We used random search to 
select hyperparameters, and the Asynchronous Successive Halving algorithm (Li, 2020) to terminate poor 
runs. We did not perform hyperparameter optimization on flow generator models. For feature extractors, 
we optimized the following hyperparameters: learning rate, ‍α‍ and ‍β‍ from the regularization loss, ‍γ‍ from 
the focal loss, ‍β‍ from the positive example weighting, whether or not to add a batch normalization layer 
after the final fully connected layer (Kocaman et al., 2020), dropout probability, and label smoothing. For 
sequence models, we optimized learning rate, regularization ‍α‍, ‍γ‍ from the focal loss, ‍β‍ from the positive 
example weighting, whether or not to add a batch normalization layer after the final fully connected layer 
(Kocaman et al., 2020), input dropout probability, output dropout probability, filter length, number of 
layers, whether or not to use soft attention (Piergiovanni and Ryoo, 2018), whether or not to add a 
nonlinear classification layer, and number of features in the nonlinear classification layer.

The absolute best performance could have been obtained by picking the best hyperparameters for 
each dataset, model size (DeepEthogram-f, DeepEthogram-m, or DeepEthogram-s), and split of the 
data. However, this would overstate performance for subsequent users that do not have the computa-
tional resources to perform such an optimization themselves. Therefore, we manually selected hyper-
parameters that had good performance on average across all datasets, models, and splits, and used 
the same parameters for all models. We will release the Ray Tune integration code required for users 
to optimize their own models, should they choose.

We performed this optimization on the O2 High Performance Compute Cluster, supported by the 
Research Computing Group, at Harvard Medical School. See http://​rc.​hms.​harvard.​edu for more infor-
mation. Specifically, we used a cluster consisting of 8 RTX6000 GPUs.

Postprocessing
The output of the feature extractor and sequence model is the probability of behavior ‍k‍ occurring on frame 
‍t‍: ‍pt,k = f

(
xt,k

)
‍ . To convert these probabilities into binary predictions, we thresholded the probabilities:

	﻿‍ ŷt,k = pt,k > τk‍�

https://doi.org/10.7554/eLife.63377
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We picked the threshold ‍τk‍ for each behavior ‍k‍ that maximized the F1 score (below). We picked 
the threshold independently on the training and validation sets. On test data, we used the validation 
thresholds.

We found that these predictions overestimated the overall number of bouts. In particular, very 
short bouts were over-represented in model predictions. For each behavior k, we removed both ‘posi-
tive’ and ‘negative’ bouts (binary sequences of 1 s and 0 s, respectively) shorter than the first percen-
tile of the bout length distribution in the training set.

Finally, we computed the ‘background’ class as the logical not of the other predictions.

Evaluation and metrics
We used the following metrics: overall accuracy, F1 score, and the AUROC by class. Accuracy was 
defined as

	﻿‍ Accuracy = TP+TN
TP+TN+FP+FN ‍�

where ‍TP‍ is the number of true positives, ‍TN ‍ is the number of true negatives, ‍FP‍ is the number of 
false positives, and ‍FN ‍ is the number of false negatives. We reported overall accuracy, not accuracy 
for each class.

F1 score was defined as

	﻿‍ F1 = 1
K
∑K

k=1 2 precision·recall
precision+recall‍�

where ‍precision = TP
TP+FP‍ and ‍recall = TP

TP+FN ‍ . The above was implemented by sklearn.metrics.f1_
score with argument average=’macro’.

AUROC was computed by taking the AUROC for each class and averaging the result. This was 
implemented by sklearn.metrics.roc_auc_score with argument average=’macro’.

Shuffle
To compare model performance to random chance, we performed a shuffling procedure. For each 
model and random split, we randomly circularly permuted each video’s labels 100 times. This means 
that the distribution of labels was kept the same, but the correspondence between predictions and 
labels was broken. For each of these 100 repetitions, we computed all metrics and then averaged 
across repeats; this results in one chance value per split of the data (gray bars, Figure 3C–K, Figure 3—
figure supplement 1B–J, Figure 3—figure supplement 2B–J, Figure 3—figure supplement 3B–J).

Statistics
We randomly assigned input videos to train, validation, and test splits (see above). We then trained 
flow generator models, feature extractor models, performed inference, and trained sequence models. 
We repeated this process five times for all datasets. For Sturman-EPM, because only three videos had 
at least one behavior, we split this dataset three times. When evaluating DeepEthogram performance, 
this results in N = 5 samples. For each split of the data, the videos in each subset were different; the 
fully connected layers in the feature extractor were randomly initialized with different weights; and 
the sequence model was randomly initialized with different weights. When comparing the means of 
multiple groups (e.g., shuffle, DeepEthogram, and human performance for a single behavior), we used 
a one-way repeated measures ANOVA, with subjects being splits. If this was significant, we performed 
a post-hoc Tukey’s honestly significant difference test to compare means pairwise. For cases in which 
only two groups were being compared (e.g., model and shuffle without human performance), we 
performed paired t-tests with Bonferroni correction.
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