
1 Department of Medicine, Cedars鄄  Sinai Medical 
Center, Los Angeles, CA 90048, USA; 2 Department of Pathology, 
University of Illinois at Chicago, Chicago, IL 62269, USA; 3 National 
Cancer Institute and Cancer Institute of Singapore, Singapore 119074, 
Singapore. 

Yunguang Tong, Davis Building, Room 2015 
8700 Beverly Blvd, Los Angeles, CA 90048, USA. Tel: +1鄄  310鄄  423鄄  7669; 
Fax: +1鄄  310鄄  423鄄  0221; Email: tongy@cshs.org. 

10.5732/cjc.011.10041 

Chinese Anti鄄  Cancer A ssociation CACA 

Chinese Journal of Cancer 

www.cjcsysu.com 

Yunguang Tong 1 , Wancai Yang 2 and H. Phillip Koeffler 1,3 

Abstract 
Colorectal cancer is one of the most common malignancies in the world. Many mouse models have 

been developed to evaluate features of colorectal cancer in humans. These can be grouped into 
genetically鄄  engineered, chemically鄄  induced, and inoculated models. However, none recapitulates all of the 
characteristics of human colorectal cancer. It is critical to use a specific mouse model to address a 
particular research question. Here, we review commonly used mouse models for human colorectal cancer. 
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Colorectal cancer is the third most common 
malignancy in the world. In the United States, colorectal 
cancer is the fourth most commonly diagnosed cancer 
and the second leading cause of cancer­related death [1] . 
The development of colorectal cancer is a process 
sequentially acquiring a number of genetic changes in 
normal epithelium, which enables precancerous cells to 
develop into an adenomatous polyp and progress into an 
invasive tumor (Figure 1)  [2] . Inactivation of the 
adenomatous polyposis coli (  ) gene and activation 
of the  proto­oncogene are two early events of 
colorectal tumorigenesis  [3,4] . Germline mutation of the 

gene causes the familial adenomatous polyposis 
(FAP) syndrome. However, lesions exhibiting 
mutation without  alteration result mostly in 
non­dysplastic lesions with limited potential to progress 
to carcinoma [5] . The next step in progression from 
adenoma to carcinoma is the loss of heterozygosity of 
chromosome 18q, which contains candidate tumor 
suppressor genes including  ,  and  [6] . 
Mutation of  on chromosome 17q appears to be a 
late­stage event [2] . Some genetic changes do not affect 
the cell biology of the tumor but instead result in loss of 
genomic stability. As evidenced in patients with 
hereditary non­polyposis colorectal cancer (HNPCC), 

loss of DNA mismatch repair (MMR) genes leads to 
microsatellite instability (MSI) and early­onset colorectal 
tumors [7,8] . In addition to MSI, colorectal cancer can 
develop chromosomal instability (CIN), which also occurs 
relatively early in tumor evolution [8­12] . 

The laboratory mouse is one of the best model 
systems in biomedical research because of the 
availability of genetic/genomic information on individual 
murine lines and techniques to construct transgenic and 
knockout mice. Many mouse models for colorectal 
cancer have been generated and can be grouped as 
genetically­engineered, chemically­induced, and 
inoculated models. As none of these models recapitulate 
the process of colorectal cancer development in its 
entirety, it is important to use a specific model to 
address a particular scientific question. Here, we review 
commonly used mouse models for human colorectal 
cancer (Table 1). 

Mouse Models for Familial Adenoma鄄  
tous Polyposis (FAP) 

FAP is a hereditary disease with high penetrance 
that causes numerous polyps throughout the colon and 
rectum. Human  gene is commonly deleted in many 
kindreds with FAP [13,14] .  functions as a tumor 
suppressor to down­regulate the canonical WNT 
signaling pathway by binding to and promoting the 
degradation of 茁  ­catenin protein [15] . Loss of  impairs 
茁  ­catenin degradation [15,16] . The accumulated 茁  ­catenin 
moves to the nucleus, where it activates TCF/LEF 
transcription factors that transactivate Wnt­targeted 
genes [17] . Activation of the canonical WNT pathway is a 
key event in colorectal tumorigenesis [18] . 

Review 

450



Chin J Cancer; 2011; Vol. 30 Issue 7 www.cjcsysu.com 

Human disease 

FAP 

HNPCC 

Inflammation鄄  related 
colorectal cancer 

Sporadic colorectal 
cancer 

Metastatic colorectal 
cancer 

Mouse model 

Apc mutants or 茁  鄄  catenin transgenic 
mice 
Msh2 -/- , Msh6 -/- , and Mlh1 -/- mice 

DSS鄄  induced mouse models 

IL10 -/- , IL2 -/- , T鄄  cell receptor -/- /p53 -/- 

or TGF鄄  1 -/- /Rag鄄  2 -/- 

Muc2 -/- 

Carcinogen鄄  induced mouse model 

Cre adenovirus鄄  mediated Apc 
inactivation 
Orthotopic inoculation model 

Intrasplenic inoculation model 

Intraportal inoculation model 

Intrahepatic inoculation model 

Advantages and disadvantages 

Mimic APC mutation in human. However, most tumors located in the small 
intestine. Tumors are not metastatic. 
Mimic MMR deficiency in human. However, MMR鄄  deficient mice develop tumors 
in other organs. The colonic tumors are not metastatic. 
Easy and reproducible. Tumor incidence is low. AOM/DSS combination produces 
more tumors at earlier time point. 
Tumor incidence is low. Requires the involvement of enteric microflora. 

High incidence of colon and rectal tumors. Early development of rectal prolapse 
reduces life span. 
Easy and reproducible. DMH/AOM/MAM have relatively high colorectal tumor 
incidence. IQ, PhIP, DMAB, MNNG or MNU target multiple organs and exhibit a 
low tumor incidence. The tumors are not metastatic. 
Require surgical procedures. Results are reproducible. Develop metastasis in 
~20% of animals. 
Mimics colon tumor invasion, vascular spread, and metastasis to distal organ. 
Metastasis rates depend on cell lines and rodent strains. 
Reproducible and mimics vascular spread of colorectal cancer. Metastasis rates 
depend on cell lines and rodent strains. 
Mimics vascular spread of colorectal cancer metastasis and theoretically limits 
tumor growth predominantly to the liver. Metastasis rates depend on cell lines 
and rodent strains. 
Model is reproducible but does not mimic the generally accepted hypothesis of 
hematogenous spread of colorectal cancer. 

FAP, familial adenomatous polyposis; HNPCC, hereditary nonpolyposis colorectal cancer; MMR, mismatch repair; DSS, dextran sulfate sodium; MAM, 
methylazoxymethanol; DMH, 1,2鄄  dimethylhydrazine; AOM, azoxymethane; PhIP, 2鄄  amino鄄  1鄄  methyl鄄  6鄄  phenylimidazo[4,5鄄  b]pyridine; IQ, 2鄄  amino鄄  33鄄  methylimidazo 
[4,5鄄  f] quinoline; DMAB, 3,2忆鄄  dimethyl鄄  4鄄  aminobiphenyl; MNU, methylnitrosourea; MNNG, N鄄  methyl鄄  N忆鄄  nitro鄄  N鄄  nitrosoguanidine. 

Figure 1. 
Inactivation of the adenomatous polyposis coli (APC) gene and 

activation of 茁  鄄  catenin are early events of colorectal tumorigenesis. Activation of the K鄄  Ras and B鄄  Raf proto鄄  oncogenes promotes tumorigenesis. The next step 
in progression from adenoma to carcinoma is the loss functions of candidate tumor suppressor genes including SMAD4/TGFBR2 and CDC4. Mutation of p53/ 
BAX and IGF2R appears to be a late鄄  stage event. Some genetic changes do not affect the cell biology of the tumor but instead result in loss of genomic 
stability. For example, colorectal cancer can develop chromosomal instability (CIN), which also occurs relatively early in tumor evolution. Loss of DNA mismatch 
repair (MMR) genes leads to microsatellite instability (MSI) and early鄄  onset colorectal tumors. ACF, aberrant crypt foci. 
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The first murine  gene mutation, named  Min 

(multiple intestinal neoplasia), was identified in a colony 
of mice following random mutagenesis [19] . This mutation 
is a truncating mutation at codon 850 of the  gene [20] . 
Homozygote  Min  mice are embryonic lethal, whereas 
heterozygote  Min  mice on a C57BL/6 background 
typically develop ~30 polyps, the majority of which occur 
in the small intestine [19,21] . Using homologous recombination 
in embryonic stem cells, several additional  mutants 
have been constructed:  Δ 716 , which contains a 
truncating mutation at codon 716  [22] ;  1638N , which 
contains a neomycin insertion in exon 15 that produces a 
truncating mutation at codon 1638;  1638T , which 
contains a hygromycin insertion in exon 15 resulting in a 
truncating mutation at codon 1638  [23] ;  Δ 14 , which 
contains a frameshift at codon 580 [24] ;  1309 , which 
contains a frameshift at codon 1309 [25] ;  Δ 580 , which 
contains a frameshift at codon 580 and a truncation at 
codon 605 [26] ; and  Δ 474 , which contains a frameshit at 
codon 474 [27] . The polyp adenomas of these  ­mutant 
mice are histologically indistinguishable from each other, 
but the number of polyps developed is very different, 
even in the same C57BL/6J background. The  Δ 716 

mouse develops ~300 polyps, Apc 1638N  mouse develops 
~3,  Δ 14 mouse develops ~65,  1309 mouse develops 
~35,  Δ 580  mouse develops ~120, and  Δ 474  mouse 
develops ~30 [16] . Similar to Apc Min  mice, these mutant 
mice primarily develop polyps in the small intestine. 
Comparing to Apc Min  mice, despite the significant 
increase in polyps in the small intestine, there is no 
increase in polyps in the colon in mice with some Apc 
mutants, such as  Δ 716 . In addition to early onset of 
gastrointestinal tumors,  Min  mice show progressive 
loss of immature and mature thymocytes from ~80 days 
of age, with complete regression of the thymus by 120 
days [28] . Also, splenic natural killer cells, immature B 
cells, and B progenitor cells are depleted in the bone 
marrow.  Min  mice have perturbations in ammonia 
metabolism in the liver [29] . Circulating interferon­6 (IL­6) 
increases 10­fold, causing severe cachexia as 
exemplified by loss of muscle weight and fat tissues [30] . 
Due to these complications, most  ­mutant mice die 
young (4 to 5 months). 

Additional mouse models have been developed to 
test genes affecting tumorigenesis in mice with 
mutations.  mutations are very common in 
colorectal cancers. Constitutively active mutant 
(  ) promotes colorectal tumor development in 

­heterozygous mice. Adenocarcinomas expressing 
invariably exhibit uniform high­grade dysplasia 

throughout the gut, but this does not occur in mice 
expressing wild­type  [31] . Mice that are homozygous 
for the  conditional knockout (CKO) allele and 
heterozygous for a latent activated allele of 
(  tm4tyj/+ ) develop advanced tumors and eventually 

form liver metastasis [32] . COX­2 is expressed in early 
stage of polyp formation [33] . Knockout of  gene 
(  ) in  Δ 716 mice dramatically reduces the number 
and size of polyps in these compound mutant mice [33,34] . 
Mutation in the  gene in  Δ 716  mice results in 
most polyps occurring in the colon [35] .  ­mutant mice 
exhibit an increased frequency of loss of heterozygosity 
(LOH) of the  gene due to chromosomal instability, 
which may result from activation of the mTOR pathway 
and acceleration of the G 1  to S phase transition in the 
cell cycle. Introduction of a  R1+/­  mutation into  Min 

mice causes a 10­fold increase in the number of colonic 
tumors compared to  Min  mice  [36] . Both  ­ and 

­mutant mice exhibit a higher rate of genomic 
instability [35,36] , making them good models for prevention 
and treatment of colon cancers with chromosomal 
instability. Introduction of  mutation into  Δ 716 

polyposis mice results in locally invasive malignant 
adenocarcinomas without metastasis [37] . The histopatho­ 
logic manifestations are similar to human right­sided 
colon cancer, which is associated with mutations in the 
type II receptor of transforming growth factor (TGF)­茁  . 
Consistently, homozygous disruption of the type II 
receptor of the  gene (  ) in  1638N  mice 
causes malignant transformation of the intestinal 
adenomas induced by  mutation [38] . Inactivation of 
cyclin­dependent kinase inhibitors (CDKI)  and 
significantly enhances intestinal tumorigenesis in the 

1638N  mice  [39,40] . These  1638N  compound mouse 
models highlight the importance of  , but not  , in 
colon cancer prevention by non­steroidal anti­ 
inflammatory drugs (NSAID)  [39,40] .  Min  mice with 
heterozygous disruption of  develop invasive 
carcinomas that are large, making this a good animal 
model for studying persistent activation of the 
phosphatidylinositol 3­kinase/Akt pathway in colorectal 
cancer [41] . Recently, mutation of  in  Min mice has 
been reported to promote progression of colon adenoma 
to cancer [42] , suggesting that this model could be useful 
to study tumor progression. 

Hereditary Non鄄  polyposis Colorectal 
Cancer (HNPCC) Models 

HNPCC (Lynch syndrome) is one of the most 
prevalent malignancies in the western world and 
accounts for about 5% of all colorectal cancers. Patients 
with HNPCC develop early­onset tumors in the colon and 
rectum, and a subset of patients also develop tumors in 
the stomach, small intestine, ovaries, and endometrium [43] . 
Patients with HNPCC carry a mutant allele of the DNA 
MMR genes, such as  ,  , and  [44­46] . 
Upon mutation of the wild­type allele by somatic events, 
the cells become MMR­deficient, and their genomic DNA 
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displays increased rates of replication errors at short 
repeat sequences, which is termed microsatellite 
instability (MSI) [47­49] . 

Heterozygous  ,  , and  knockout mice 
do not develop early­onset tumors, but homozygous 

,  , and  knockout mice are cancer­prone, 
developing tumors in multiple organs including the 
gastrointestinal tract. These homozygous knockout mice 
die prematurely due to aggressive lymphomas, which are 
very similar to patients with biallelic mismatch repair 
mutations [50,51] . These phenotypes in humans and mice 
suggest that the basic mechanisms of DNA repair and 
tumor suppression are conserved. 

murine cells are unable to repair single­base 
mismatches and 1­ to 4­base insertion/deletion loops 
(IDLs). The loss of MMR in these mice causes a severe 
reduction in survival and a strong cancer predisposition 
phenotype [52,53] . Most  mice die from T­cell lymphomas 
by 6 to 8 months, and those that survive often develop 
small intestinal adenomas and invasive 
adenocarcinomas. Similar to tumors in patients with 
HNPCC, the tumors in  mice have high MSI [53] . To 
avoid early death caused by tumorigenesis in other 
organs, conditional  knockout mice, in which 
intestine­specific gene inactivation is permitted, have 
been generated using either  or  . 
These mice develop tumors that highly mimic tumors 
developed by patients with Lynch syndrome, which make 
the mice useful preclinical models [54] . 

­deficient mice survive longer (up to 18 
months) and develop tumors at an older age than 

­deficient mice  [55] .  ­deficient cells exhibit 
dysfunctional repair of base substitution mutations and 
single­base IDLs. Because  ­/­  mice predominantly 
have base substitution mutations rather than frame shift 
mutations, tumors in these mice do not display the MSI 
phenotype that is a characteristic of HNPCC. In parallel, 
individuals with germ­line  mutations frequently 
have atypical HNPCC characterized by cancer onset at 
more than 60 years old and a variable MSI phenotype [56] . 
Moreover,  ­/­  mice also develop endometrial 
cancers, which is consistent with a significant number of 
patients with  mutations [57] . 

­/­  mice exhibit complete MMR deficiency, have 
a shortened life span (up to 12 months) and a strong 
cancer predisposition, similar to  ­deficient mice. 
The tumor spectrum of  ­/­  mice includes T­cell 
lymphomas, intestinal adenomas and adenocarcinomas, 
and skin tumors, which are high MSI [58­60] . 

A significant number of MSI­positive human 
colorectal cancers carry somatic mutations in the 
gene, indicating that loss of APC function is critical for 
tumor initiation and/or progression in MMR­deficient 
tumors. Mice that have homozygous mutations of  , 

,  , or  and heterozygous germ­line 

mutations of  develop tumors almost exclusively in 
the intestinal tract [61­64] . Specifically, in  mutant mice, 
functional loss of  or  dramatically increases 
intestinal tumors [61,62] , while functional loss of  or 

moderately increases intestinal tumors [ 63 , 64 ] . 
Functional loss of  , on the other hand, does not 
increase the tumor load  [64] . The incidence of tumors 
correlates with the severity of the MMR defects in MMR 
knockout mice. 

Chemically Induced Colorectal Cancer 
Models 

Carcinogen induced colorectal cancer in mice is 
rapid and reproducible, and recapitulates the adenoma­to­ 
adenocarcinoma sequence that occurs in humans. The 
availability of genetically鄄  engineered or specific inbred 
mice add further value to these models. Commonly used 
carcinogens include the following: 1) 
methylazoxymethanol (MAM), 1,2­dimethylhydrazine 
(DMH), and azoxymethane (AOM); 2) heterocyclic 
amines (HCAs), such as 2­amino­1­methyl­6­ 
phenylimidazo [4,5­b]pyridine (PhIP) and 2­amino­33­ 
methylimidazo [4,5­f] quinoline (IQ); 3) aromatic amines, 
such as 3,2忆  ­dimethyl­4­aminobiphenyl (DMAB); and 4) 
alkylnitrosamide compounds, such as methylnitrosourea 
(MNU) and N­methyl­N忆  ­nitro­N­nitrosoguanidine (MNNG). 

MAM was first identified in Cycad flour and found to 
be carcinogenic in both humans and rats [65,66] . DMH and 
AOM (DMH metabolite) are MAM precursors, which 
require metabolic activation to form DNA­reactive 
products  [67­69] . The reactive metabolite, MAM, readily 
yields a methyl diazonium ion that can alkylate 
macromolecules in the liver and colon [67,70,71] , including 
guanine (by adding methyl groups at either the O6 or N7 
position to form O6­methyl­deoxyguanosine or 
N7­methyl­deoxyguanosine). Repetitive treatment with 
DMH produces colon tumors in rodents that exhibit many 
of the pathologic features associated with the human 
disease [72­74] ; thus, it represents a reliable, reproducible 
experimental system for studying sporadic (non­familial) 
colorectal cancer. AOM is advantageous over DMH 
because of its stronger potency and greater stability 
during administration [75] . As in human populations, inbred 
murine strains differ in their sensitivity to colon 
carcinogens. SWR/J and A/J mice are sensitive to AOM 
and develop up to 20 tumors in the distal colon, whereas 
AKR/J mice are resistant and rarely develop tumors [76,77] . 
Also, FVB/N and Balb/c murine strains that are 
commonly used for constructing gene knockout and 
transgenic animals, develop approximately four tumors 
and one tumor per mouse, respectively, upon treatment 
with AOM  [76,77] . The 129SvJ, C57Bl/6J, AKR/J, and 
DBA/2J mice are relatively resistant to AOM and DMH [77] . 
In contrast, DMH induces colon cancer with moderate 
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success in Balb/cHeA and SWR/J mice and with high 
success in A/J, P/J, STS/A, and ICR/Ha mice [78­82] . 
Interestingly, the morphology of AOM­induced dysplasia 
appears nearly identical between these mouse strains 
even though they exhibit a difference in their sensitivity 
to colon cancer development  [ 83 ] . The reason for this 
strain­specific difference in carcinogen sensitivity is not 
clear, but data suggest involvement of subsequent 
carcinogenic steps such as tumor promotion rather than 
the result of differences in carcinogen metabolism [84] . 

HCAs, including IQ and PhIP, are mutagens usually 
formed upon broiling fish and meat [85­87] . The precursors 
of IQ­type HCAs are creatinine, amino acids, and sugars 
in fish and meat [87] . IQ requires metabolic activation by 
liver microsomes for conversion to its ultimate 
carcinogen, and subsequently form high levels of DNA 
adducts in a number of organs [88­90] . PhIP (4 weekly 
intraperitoneal injection at 50 mg/kg body weight) 
increases the number of small tumors and cystic crypts 
in the small/large intestines in  Min  mice, but only 
induces a few aberrant crypt foci (ACF) in the large 
intestines in wild­type mice  [91] . Both IQ and PhIP induce 
intestinal tumors in  Min  mice associated with 
inactivation of the wild­type  allele, either by causing 
LOH or truncation mutations [92] . Rats who receive either 
IQ or PhIP have a high frequency of colon, mammary 
gland, and prostate cancers [93­96] . However, the incidence 
of colon tumor is low, ranging from 5% to 28% when 
these agents are administered in the diet for up to 52 
weeks [97] . Short­term intermittent feeding of 400 mg/kg 
PhIP in combination with a high­fat diet results in 
accelerated tumor formation [93] . Thus, the HCA­induced 
colon cancer model is useful to investigate the 
chemopreventive activity of potential agents against 
colon carcinogenesis. 

DMAB, an aromatic amine, was first reported to be 
a colonic carcinogen in rats in 1952  [98] . Interestingly, 
injections of DMAB to male F344 rats (weekly 
subcutaneous injection at 50 mg/kg body weight) 
induced multiple colon tumors in 27% and 75% of rats 
fed either a low­fat or high­fat diet, respectively  [99,100] . 
DMAB induced both adenomas and adenocarcinomas, 
with a multiplicity of 1.2  to 2.7 tumors per tumor­bearing 
rat. DMAB is less potent in rodent models than DMH or 
AOM. It is less organ­specific and induces neoplasms in 
mammary and salivary glands, ear ducts, skin, 
forestomach, and urinary bladder [73,101,102] . 

MNNG and MNU are direct alkylating agents that do 
not require metabolic activation. Intrarectal instillation of 
MNU or MNNG in rodents induces colorectal tumors [103­105] 

that are predominantly sessile or polypoid lesions. For 
example, intrarectal administration of MNNG (1  to 3 
mg/week) for 20 weeks induced colon tumors at the 
injection site in all male F344 rats (57% adenomas, 
43% adenocarcinomas )  [104,105] . Most of the resultant 

adenocarcinomas were well differentiated with infiltration 
into the submucosa, but a minority was poorly 
differentiated and showed mucinous cancer cells 
infiltrating into the submucosa. As no biochemical 
activation is required for MNU or MNNG action, these 
carcinogens are ideal for studying the modifying effects 
of xenobiotics in colorectal tumorigenesis without 
involving carcinogen metabolism [106] . 

Taken together, all of these carcinogens cause 
mutations and deletions in a spectrum of genes that are 
known to be involved in human colon cancer 
tumorigenesis.  activating mutations (G to A) were 
found in 66% of DMH­induced colon carcinomas [107]  and 
33% of MNU­generated carcinomas [108] .  mutations 
are frequent in MNU­induced rat colon tumors. In 
contrast,  but not  and  mutations are 
frequently observed in AOM­induced lesions [109­111] . 
mutations are frequent [112,113] but  mutations are rare 
in PhIP­induced colon tumors [114] . In carcinogen­induced 
rodent colon tumors not having  mutations, 
mutations can occur [115­117] , indicating the importance of 
the Wnt/Apc/茁  ­catenin signaling pathway in chemically­ 
induced rodent colon carcinogenesis. 

Inflammation鄄  Related Colorectal Cancer 
Models 

Inflammation plays important roles in the 
development of colorectal cancer; the risk increases with 
the extent and duration of inflammation. Colorectal 
cancer is one of the most serious complications 
associated with long­standing inflammatory bowel 
disease (IBD). Several mouse models for 
inflammation­related colorectal cancer have been 
developed, including dextran sodium sulphate (DSS) 
­induced colitis models and genetically engineered 
models. 

DSS鄄  induced colitis model 

The most commonly used colitis mouse model uses 
DSS  [118] . Colorectal cancer development following 
DSS­induced inflammation suggests that chronic 
inflammation in IBD plays a critical role in epithelial 
malignant neoplasia of the colon and rectum [119] . This 
model is DSS dose­dependent and typically requires a 
relatively long exposure period and low repeated cycles 
of DSS administration  [120] . The incidence and/or 
multiplicity of DSS­induced colorectal tumors are 
relatively low [121] . To promote tumorigenesis, mice are 
often treated with AOM and DSS and then develop 
tumors after a relatively short­term exposure [122] . Different 
strains of mice exhibit distinct susceptibilities to 
AOM/DSS­induced colon carcinogenesis [120] . For 
example, nearly 100% Balb/c mice developed colonic 
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adenocarcinoma, with a multiplicity of 7.7 依  4.3; in 
contrast, only 50% of C57BL/6N mice formed tumors, 
with a multiplicity of 1.0 依 1.2; and even less robustly, 
both C3H/HeN and DBA/2N mice developed only a few 
colonic adenomas  [120] . In addition, DSS­treated  Min 

mice also develop more colon tumor than vehicle 
control­treated ones [123] . 

In the AOM/DSS model, dysplastic lesions are 
initially formed in the colonic mucosa. Both dysplasia 
and neoplasia stain positive for  ­  ,  , and 
inducible nitric oxide synthase but not  . Mutations of 
the  ­  gene occur in 80% to 100% of AOM­induced 
or DMH/DSS­induced colonic adenocarcinomas [123,124] . Mice 
developing colonic adenocarcinomas often have 
mutations of the  ­  gene at codons 32 to 34 if the 
mice receive AOM/DSS [123]  or at codons 33, 37, and 41 if 
the mice receive AOM  [117] . Collectively, these results 
suggest that mutations at codons 33 and 34 might be 
caused by AOM exposure, whereas mutations at 
codon 32 may result from DSS exposure [117,125] . Gene 
expression of Wnt inhibitory factor 1 (  ), plasminogen 
activator (  ), myelocytomatosis oncogene (  ), and 
phospholipase A2 group IIA (platelets and synovial fluid) 
(  ) are up­regulated, and the inflammation­related 
gene, peroxisome proliferator­activated receptor­酌  
(  ), PPAR­binding protein (  ), and  are 
down­regulated at 5 to 10 weeks of AOM/DSS 
exposure  [126] . Similar to the AOM/DSS model, mice 
receiving the colon carcinogens (PhIP and DMH) 
followed by DSS treatment have a higher incidence of 
tumors [124,127] . 

Genetically engineered IBD mouse models 

The immune system plays an important role in the 
etiology of colonic inflammation. Disruption of the 
immune response to antigenic stimuli is strongly 
associated with IBD and IBD­related colorectal cancer. 
IL­2­ and IL­10­defective mice develop IBD similar to 
humans. The level of inflammation in IL­10­defective 
mice correlates with the incidence of colorectal 
adenocarcinomas [128] . The combination of IL­2 deficiency 
with 2­microglobulin deficiency in mice causes colonic 
inflammation, and some of these mice develop 
adenocarcinoma of the proximal colon  [129,130] . Notably, 
IL­2­ and IL­10­defective mice, as well as either T­cell 
receptor/p53­  or TGF­1/Rag­2­deficient mice, do not 
develop chronic inflammation or intestinal tumors when 
maintained under germ­free conditions, suggesting that 
the enteric microflora plays an important role in the 
development of IBD and IBD­associated cancers in 
these mice [131­134] . 

Activation of nuclear factor­资  B (NF­资  B) and 
correlated pro­inflammatory cytokines and adhesion 
molecules are required for inflammation­related intestinal 

neoplasia [135,136] . Studies with  (  ) knockout 
mice indicate  is a positive regulator of NF­资  B and 
IL­1茁   secretion and increases susceptibility to 
inflammation induced by bacteria in the intestine [137,138] . 
Blocking NF­ 资  B signaling reduces colonic inflammation 
and carcinogenesis in the AOM/DSS model [135,137­140] . 
Chronic colitis appears to require activation of the 
Toll­like receptor­4 (TLR4). Genetically, Tlr4­deficient 
mice have decreased levels of Cox­2 and Pge2 
expression, as well as activation of the epidermal growth 
factor receptor signaling pathway. These mice are also 
more resistant than wild­type mice to the development of 
colitis [139] . Inhibition of TLR4 or tumor necrosis factor­琢  
signaling could be useful in treating IBD­associated 
dysplastic colonic tissue. 

Another genetically engineered colorectal mouse 
model is the  ­/­  mouse.  encodes the major 
gastrointestinal mucin, which forms an insoluble mucous 
barrier that protects the intestinal lumen [141­143] . Targeted 
inactivation of  causes tumor formation throughout 
the intestinal tract, including the colon and rectum  [141] . 

­/­  mice have a chronic intestinal inflammation 
associated with up­regulation of  and cytokines, 
increased cell migration and proliferation, and decreased 
apoptosis. However, unlike other mouse colon cancer 
models, such as  Min and  1638+/­ mice [19,144] , the  ­catenin 
pathway is not involved in tumorigenesis  [141,145,146] . 
Inactivation of  in  ­/­ mice significantly increases 
tumorigenesis, possibly through down­regulating  and 
up­regulating  [40] .  ­/­  mice possessing an 
mutation have significantly increased colorectal 
carcinogenesis, perhaps through an interaction between 
­  and chronic inflammation [146] . 

Metastatic Colorectal Cancer Models 
Almost a third of patients with colorectal cancer 

have metastatic disease at the time of diagnosis. 
Moreover, half of the patients who are diagnosed with 
and undergo resection for early­stage disease 
subsequently develop metastasis. Metastatic colorectal 
cancer is difficult to treat and, ultimately, nearly all 
patients die of their disease  [147] . Mice that are 
genetically­engineered or carcinogen­induced to develop 
colon cancer rarely develop metastasis. In contrast, 
models using transplant colorectal cancers can exhibit 
high rates of metastasis and recapitulate some of the 
desired characteristics. 

Orthotopic implantation is defined as the inoculation 
of tumor cells/tissue in the intestine, for example, cecum 
or rectum [148] . This method mimics colon tumor invasion, 
vascular spread, and metastasis to distal organs. The 
metastasis rates depend on cell type, implantation site, 
and rodent strain. For example, colon cancer MCA­38 
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and RCN­9 cells produced liver metastasis in 40% to 65% 
of mice 8 weeks after intramural injection into the cecal 
wall of C57BL/6J mice [149,150] . Liver metastases have also 
occurred by inoculating human colon cancer tissues 
orthotopically in nude mice [151,152] . The histological features 
of the transplanted tumors may help determine the 
success of liver metastasis formation  [152] . However, 
neither mouse colon carcinoma CT­26 cells (in Balb/c), 
MCA­38 cells (in C57BL/6J), nor DHD/K12­PROb cells 
(in BD­IX rats) developed liver metastasis when injected 
into the wall of the rectum or cecum [153,154] . Orthotopic 
implantation of colon cancer cells into mice has also 
resulted in metastasis to lymph nodes and other sites. 
Three human colon cancer cell lines (HCT­116, SW­620, 
and DLD­1) orthotopically injected into the cecal wall of 
nude mice showed varying degrees of mesenteric and 
retroperitoneal lymphatic invasion, hematogenous 
dissemination to the liver and lungs, as well as peritoneal 
carcinomatosis (29% to 100% ) [155] . Another series of 
experiments placing human colon cancer in the cecal 
wall of immunodeficient mice showed that lymph node 
metastases occurred most frequently using HCC2998 
and HT29 cells. SW620 cells gave rise to multiple 
small (2  to 3 mm) metastatic hepatic nodules, and 
CaCo2, WiDr, and Co205 cells had very low rates of 
metastasis [156] . 

Intrasplenic injection of tumor cells mimics the 
vascular spread of colorectal cancer. This procedure is 
relatively easy and consistently induces liver metastases. 
Mortality caused by either splenic injection or local tumor 
growth can be controlled by splenectomy following 
injection [157] . Paradoxically, in one series of experiments, 
liver metastasis occurred more frequently when 
moderate to well differentiated cells (CX­1, HT­29, 
CCL188, and CCL235) but not poorly differentiated cells 
(MIP­101, Clone A, CCL222, and CCL231) were 
intrasplenically injected  [158] . In another series of 
intrasplenic injection­induced liver metastasis 
experiments, many of the human colon cancer cells 
( metastatic capability : COLO320DM and HCT116 
>HT­29, WiDr and LoVo > LS174T) spread to the liver, 
with a frequency ranging from 50% to 100% of mice. 
CaCo2, COLO201, LS123, SW48, and SW1417 cells 
showed no metastasis after 1 伊 10 4 cells were injected [159] . 
Rodent colorectal cancer cells also exhibit different 
metastatic capabilities. Mouse colon cancer MCA­38 
cells and mucinous colon adenocarcinoma WB­2054­M4 
cells efficiently developed liver metastases in C57BL/6J 
mice and Wistar/Furth 伊 Brown­Norwegian hybrid rats, 
respectively, when injected intrasplenically [160,161] . However, 
K12­TR cells failed to develop liver metastases after 
injection into the spleens of BD­1X rats, as well as nude 
rats and mice [162] . 

Intraportal injection of tumor cells mimics the 
vascular spread of colorectal cancer metastasis and 

theoretically limits tumor growth to the liver. Current data 
show that this procedure reproducibly results in liver 
metastases in almost all animals. Partial hepatic 
ischemia before injection of tumor cells further increases 
the number of hepatic metastases, likely due to 
up­regulation of expression of adhesion molecules 
induced during hepatic ischemia [163,164] . WB­2054­M cells, 
originally from a lung metastasis, yielded liver 
metastases in 50% of Wistar/Furth ×  Brown­Norwegian 
hybrid rats  [165] . Colon cancer CC531, LDLX40, 
DHDK12/TR, and LMCR cells developed liver metastasis 
in all Wistar, WAG/Rij, and BDIX rats when injected into 
the portal vein [166­172] . 

Intrahepatic (subcapsular or intraparenchymal) 
implantation of tumor cells is a widely used method to 
create liver metastases. The model is reproducible and 
has acceptable complication rates. However, as this 
method does not mimic the generally accepted 
hypothesis of hematogenous spread of colorectal cancer, 
these tumors might not reflect the human situation, and, 
therefore, may behave aberrantly to therapeutic 
interventions. Despite this disadvantage, such induction 
of tumors has been used by many investigators to study 
local therapy of metastases. For example, CC531 as 
well as N­methyl­N­nitrosoguanidine (NNG) induced 
colon adenocarcinoma cells develop tumors in all 
animals in several weeks when injected into the liver of 
WAG/Rij or Wistar rats respectively  [173­178] , and 
DHDK12/TR cells develop tumors in BD­IX rats in all 
animals 6 weeks after injection  [179] . Intrahepatic 
implantation of tumor fragments of human colon cancer, 
derived from a liver metastasis of a patient, resulted in 
100% liver metastases after only 10 days [180] . 

Conclusions and Future Direction 
A variety of mouse models of human colorectal 

cancer have been developed, and each imitates, in part, 
human colon carcinogenesis. These models allow rapid 
and repeated interrogation of hypotheses, and each 
produces a method to test various therapeutic modalities 
that would not be possible in humans. 
Genetically­engineered mice models are useful for 
studying the importance of specific genomic alterations 
in the development and progression of colorectal cancer 
and their sensitivity to various therapies. The 
chemically­induced mouse models mimic human 
sporadic colorectal cancer and are often used to study 
dietary influences on carcinogenesis. The inoculated 
colorectal cancer models recapitulate some features of 
colorectal cancer metastasis and are useful models for 
anti­metastatic drug evaluation. Even though each 
mouse model recapitulates an aspect of human 
colorectal cancer, the power of these models to predict 
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clinical efficacy of treatments may be limited. Genetic 
and chemical mouse models may not reproduce the 
complexity of the human disease, and injection of human 
and murine colon cancer cell lines might be hampered 
because the long­term cultured cell line might have 
accumulated features that no longer reflect the 
characteristics of freshly isolated tumor cells. Also, 
differences in mouse size and physiology, as well as 
variations in colon cancer that develops in mice and 
humans may also lead to translational limitations. 
Nevertheless, each system has the exciting and robust 
capacity to model human colon cancer, facilitating a 

better and more rapid understanding of its etiology and 
providing new opportunities for developing and rapidly 
testing novel therapies. 
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