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When considering a genetic disease with variable age at onset (e.g., familial amyloid neuropathy, cancers), computing the individual
risk of the disease based on family history (FH) is of critical interest for both clinicians and patients. Such a risk is very challenging to
compute because (1) the genotype𝑋 of the individual of interest is in general unknown, (2) the posterior distributionP(𝑋 | FH, 𝑇 >𝑡) changes with 𝑡 (𝑇 is the age at disease onset for the targeted individual), and (3) the competing risk of death is not negligible. In
this work, we present modeling of this problem using a Bayesian network mixed with (right-censored) survival outcomes where
hazard rates only depend on the genotype of each individual. We explain how belief propagation can be used to obtain posterior
distribution of genotypes given the FH and how to obtain a time-dependent posterior hazard rate for any individual in the pedigree.
Finally, we use this posterior hazard rate to compute individual risk, with or without the competing risk of death. Our method is
illustrated using the Claus-Eastonmodel for breast cancer.The competing risk of death is derived from the national French registry.

1. Introduction

Complex diseases with variable age at onset typically have
many interacting factors such as the age, lifestyle, environ-
mental factors, treatments, and genetic inherited compo-
nents. The genetic component is generally composed of one
or several genes includingmajor genes forwhich a deleterious
mutation rises significantly the risk of the disease and/or
minor genes which participation in the disease is moderate
by itself.

The mode of inheritance can be monogenic if a mutation
in a single gene is transmitted or polygenic if mutations in
several genes are transmitted. As an example of a major gene
in a complex disease, the BRCA1 gene is well known to be
strongly correlated with ovarian and breast cancer since the
90s [1, 2]. Carriers of a deleterious mutation in BRCA1 gene
have a much higher risk to be affected with relative risks
ranging from 20 to 80 but deleterious mutations in BRCA1
gene only explain 5 to 10% of the disease [3] as many other

implicated known or unknown genes exist along with spo-
radic cases (cases with no inherited component).

In other rare genetic diseases such as the Transthyretin-
related Hereditary Amyloidosis (THA), no sporadic cases
are found and therefore the incidence is equal to zero
among noncarriers and all affected individuals are necessarily
carriers of a deleterious mutation [4, 5].

The family history (FH) of such diseases is often the first
tool for clinicians to detect a family of carriers of a deleterious
mutation as any unusual accumulation of cases in relatives
leads to suspect a deleterious allele in the family. With the
appropriate model and computation, the FH can be used to
better target the most appropriate individuals for a genetic
testing and/or to identify high-risk individuals who require
special attention (monitoring and/or treatments).

The first challenge to compute such a model comes from
the fact that genotypes are mostly (if not totally) unobserved
and that posterior carrier probability computations must
sum over a large number of familial founders’ genotypes
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configurations. Once such computations are carried out,
deriving posterior individual disease risk is also a challenging
task since the posterior carrier distribution changes over time
and must be accounted for. Finally, for diseases with possibly
late age at onset (e.g., cancer), the competing risk of death is
not negligible and must be accounted for.

A competing risk situation occurs when an event (called
a competing event) precludes the occurrence of the event of
interest.This is typically the case for late-onset diseases as the
risk of death is not negligible for advanced age. Ignoring the
risk of death would amount to assuming that death cannot
happen andwould therefore lead to overestimating the cumu-
lative incidence (the probability of having the disease before
any time point). Famous examples of such situations include
dementia where the patients are of a particularly advanced
age and have a high risk of dying as in Jacqmin-Gadda
et al. [6] or Wanneveich et al. [7], or studies on geriatric
patients (see, e.g., [8]).

Classical familial riskmodels such asClaus-Easton [9, 10],
BOADICEA [11], or the BayesMendel models (BRCAPRO,
MMRpro, PancPRO, andMelaPRO, see [12]) do not take into
account the competing event of death. As a result, it is likely
that individual predictions will tend to be overestimated from
these models [13]. The main result of the present work is that
we show how to derive individual risk predictions from the
family historywhile taking into account the competing risk of
death, which is a new contribution to the best of our
knowledge.

Another interesting point is that, unlike most similar
publications, we here provide all the necessary details to
integrate the likelihood over the unobserved genotypes and to
compute posterior genotype distributions usingBayesian net-
work and sum-product algorithms. One should not that these
models and algorithms clearly are often used in the context
of genetics (see [14–18], for a few examples) but rarely fully
detailed (see, e.g., [12]).

It should also be noted that the genetics community
usually prefers to rely on simple peeling algorithms rather
than Bayesian network for pedigree computations but the two
concepts are in fact totally equivalent, and the sum-product
algorithm presented in this paper can indeed be seen as a
simple Bayesian network based reformulation of the most
general peeling-based algorithm developed so far [19].

The paper is organized as follows: firstly, in Section 2.1
we introduce a formal generic Bayesian network model
adaptable to any genetic disease with variable age at onset.
Secondly, in Section 2.2, we provide in this context all the nec-
essary details to carry belief propagation on this model and
express the marginal posterior carrier distribution using
Bayesian network’s potentials. Thirdly, in Section 2.3, we give
closed-form formulas for the posterior individual disease risk
and introduce a simple numerical algorithm allowing taking
into account the competing risk of death. Finally, in Section 3,
all the methods are illustrated with the Claus-Easton model
for breast cancer using the disease model and the parameters
of Claus et al. [9] and Easton et al. [10]. In particular,
individual predictions derived by taking into account the
competing risk of death or ignoring it are compared, which

emphasizes the importance of properly taking into account
competing risk of death in such models.

2. Materials and Methods

In this section, we first introduce our model (Section 2.1) as
a Bayesian network. We next explain how to perform belief
propagation in order to obtain posterior carrier distributions
(Section 2.2). Finally, we provide all the details needed to
derive disease risks predictions from these posterior distri-
butions, including taking into account the competitive risk of
death (Section 2.3).

2.1. The Bayesian Network. We consider a total of 𝑛 (related)
individuals. With I = {1, . . . , 𝑛}, we denote by F ⊂ I the
subset of the founders (i.e., individuals without ancestors in
the pedigree) and we denote byI \F the set of nonfounders
(i.e., with ancestors in the pedigree). Let X = (𝑋1, . . . , 𝑋𝑛) ∈{00, 01, 10, 11}𝑛 be the genotypic distribution (for the sake
of simplicity, we consider here a simple biallelic gene but
multiallelic genes can obviously be easily considered) of the
whole family, where 𝑋𝑖 denotes the genotype of Individual 𝑖.
Let T = (𝑇1, . . . , 𝑇𝑛) ∈ R𝑛 be the time vector representing
the age at diagnosis of all individuals. The joint distribution
of (X,T) is given by

P (X,T) = ∏
𝑖∈F

P (𝑋𝑖) ∏
𝑖∈I\F

P (𝑋𝑖 | 𝑋pat𝑖 , 𝑋mat𝑖)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
genetic part

×∏
𝑖∈I

P (𝑇𝑖 | 𝑋𝑖)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
survival part

(1)

which corresponds to the definition of a Bayesian network
(BN). See Koller and Friedman [20] for more details. The
genetic part of (1) only relies on the “classical” Mendelian
assumption that the distribution of a nonfounder genotype
only depends on the parental genotypes. The survival part
makes the strong assumption that all 𝑇𝑖 are conditionally
independent given 𝑋𝑖. This assumption is clearly not true
when considering any other familial effect on the disease (e.g.,
polygenic effect and environmental exposure) which is often
taken into account using a familial randomeffect (often called
frailty in the survival context). Such familial random effect is,
for example, assumed to account for a polygenic effect in the
BOADICEAmodel [11, 21]. Note that, for the sake of simplic-
ity, the symbol “P” corresponds throughout the whole paper
either to a probability measure or to a density.

The extension of the present model to frailty models such
as BOADICEA is clearly possible and, in many ways, quite
straightforward. However, for the sake of simplicity, we focus
here on a simpler model and will briefly discuss the extension
in the conclusion section. However, even with the strong
assumption that 𝑇𝑖 only depends on 𝑋𝑖, since (the basically
unobserved) X has a strong correlation structure within the
pedigree, so does T.

We can see in Figure 1 an example of a moderate size
(hypothetical) family with a severe history of breast and
ovarian cancer. This family has a total of 𝑛 = 12 individuals
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Figure 1: A hypothetical family with a severe FHof cancer. Squares correspond tomales, circles correspond to females, and affected individual
are filled in black. Individual id on the top-right of the nodes, personal history of cancer (UN = unaffected; BC = breast cancer; OC = ovarian
cancer) on the bottom-right. The dashed line represents an identity link used to represent the mating loop (due to the mating between
individuals 5/8 and 6/7) between brothers 5 and 6 and sisters 7 and 8.

with F = {1, 2, 3, 4} and I \ F = {5, 6, 7, 8, 9, 10, 11, 12}.
There is no inbreeding (mating between individuals with a
common ancestor) in this family but amating loop (two fami-
lies joinedmore than once bymating) due to the two brothers
of the first nuclear family having children with two sisters
of the second nuclear family. Such looped pedigree can be
tricky to represent and this explains why Individual 7 appears
twice (with an identity link) in Figure 1.

One should note that loops in pedigree are not the same
as cycles in the Bayesian networks framework in the sense
that the underlying conditional dependence structure of the
model remains a proper directed acyclic graph even in the
presence of pedigree with loops.

Genetic Part. For the genetic part, we assume that founders’
genotypes are distributed according to the Hardy-Weinberg
distribution with disease allele frequency 𝑓. It means that
for any founder 𝑖 ∈ F we have P(𝑋𝑖 = 00) = (1 − 𝑓)2,
P(𝑋𝑖 = 01) = P(𝑋𝑖 = 10) = 𝑓(1 − 𝑓), and P(𝑋𝑖 =11) = 𝑓2. This assumption is extremely frequent in family
genetics and usually reasonable since it corresponds to the
stationary distribution we observe in a population under
mild assumptions. However, one should note that other
distributions can easily be considered if necessary (e.g., geno-
type 11 forbidden because it is lethal). For the nonfounder we
simply assume a Mendelian transmission of the alleles, but
unbalanced transmission patterns can also be considered.

The genetic part of the model can also be easily extended
to account for various constraints. For example, the presence
of monozygous twins, say individuals 𝑖 and 𝑗, only requires
one to add an identity variable between the two genotypes:𝐼𝑖,𝑗 ∈ {0, 1} such as P(𝐼𝑖,𝑗 | 𝑋𝑖, 𝑋𝑗) = 1{𝑋𝑖 = 𝑋𝑗}. Genetic
tests (including error or not) can also be incorporated as
additional variables 𝐺𝑖 such as P(𝐺𝑖 | 𝑋𝑖) corresponding
to the test specificity and sensibility. Finally, assuming lethal
genotypes (e.g., genotype 11) is done straightforwardly by
setting to 0 the probability of carrying such genotype. This
is equivalent to working conditionally on {𝑋𝑖 ̸= 11 for all 𝑖}
which obviously alter all genotype distributions, including
Hardy-Weinberg for founders.

Survival Part. We place ourselves in the classical survival
framework, denoting by 𝜆(𝑡) the (time dependent) hazard
function and by 𝑆(𝑡) the survival function defined as 𝑆(𝑡) =
exp(−Λ(𝑡)), whereΛ(𝑡) = ∫𝑡

0
𝜆(𝑢)𝑑𝑢 is the cumulative hazard.

We assume an autosomal dominant model where non-
carriers have a disease incidence 𝜆0(𝑡) and carriers have a
disease incidence 𝜆1(𝑡).This simple assumption results in the
following expression of the survival part of the model:

P (𝑇𝑖 > 𝑡 | 𝑋𝑖 = 00) = 𝑆0 (𝑡) ,
P (𝑇𝑖 = 𝑡 | 𝑋𝑖 = 00) = 𝑆0 (𝑡) 𝜆0 (𝑡) ,
P (𝑇𝑖 > 𝑡 | 𝑋𝑖 ̸= 00) = 𝑆1 (𝑡) ,
P (𝑇𝑖 = 𝑡 | 𝑋𝑖 ̸= 00) = 𝑆1 (𝑡) 𝜆1 (𝑡) .

(2)

As explained above, the symbol “P” corresponds to a (con-
ditional) probability measure for the event {𝑇𝑖 > 𝑡} and to a
density for the punctual event {𝑇𝑖 = 𝑡}.

For example, in the context of the THA, noncarriers
cannot be affected (𝜆0(𝑡) ≡ 0) and only carriers have an age-
dependent incidence. In the context of breast cancer, 𝜆0(𝑡)
might be the incidence for non-BRCA carriers and 𝜆1(𝑡) the
incidence for BRCA carriers (BRCA1 or BRCA2).

Of course, the simple model suggested in (2) can easily be
extended to account for other genetic models (e.g., recessive,
additive, gonosomal (i.e., nonautosomal), and with parent-
of-origin effect) aswell as for any known covariates (e.g., BMI,
smoking, and other diseases) using a classical proportional
hazard model.

Hazard rates 𝜆0(𝑡) and 𝜆1(𝑡) are typically described by
the literature as piecewise constant hazards (PCHs), but our
model allows for any parametric or nonparametric shape as
long as hazard rates are provided (e.g., hazard rates ofWeibull
distributions and Gaussian survival).

2.2. Carrier Risk. For all Individuals 𝑖, let us denote by PH𝑖
their personal history of the disease. In the case where
Individual 𝑖 was diagnosed with the disease at age 𝑡𝑖 we have
PH𝑖 = {𝑇𝑖 = 𝑡𝑖}. If Individual 𝑖 was unaffected at age 𝑡𝑖 (age
at the last follow-up), the variable 𝑇𝑖 is right-censored and
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we have PH𝑖 = {𝑇𝑖 > 𝑡𝑖}. From now on, we denote by
FH the family history of the disease. This includes the
personal history of all individuals and all possible additional
constraints or information (e.g., monozygous twins, genetic
tests, and lethal alleles). Formally, we can define FH =⋃𝑖(PH𝑖 ∪{𝑋𝑖 ∈ X𝑖}), whereX𝑖 ⊂ {00, 01, 10, 11} is the subset
of allowed values for 𝑋𝑖 (e.g., X𝑖 = {00, 01, 10} if we know
that genotype 11 is lethal andX𝑖 = {00} if we know that a par-
ticular individual is a noncarrier). Even with genetic testing,
it is essential to understand that X is, at best, partially
observed. Indeed, even with a (hypothetical and unrealis-
tic) 100% specificity/sensitivity test, a positive heterozygous
carrier status cannot distinguish between genotypes 01 and10. Moreover, genetic tests are in general only available for
a few individuals in the whole pedigree. Accounting for the
unobserved genotypes is therefore of utmost importance.

Following the classical BN notations, we write the so-
called evidence P(FH) as the simple following sum-product
of potentials:

P (FH) = ∑
𝑋1

⋅ ⋅ ⋅∑
𝑋𝑛

𝑛∏
𝑖=1

𝐾𝑖 (𝑋𝑖 | 𝑋pa𝑖) , (3)

where the potentials are defined by

𝐾𝑖 (𝑋𝑖 | 𝑋pa𝑖)
= P (PH𝑖 | 𝑋𝑖)
× {{{

P (𝑋𝑖 | 𝑋pat𝑖 , 𝑋mat𝑖) if 𝑖 ∈ I \F
P (𝑋𝑖) if 𝑖 ∈ F,

(4)

where P(PH𝑖 | 𝑋𝑖) is either P(𝑇𝑖 = 𝑡𝑖 | 𝑋𝑖) or P(𝑇𝑖 > 𝑡𝑖 | 𝑋𝑖)
and can be obtained through (2). Note that pa𝑖 ⊂ I denote
the parental set of Individual 𝑖 (empty for founders) and that𝑋J = (𝑋𝑗)𝑗∈J for any J ⊂ I. As explained above, any
additional information or constraint might and should be
added directly into the potentials.

Since X has 4𝑛 possible configurations in the worst case,
it is clearly impossible to simply enumerate these configura-
tions even for moderate size pedigrees (e.g., for 𝑛 = 10 or𝑛 = 20). We therefore need a more efficient algorithm to
compute (3). An efficient solution is provided by the Elston-
Stewart algorithm [22] in the particular (and frequent) case
where the pedigree has no loop.The basic idea is to eliminate
variables from the sum-product (peeling in the Elston-
Stewart literature) from the last generations up to the oldest
common ancestor. The resulting complexity O(𝑛 × 43) clearly
allows one to deal with arbitrary pedigree size as long as there
is no loop.

Unfortunately, loops (inbreeding or mating) are not
totally uncommon in pedigrees and therefore have to be
accounted for. A simple extension of the Elston-Stewart algo-
rithm consists in using loop breakers: working conditionally
to a few number of key genotypes that can be considered as
duplicated individuals with known genotypes in a pedigree
with no loop. For example, in Figure 1, Individual 7 is
a possible loop breaker. By performing a classical Elston-
Stewart algorithm for each genotypic configuration of the

loop breakers,P(FH) can be computedwith complexityO(𝑛×4ℓ+3), where ℓ is the number of loop breakers.
In the context of Bayesian networks, computing P(FH)

(and, in fact, the whole P(X, FH) distribution) is typically
done through belief propagation (BP) (also called sum-
product algorithm) with aO(𝑛×4𝑘) complexity, where 𝑘 is the
tree-width of the graphical model (see [20], for more details).
For a pedigree with no loop, 𝑘 = 3 and the BP complexity
is strictly the same as Elston-Stewart, but for more complex
pedigrees, 𝑘 usually increases much slower than ℓ + 3 and, as
a result, BP is often dramatically faster than Elston-Stewart
with loop breakers.

In order to achieve this, BP basically eliminates variables
from the sum-product of (3) in a suitable order. In that
sense, it is very similar to the notion of cutset long used to
compute likelihoods in complex pedigrees (see [23], for a
recent reference on the MENDEL package). But BP has the
noticeable advantage to allow obtaining the full posterior
distribution P(X | FH) for the same algorithmic complexity
while likelihood-based approaches need to repeat many
cutset eliminations to achieve the same results. As a conse-
quence, it should not be surprising to see that, in parallel with
the classical genetic literature [22–24], many authors have
been using BP and BN to deal with genetic models [14–18].

Let us finally point out that the genetics community
has put considerable efforts in developing Elston-Stewart
algorithms for any Bayesian network counterpart, claiming
that peeling-based algorithms are more natural for geneticists
than junction-tree based ones. Note however that the most
general version of these peeling algorithms [19] is in fact
exactly equivalent to the classical junction-tree based for-
ward/backward algorithm presented below.

For completeness, we will now briefly recall all the
minimal necessary results to implement BP in the context of
our model. We nevertheless encourage the interested reader
to refer to more classical references like Lauritzen and
Sheehan [17] or Koller and Friedman [20] for more details.

Variable Elimination and Junction Tree. As an example, we
consider the pedigree of Figure 1 and want to computeP(FH)
by successive variable elimination. We use the following
elimination order: 𝑋9, 𝑋10, 𝑋11, 𝑋12, 𝑋1,2, 𝑋5, 𝑋6, and𝑋3,4,7,8. Here follow the quantities obtained in the process:

𝐹1 (𝑋3,4) = ∑
𝑋9

𝐾3 (𝑋3)𝐾4 (𝑋4)𝐾9 (𝑋3,4,9) ;
𝐹2 (𝑋5,8) = ∑

𝑋10

𝐾10 (𝑋5,8,10) ;
𝐹3 (𝑋6,7) = ∑

𝑋11

𝐾11 (𝑋6,7,11) ;
𝐹4 (𝑋6,7) = ∑

𝑋12

𝐹3 (𝑋6,7)𝐾12 (𝑋6,7,12) ;
𝐹5 (𝑋5,6)
= ∑
𝑋1,2

𝐾1 (𝑋1)𝐾2 (𝑋2)𝐾5 (𝑋1,2,5)𝐾6 (𝑋1,2,6) ;
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Figure 2: Junction tree of our hypothetical family with the following elimination order:𝑋9,𝑋10,𝑋11,𝑋12,𝑋1,2,𝑋5,𝑋6, and𝑋3,4,7,8.
𝐹6 (𝑋6,8) = ∑

𝑋5

𝐹2 (𝑋5,8) 𝐹5 (𝑋5,6) ;
𝐹7 (𝑋7,8) = ∑

𝑋6

𝐹4 (𝑋6,7) 𝐹6 (𝑋6,8) ;
P (FH)
= ∑
𝑋3,4,7,8

𝐹1 (𝑋3,4) 𝐹7 (𝑋7,8)𝐾7 (𝑋3,4,7)𝐾8 (𝑋3,4,8) .
(5)

We therefore can obtain P(FH) by considering only 6 × 43 +2 × 44 = 896 configurations over the 412 ≃ 16.8 × 106 total
number of X configurations. Note that a memory bounded
version of the variable elimination exists; see Darwiche [25]
for more details.

Figure 2 is a graphical representation of this particular
sequence of elimination and is also a junction tree defined as
a set of 𝐾 cliques 𝐶1, . . . , 𝐶𝐾 with 𝐶𝑗 ⊂ {𝑋1, . . . , 𝑋𝑛} with the
following properties:

(i) Tree: each clique 𝑗 is connected to a subsequent clique
to𝑗 ∈ {𝑗 + 1, . . . , 𝐾} (to𝐾 = root by convention). We
also define from𝑘 = {𝑗, to𝑗 = 𝑘} (from1 = 0) and𝑆𝑗 = 𝐶𝑗 ∩ 𝐶to𝑗 (with the convention that 𝑆𝐾 = 0).

(ii) Covering: for all 𝑖 ∈ {1, . . . , 𝑛} there exists 𝑗 such as{𝑋𝑖, 𝑋pa𝑖} ⊂ 𝐶𝑗. We then define of𝑖 = min{𝑗, (𝑋𝑖,𝑋pa𝑖) ⊂ 𝐶𝑗} and 𝐶∗𝑗 = {𝑋𝑖 ∈ 𝐶𝑗, of𝑖 = 𝑗}.
(iii) Running intersection: for all 𝑖 ∈ {1, . . . , 𝑛} the sub-

graph formed by {𝐶𝑗, 𝑋𝑖 ∈ 𝐶𝑗} (and the from/to
relationships) is a tree.

In the graph theory, junction trees are used as an auxiliary
structure for many applications (e.g., graph coloring). The
proof that any elimination sequence gives a junction tree can
be found in Koller and Friedman [20]. The tree-width of an
elimination sequence/junction tree is defined as the size of
its largest clique. Finding the elimination sequence with the
smallest tree-width isNP-hard in general, butmanyheuristics

are available [20]. The elimination order of Figure 2 has been
obtained using the well-known minimum fill-in heuristic.

Belief Propagation. We assume that a suitable elimination
order/junction tree has been obtained. For all 𝑗 ∈ {1, . . . , 𝐾}
we hence define the potential of clique 𝐶𝑗 as Φ𝑗(𝐶𝑗) =∏𝑋𝑖∈𝐶∗𝑗𝐾𝑖(𝑋𝑖 | 𝑋pa𝑖) and we have the following result.

Theorem 1 (posterior distribution). For all 𝑖 ∈ {1, . . . , 𝑛}, let𝑘 = of𝑖 and we have
P (𝑋𝑖, FH)
= ∑
𝐶𝑘\{𝑋𝑖}

{{{ ∏𝑗∈from𝑘𝐹𝑗 (𝑆𝑗) × Φ𝑘 (𝐶𝑘) × 𝐵𝑘 (𝑆𝑘)
}}} ,

(6)

where the forward quantities are defined for 𝑘 = 1, . . . , 𝐾 by

𝐹𝑘 (𝑆𝑘) = ∑
𝐶𝑘\𝑆𝑘

{{{ ∏𝑗∈from𝑘𝐹𝑗 (𝑆𝑗) × Φ𝑘 (𝐶𝑘)
}}} (7)

and the backward quantities are defined by 𝐵𝐾(𝑆𝐾 = 0) = 1
(convention) and for 𝑘 = 𝐾, . . . , 2, for all 𝑖 ∈ from𝑘:
𝐵𝑖 (𝑆𝑖)
= ∑
𝐶𝑘\𝑆𝑖

{{{ ∏
𝑗∈from𝑘,𝑗 ̸=𝑖

𝐹𝑗 (𝑆𝑗) × Φ𝑘 (𝐶𝑘) × 𝐵𝑘 (𝑆𝑘)}}} .
(8)

Proof. See Appendix A.

UsingTheorem 1, it is therefore possible to obtain P(FH)
and all P(𝑋𝑖 | FH) by just recursively computing once all
forward and backward quantities.

2.3. Disease Risk. While the previous section covered the
computation of the posterior probability P(𝑋𝑖 | FH) for all
individuals in the pedigree, we now focus in this section on
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Table 1: Annual incidence (for 100,000) of breast cancer (BC) for carriers/noncarriers and relative risks by age (in years) in the Claus-Easton
model.

20–30 30–40 40–50 50–60 60–70 70–80 >80
Noncarriers 2.00 26.04 112.94 139.94 235.17 232.16 232.03
Carriers 168.35 1391.49 3153.21 3222.22 3281.25 3289.86 3286.43
Relative risk 84.17 53.44 27.92 23.03 13.95 14.17 14.16

computing individual posterior disease risks, with or without
the competing risk of death.

Risk without Competing Events. We consider an Individual 𝑖
with a posterior carrier probability 𝜋 at age 𝜏; that is, 𝜋 =
P(𝑋𝑖 ̸= 00 | FH, 𝑇𝑖 > 𝜏). Conditionally to the family history,
we denote the survival and hazard functions, respectively, by𝑆 and 𝜆 such that, for 𝑡 ≥ 𝜏, 𝑆(𝑡) = P(𝑇𝑖 > 𝑡 | FH, 𝑇𝑖 > 𝜏) and𝑆(𝑡) = exp(− ∫𝑡

𝜏
𝜆(𝑢)𝑑𝑢). We have the following result.

Theorem 2. For any 𝑡 ≥ 𝜏, we have
𝑆 (𝑡) = 𝜋 𝑆1 (𝑡)𝑆1 (𝜏) + (1 − 𝜋) 𝑆0 (𝑡)𝑆0 (𝜏) ,
P (𝑋𝑖 ̸= 00 | 𝐹𝐻, 𝑇𝑖 > 𝑡) = 1𝑆 (𝑡)𝜋 𝑆1 (𝑡)𝑆1 (𝜏) ,

(9)

𝜆 (𝑡) = 1𝑆 (𝑡) [𝜋 𝑆1 (𝑡)𝑆1 (𝜏)𝜆1 (𝑡) + (1 − 𝜋) 𝑆0 (𝑡)𝑆0 (𝜏)𝜆0 (𝑡)] . (10)

Proof. See Appendix B.

Risk with Death as a Competing Event. As explained in the
introduction, death precludes the occurrence of the disease.
This needs to be taken into account by defining the hazard
rate of the disease conditionally to the fact that both disease
and death have not occurred yet. From a statistical point
of view, such a situation can be seen as a competing risk
situation or as an illness-death model; see Andersen et al.
[26] or Andersen and Keiding [27] for a presentation of such
models.We define𝑇∗ as theminimumbetween age at disease
onset and age at death and we keep the notation 𝑇 to denote
the age at disease onset. Given an individual 𝑖 with a family
history FH, its hazard rate for the disease is defined as

𝜆𝛼 (𝑡) = lim
Δ𝑡→0

P (𝑡 ≤ 𝑇𝑖 < 𝑡 + Δ𝑡 | 𝑇∗𝑖 ≥ 𝑡, FH)Δ𝑡 . (11)

We denote by 𝜆𝛽 and 𝑆𝛽 the hazard and survival functions of𝑇∗𝑖 (conditionally to the family history) and we assume that𝜆𝛼 and𝜆𝛽 are piecewise constants with common cuts 𝜏 = 𝑐0 <𝑐1 < ⋅ ⋅ ⋅ < 𝑐𝑁 (i.e., 𝜆𝛼(𝑡) = 𝛼𝑗 and 𝜆𝛽(𝑡) = 𝛽𝑗 for 𝑡 ∈]𝑐𝑗−1, 𝑐𝑗]).
Lemma 3. For 𝑗 = 1, . . . , 𝑁, 𝑡 ∈]𝑐𝑗−1, 𝑐𝑗], we have

P (𝑇𝑖 ≤ 𝑡 | 𝑇𝑖 > 𝑐𝑗−1, FH) = ∫𝑡
𝑐𝑗−1

𝜆𝛼 (𝑢) 𝑆𝛽 (𝑢) 𝑑𝑢
= 𝛼𝑗𝛽𝑗 [𝑆𝛽 (𝑐𝑗−1) − 𝑆𝛽 (𝑡)] .

(12)

Proof. See Appendix B.

Practical Computations. We assume that one individual has a
carrier probability 𝜋 at age 𝜏 (his age without the disease in
the FH). We denote by 𝜆death his/her hazard of death. Then
the posterior disease risk with the competing risk of death
can be computed through the following steps:

(1) Choose a fine enough discretization 𝜏 = 𝑐0 < 𝑐1 <⋅ ⋅ ⋅ < 𝑐𝑁 = 𝑡max (e.g., all 𝑐𝑗 − 𝑐𝑗−1 = 0.1 year).
(2) Compute 𝛼𝑗 = 𝜆𝛼(𝑐𝑗) using (10).
(3) Compute 𝛽𝑗 = 𝛼𝑗 + 𝜆death(𝑐𝑗).
(4) Then the marginal posterior probability of being

diagnosed with the disease before age 𝑐𝑘, in the
presence of death as a competing risk, is given for𝑘 = 1, . . . , 𝑁 by

P (𝑇𝑖 ⩽ 𝑐𝑘 | FH) = 𝑘∑
𝑗=1

𝛼𝑗𝛽𝑗 [𝑆𝛽 (𝑐𝑗−1) − 𝑆𝛽 (𝑐𝑗)] . (13)

3. Results and Discussion

3.1. The Claus-Easton Model. In order to illustrate our
method, we will use the model of illness and the parameters
of the Claus-Easton model developed from the Cancer and
Steroid Hormone Study in the 90s [9, 10].

The Claus-Easton model is a classical genetic model
composed of a genotypic part and a phenotypic part with only
the family history (FH) as covariate. It assumes an autosomal
dominant mode of inheritance and a piecewise constant
hazard rate by steps of 10 years. The penetrance (𝐹(𝑡) = 1 −𝑆(𝑡)) and the density (𝑓(𝑡) = 𝜆(𝑡)𝑆(𝑡)) are given in Table 2
from Easton et al. [10] for both carriers and noncarriers at
ages 25, 35, . . . , 85. The hazard rates can therefore be derived
from these data using the formula 𝜆(𝑡) = 𝑓(𝑡)/(1 − 𝐹(𝑡)).
The results of these computations are given in Table 1. The
frequency of the mutated allele has been estimated at 𝑓 =0.0033 [9].Thedeath incidences needed in the competing risk
section are given in Table 2.

Figure 3 presents the incidence and survival for BC
(carriers and noncarriers) as well as death. We can notice
that the breast cancer incidences in carriers are always much
higher than in noncarriers at any age and the relative risk
between carriers and noncarriers is especially large (RR > 50)
before age 40 (see Table 1) but then decreases with aging. We
notice that the death incidence stays above the BC incidence
for noncarriers at all ages and exceeds even the BC incidence
for carriers from age 80.This shows the importance of taking
it into consideration especially over a certain age.
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Figure 3: (a) Annual (female) death incidence and annual noncarrier/carrier breast cancer incidence. (b) Death survival and percentage of
noncarrier/carrier individuals without diagnosed breast cancer.

Table 2: Annual female death incidence (for 100,000) by age (in
years) in themetropolitan French population between 2012 and 2014
[28].

20–30 23.85375
30–40 46.86641
40–50 130.5396
50–60 308.9539
60–70 599.914
70–80 1493.6
80–85 3845.406
85–90 8114.203
90–95 16400.99
95–99 27912.22
99-100 35644
100-101 38696.22
101-102 43033.07
102-103 45647.85
3.2. Carrier Risk. In this section we will use the belief prop-
agation in Bayesian networks to obtain the posterior distribu-
tion of individual genotypes given the FH. We get the poste-
rior probabilities of each genotype (noncarrier, heterozygous
carrier with a paternal mutated allele, heterozygous carrier
with a maternal mutated allele, and homozygous carrier).

Figure 4 represents the marginal posterior probability
P(𝑋𝑖 = 𝑥 | FH) for all Individuals 𝑖 and for 𝑥 = 10 (paternal
carrier) and𝑥 = 01 (maternal carrier). Note that the posterior
probability of the monozygous carrier genotype (𝑥 = 11)
being almost zero for each individual is not shown here. The
posterior probability of the noncarrier genotype can be easily
deduced.

We can notice that the probabilities of being a noncarrier
for 1, 3, 4, 7, 8, and 9 are all by far the highest despite the severe
phenotype of relatives (granddaughter, niece, or daughter).
This result is consistent with the personal history of Individ-
ual 2 (ovarian cancer at age 51) which points her out as the

0.0

0.2

0.4

0.6

0.8

1.0

2 3 4 5 6 7 8 9 10 11 121

Figure 4: Posterior probabilities for the carrier genotypes of each
individual (Individuals 1 to 12) in our hypothetical family (Figure 1).
The posterior probability of being a paternal carrierP(𝑋 = 10 | FH)
and a maternal carrier P(𝑋 = 01 | FH)) is colored in black and in
grey, respectively.Thedeleterious allele being very rare in the general
population (𝑓 = 0.33%), the probability of the monozygous carrier
genotype is almost zero for each individual and it is therefore not
represented here.

most likely origin of the mutation in the family. Let us note
that since we have no additional information on the ancestors
of Individual 2, it is impossible to determine whether her
mutation was transmitted by her father or her mother. As
a consequence, the posterior carrier probability is equally
shared between the paternal and maternal carrier genotypes.

Considering the severe personal history of cancer of
Individuals 10 and 11, the most likely situation would be
that they both received the mutation of their grandmother
through their respective fathers (Individuals 6 and 5, resp.).
The posterior probabilities are clearly consistent with this
scenario: Individuals 5 and 6 have a probability of ≃90% to be
maternal carriers, and Individuals 10 and 11 have similar
probabilities to be paternal carriers. Note that Individual 12,
being unaffected at age 37 (which is not very informative),
basically has 50% chance to have received the mutation from
her father.
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Figure 5: Posterior marginal carrier distribution for a total of 6 FH with increasing degree of severity on the same pedigree structure with 6
individuals. Dashed line represents half the marginal carrier probability of Individual 2.

Figure 5 shows some examples of the variations of the
posterior marginal distribution of the genotypes in the same
family structure according to different FH. We first notice
that with no information (FH1) the posterior probabilities are
exactly those of the general population: P(𝑋𝑖 ̸= 00 | FH1) =1 − (1 − 𝑓)2 ≃ 0.0066.

Note that Individual 2 has a severe personal history of
cancer (ovarian cancer at age 51) in all other examples. As a
consequence, Individual 1, as a male with no personal history
of cancer, is mostly totally uninformative and therefore not
included in the forthcoming analyses.

Individual 4 having no children is independent from the
rest of the family conditionally to her phenotype and her
parent’s genotype. With no information about her phenotype
in any FH, her probability of being a carrier is therefore
almost half her mother’s in each FH (because her father is
almost uninformative). If we compare the posterior distribu-
tions of the genotype of Individual 3 in FH2, FH3, and FH4,
we can notice that the ovarian cancer of her mother which
increased her mother’s probability of being a carrier raises
her probability of being a carrier (FH2). A piece of protective
information about her phenotype such as no cancer until age
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Table 3: Product of the posterior marginal probabilitiesP(𝑋2 | FH)P(𝑋6 | FH) and joint posterior probabilityP(𝑋2, 𝑋6 | FH) in the context
of known and unknown𝑋3. NC: noncarrier; C: carrier.
𝑋2/𝑋6 NC/NC NC/C C/NC C/C
FH4
Marginal 0.0371306 0.1551811 0.1559446 0.6517438
Joint 0.1443102 0.0480015 0.0487650 0.7589233
FH4 and𝑋3 = 10
Marginal 0.0092840 0.7741949 0.0025657 0.2139554
Joint 0.0092840 0.7741949 0.0025657 0.2139554
FH4 and𝑋3 = 01
Marginal 0.0000000 0.0000000 0.0118497 0.9881503
Joint 0.0000000 0.0000000 0.0118497 0.9881503
FH4 and𝑋3 = 11
Marginal 0.0000000 0.0000000 0.0000000 1.0000000
Joint 0.0000000 0.0000000 0.0000000 1.0000000

61 lowers her posterior probability of being a carrier (FH3).
On the contrary, the cancer at young age of her daughter
which increases her daughter’s probability of being a carrier
raises her own probability of being a carrier (FH4–6).

We also notice the causal relationships in a whole branch
of the family with the transmission between Individuals 2, 3,
and 6 of the deleterious allele being highly probable which
raises the probability of being a carrier for Individual 3 even in
the presence of a protective phenotype (unaffected at age 61)
in FH4.

We finally observe the influence of the spouse’s genotype
when having children (FH5). The higher risk of being a
carrier for Individual 5 (because of his cancer at age 72)
strongly decreases the carrier probability of his spouse (in
comparisonwith FH4) since the paternal origin of the disease
mutation naturally becomes the most likely event. On the
other side, the increase of risk for Individual 3when suppress-
ing her protective phenotype (FH6) also has a consequence
on the marginal posterior distribution of her spouse in
lowering his probability of being a carrier as his participation
in the risk for their daughter is lowered.

To summarize, one’s probability of being a carrier mainly
depends on (1) one’s probability of having at least one carrier
parent, which is correlated to the history of cancer of one’s
ancestors, and (2) one’s probability of having transmitted the
mutation to one’s offspring which is correlated to the history
of cancer of one’s descendant relatives and one’s spouse
probability of being a carrier.

Remark 4. As introduced in the Disease Risk, we know that
posterior carrier probabilities should decrease with time for
unaffected individuals. For example, if we assume that Indi-
vidual 4 is unaffected at age 40 in FH6, her probability of
being a carrier is 24%. If she stays unaffected up to age 60
and age 80, her probability of being a carrier decreases to 15%
and 8.5%, respectively.

Table 3 gives a practical illustration of the dependence
and conditional independence in a trio (grandparent-parent-
child). We compare the posterior joint distribution and the
product of the posterior marginal distributions of genotypes
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Figure 6: Individual risk of breast cancer without the competing
risk of death and for various 𝜋 and 𝜏 values.
𝑋2 and 𝑋6 in FH4 with various information on 𝑋3. We can
see that these two quantities are not equal when 𝑋3 is not
observed while they are exactly the same when 𝑋3 is fixed.
This example demonstrates how𝑋2 and𝑋6 are not condition-
ally independent given FH but they are, conditionally to FH
and 𝑋3. Note that when 𝑋3 = 11, the mutation is necessarily
found in both parents (Individuals 1 and 2) as well as in her
daughter (Individual 6).

3.3. Cancer Risk. As in Section 2.3 we now consider a female
individual 𝑖 who is unaffected at age 𝜏 (i.e., {𝑇𝑖 > 𝜏} ⊂ FH)
and denote by 𝜋 = P(𝑋𝑖 ̸= 00 | FH) its posterior carrier
probability. The purpose of this section is to compute the
posterior risk of cancer for this individual (with or without
the competing risk of death). As previously explained, these
risks only depend on 𝜋 and 𝜏.

Figure 6 represents the individual risk of breast cancer up
to age 100 (note that we obtain qualitatively similar results
with a lower age limit (e.g., age 80), but quantitative results
are more illustrative with age 100) without the competing risk
of death and variant 𝜋 and 𝜏. We can see that the individual
risk of BC rises as 𝜋 increases and 𝜏 decreases. This result is
quite intuitive as the younger a patient is, the longer she will
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Figure 7: Posterior probabilities of being a carrier according to the
time for Individuals 3 and 4 in FH4 assuming Individual 4 is 52 at
the time of the censoring.
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Figure 8: Individual risk of breast cancer with and without the
competing risk of death for Individuals 7 and 12 of our hypothetical
family from 𝜏 to 100 years with and without the competing risk of
death.

be at risk until age 100; the greater her probability of carrying
a deleterious allele, the greater her risk to develop a cancer.

As introduced in the previous section the probability of
being a carrier for an unaffected individual decreases with
time if she stays unaffected. Assuming Individual 4 was 52 in
FH4, Figure 7 shows the evolution of the probability of being
a carrier for Individual 3 and Individual 4 in FH4.As they stay
unaffected we can clearly see the decrease of this probability
which has to be taken into account in the computation of the
individual risk of breast cancer over time (see Section 2.3).

As explained in Section 2.3, computing risk with the
competing risk of death requires a numerical discretization
of age by a fixed step Δ𝑡. In order to calibrate Δ𝑡 we usedΔ𝑡 = 0.01 as a reference and observed that Δ𝑡 = 0.1 is
a reasonable balance between accuracy and computational
efficiency (data not shown).

Figure 8 represents the individual risk of breast cancer for
Individual 7 (𝜋 = 0.553% and 𝜏 = 62 years) and Individual 12
(𝜋 = 44.6%and 𝜏 = 37 years) in our hypothetical family from𝜏 to 100 years with and without taking into account the com-
peting risk of death. We can see that the difference between
the two curves for each individual is increasing with the age.
The age from which the difference becomes significant varies
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Figure 9: Difference (in percentage) between the individual risks of
breast cancer up to 100 years without and with the competing risk
of death for various 𝜋 and 𝜏 values. Specific values 𝜋 = 76.59% and𝜏 = 61 are given by the dashed lines.

with the couple (𝜋, 𝜏). We also observe that the individual
risk of breast cancer eventually reaches a plateau which
corresponds to the point where the incidence of breast cancer
becomes negligible compared to the incidence of death in the
elderly.

Quantitatively, the importance of taking into account the
competing risk of death is pointed out in Figure 9 which
represents the difference between the individual risks of
breast cancer up to the age of 100 years for variant couples (𝜋,𝜏). For example, for Individual 3 in FH4 (𝜋 = 76.59% and 𝜏 =61, see Figure 5), the error while calculating her individual
risk of breast cancer up to the age of 100 years reaches
almost 14%. If it is clear that the competing risk of death can
have a limited effect on the global risk of cancer for certain
couples (𝜋, 𝜏), its effect is never totally negligible, and since
we provide a rigorous way to take it into account, we strongly
advocate its use in all circumstances.

4. Conclusions

We presented here a general model for genetic disease
with variable age at onset. This model, a Bayesian network,
combines classical geneticmodelingwith survival analysis. In
order to deal with the (mostly) unobserved genotypes, we
first explained in detail how belief propagation can be used
to perform likelihood and posterior probability computa-
tions. Secondly, we focused on the challenging problem of
computing posterior individual disease risks, with or without
taking into account the competing risk of death. Finally,
we illustrated these results with the Claus-Easton model for
breast and ovarian cancer. The R source codes are available
upon request for the interested readers.

For the sake of simplicity, we only considered a bial-
lelic locus with standard distribution (autosomal, Hardy-
Weinberg, andMendelian allele transmission) but extensions
(e.g., multiloci, unbalanced allele transmission, and lethal
genotypes) are straightforward. For the survival model,
we presented a simple dominant effect without covariates,
but again extensions to any proportional hazard model
(e.g., recessive, additive, and with covariates) are easy to
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implement. Incorporating random effects (at the individual
and/or familial level) in the model (like in the BOADICEA
model, see [11, 21]) is clearly also possible but slightly more
challenging.

Computation of posterior carrier distributions remains
almost unchanged except for the random effect support
which must be discretized (five values are claimed to be
sufficient in the BOADICEA literature) and for the belief
propagation which must be performed once for each of the
possible values of the random effect. For posterior risks,
calculations get slightly more complex since the posterior
individual hazard must now be integrated over the (changing
over time) posterior joint distribution of the individual
genotype and of the randomeffect. Basically, all computations
are slightly more intensive with random effects, but most
results of Section 2.3 remain very similar.

One of the important limitations of the present work
is the fact that we assume that all model parameters are
known. However, it should be noted that likelihood and
conditional likelihood might be easy to compute through the
belief propagation which means that we basically provide
all the necessary means to estimate the model parameters
from actual data. In that context, it is nevertheless critical
to deal efficiently with ascertainment issues: the fact that the
family ending up in the database are usually precisely the
one with the most severe disease family history. But standard
methods like the PEL [5], which basically are conditional
likelihood computations, are known to deal relatively well
with the problem.

In order to take into account the competing risk of
death, we used death from all causes, which was obtained
from registry data [28]. However, only death without cancer
precludes the onset of cancer and we are not interested in
death fromall causes. Since registry data usually do not report
the causes of death it is a difficult task to estimate the risk of
death without cancer. This has been studied, for instance, in
Wanneveich et al. [7] through an illness-death model, using
registry data and differential equations to model the specific
causes of death. Nevertheless, it is very likely that the gain
in terms of predictions would be minor as mortality from all
causes is likely to be close to mortality without cancer.

Further work includes all the extensions described above
(e.g., more complex genetic model, genetic tests, and familial
random effects) as well as the development of a clinical web
application for the Claus-Eastonmodel in close collaboration
with the cancer genetics department of the Institut Curie.
From the methodological point of view, we plan to focus on
the computation of more complex posterior distribution like
the number of carriers in any subgroup of individuals and/or
the familial posterior risk (time before any family member at
risk is diagnosed).

Appendix

A. Proofs for the Carrier Risk Section

For all 𝑘 ∈ {1, . . . , 𝐾}we recursively define𝑢𝑘 = {𝑘}⋃𝑗∈from𝑘 𝑢𝑗,𝑈𝑘 = ⋃𝑗∈𝑢𝑘 𝐶𝑗, and 𝑉𝑘 = ⋃𝑗∉𝑢𝑘 𝐶𝑗. Then we can compute the

so-called forward and backward quantities over any separator𝑆𝑗 = 𝐶𝑗 ∩ 𝐶to𝑗 :
𝐹𝑗 (𝑆𝑗) = ∑

𝑈𝑗\𝑆𝑗

∏
𝑋𝑖∈𝑈

∗
𝑗

𝐾𝑖 (𝑋𝑖 | 𝑋pa𝑖) ,
𝐵𝑗 (𝑆𝑗) = ∑

𝑉𝑗\𝑆𝑗

∏
𝑋𝑖∈𝑉

∗
𝑗

𝐾𝑖 (𝑋𝑖 | 𝑋pa𝑖) , (A.1)

where 𝑈∗𝑗 = {𝑋𝑖 ∈ 𝑈𝑗, ∃𝑘 ∈ 𝑢𝑗, of𝑖 = 𝑘} and 𝑉∗𝑗 = {𝑋𝑖 ∈𝑉𝑗, ∃𝑘 ∉ 𝑢𝑗, of𝑖 = 𝑘}.
The key is then to prove that, for all 𝑗 ∈ {1, . . . , 𝐾}, we

have

P (𝑆𝑗, FH) = 𝐹𝑗 (𝑆𝑗) 𝐵𝑗 (𝑆𝑗) , (A.2)

P (𝐶𝑘, FH) = Φ𝑘 (𝐶𝑘) × ∏
𝑗∈from𝑘

𝐹𝑗 (𝑆𝑗) × 𝐵𝑘 (𝑆𝑘) . (A.3)

For proving (A.2), we start by noticing that the JT
(junction tree) properties [20] give {𝑋1, . . . , 𝑋𝑛} \ 𝑆𝑗 = (𝑈𝑗 \𝑆𝑗)⊎(𝑉𝑗 \𝑆𝑗) and {𝑋1, . . . , 𝑋𝑛} = 𝑈∗𝑗 ⊎𝑉∗𝑗 (both being disjoint
unions). We therefore have

P (𝑆𝑗, FH)
= ∑
𝑈𝑗\𝑆𝑗

∑
𝑉𝑗\𝑆𝑗

∏
𝑋𝑖∈𝑈

∗
𝑗

𝐾𝑖 (𝑋𝑖 | 𝑋pa𝑖) ∏
𝑋𝑖∈𝑉

∗
𝑗

𝐾𝑖 (𝑋𝑖 | 𝑋pa𝑖)

= ( ∑
𝑈𝑗\𝑆𝑗

∏
𝑋𝑖∈𝑈

∗
𝑗

𝐾𝑖 (𝑋𝑖 | 𝑋pa𝑖))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐹𝑗(𝑆𝑗)

× ( ∑
𝑉𝑗\𝑆𝑗

∏
𝑋𝑖∈𝑉

∗
𝑗

𝐾𝑖 (𝑋𝑖 | 𝑋pa𝑖))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐵𝑗(𝑆𝑗)

,

(A.4)

the factorization between the first and second equation
being possible thanks to the fact that (⋃𝑋𝑖∈𝑈∗𝑗 {𝑋𝑖, 𝑋pa𝑖}) ∩(⋃𝑋𝑖∈𝑉∗𝑗 {𝑋𝑖, 𝑋pa𝑖}) = 𝑆𝑗 (JT properties again).

The proof is basically the same for (A.3) using {𝑋1, . . . ,𝑋𝑛} \ 𝐶𝑘 = z𝑗∈from𝑘(𝑈𝑗 \ 𝑆𝑗) ⊎ (𝑉𝑘 \ 𝑆𝑘); we get
P (𝐶𝑘, FH) = ∑

{𝑋1 ,...,𝑋𝑛}\𝐶𝑘

∏
𝑋𝑖∈{𝑋1,...,𝑋𝑛}

𝐾𝑖 (𝑋𝑖 | 𝑋pa𝑖)
= Φ𝑘 (𝐶𝑘) ∏

𝑗∈from𝑘

∑
𝑈𝑗\𝑆𝑗

∑
𝑉𝑘\𝑆𝑘

∏
𝑋𝑖∈𝑈

∗
𝑗

𝐾𝑖 (𝑋𝑖 | 𝑋pa𝑖)
⋅ ∏
𝑋𝑖∈𝑉

∗
𝑘

𝐾𝑖 (𝑋𝑖 | 𝑋pa𝑖) = Φ𝑘 (𝐶𝑘)
⋅ ∏
𝑗∈from𝑘

∑
𝑈𝑗\𝑆𝑗

∏
𝑋𝑖∈𝑈

∗
𝑗

𝐾𝑖 (𝑋𝑖 | 𝑋pa𝑖)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐹𝑗(𝑆𝑗)
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⋅ ∑
𝑉𝑘\𝑆𝑘

∏
𝑋𝑖∈𝑉

∗
𝑘

𝐾𝑖 (𝑋𝑖 | 𝑋pa𝑖)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐵𝑘(𝑆𝑘)

.
(A.5)

The factorization is possible asz𝑗∈from𝑘(𝑈𝑗\𝑆𝑗)∩(𝑉𝑘\𝑆𝑘) =0 (running intersection) and ∀𝑗, ∀𝑘, 𝑈∗𝑗 ⊆ 𝑈𝑗, and 𝑉∗𝑘 ⊆ 𝑉𝑘.
Finally, the recursive expression of the forward and

backward quantities can be easily derived from (A.2) and
(A.3):

P (𝑆𝑘, FH) = ∑
𝐶𝑘\𝑆𝑘

P (𝐶𝑘, FH) ,
𝐹𝑘 (𝑆𝑘)����𝐵𝑘 (𝑆𝑘)
= ∑
𝐶𝑘\𝑆𝑘

∏
𝑗∈from𝑘

𝐹𝑗 (𝑆𝑗) × Φ𝑘 (𝐶𝑘) ×����𝐵𝑘 (𝑆𝑘)
(A.6)

which gives the forward recursion by simplifying the 𝐵𝑘(𝑆𝑘)
term.

B. Proofs for the Disease Risk Section

Proof of Theorem 2. For clarity, we recall that 𝑆0(𝑡) = P(𝑇𝑖 >𝑡 | 𝑋𝑖 = 00), 𝑆1(𝑡) = P(𝑇𝑖 > 𝑡 | 𝑋𝑖 ̸= 00), 𝜋 = P(𝑋𝑖 ̸=00 | FH, 𝑇𝑖 > 𝜏), and 𝑆(𝑡) = P(𝑇𝑖 > 𝑡 | FH, 𝑇𝑖 > 𝜏), for𝑖 = 1, . . . , 𝑛, and that {𝑇𝑖 > 𝜏} ⊂ FH. Since 𝑇𝑖 are independent
conditionally to𝑋𝑖, the distribution of 𝑇𝑖 conditionally on𝑋𝑖
obviously does not depend on FH (for values of 𝑋𝑖 which
are not forbidden by FH). This is why FH can be omitted
almost everywhere in the following proof as soon as 𝜋 has
been computed.

We have 𝑆(𝑡) = ∑𝑋𝑖 P(𝑇𝑖 > 𝑡, 𝑋𝑖 | 𝑇𝑖 > 𝜏, FH), where
the notation∑𝑋𝑖 represents the summation over the different
possible values of𝑋𝑖; that is,𝑋𝑖 = 00 or𝑋𝑖 ̸= 00. Using Bayes’
rule,

P (𝑇𝑖 > 𝑡, 𝑋𝑖 ̸= 00 | 𝑇𝑖 > 𝜏, FH)
= P (𝑇𝑖 > 𝑡 | 𝑋𝑖 ̸= 00, 𝑇𝑖 > 𝜏, FH)
× P (𝑋𝑖 ̸= 00 | 𝑇𝑖 > 𝜏, FH)

= P (𝑇𝑖 > 𝑡, 𝑋𝑖 ̸= 00, FH)
P (𝑇𝑖 > 𝜏,𝑋𝑖 ̸= 00, FH) × 𝜋
= P (𝑇𝑖 > 𝑡 | 𝑋𝑖 ̸= 00, FH)
P (𝑇𝑖 > 𝜏 | 𝑋𝑖 ̸= 00, FH) × 𝜋 = 𝑆1 (𝑡)𝑆1 (𝜏)𝜋,

(B.1)

where we used the fact that P(𝑇𝑖 > 𝑡 | 𝑋𝑖 ̸= 00, FH) = P(𝑇𝑖 >𝑡 | 𝑋𝑖 ̸= 00). We similarly prove that P(𝑇𝑖 > 𝑡, 𝑋𝑖 = 00 | 𝑇𝑖 >𝜏, FH) = (1 − 𝜋)𝑆0(𝑡)/𝑆0(𝜏).
The next result is proved using Bayes’ rule:

P (𝑋𝑖 ̸= 00 | FH, 𝑇𝑖 > 𝑡) = P (𝑋𝑖 ̸= 00, FH, 𝑇𝑖 > 𝑡)
P (FH, 𝑇𝑖 > 𝑡)

= P (𝑇𝑖 > 𝑡 | 𝑋𝑖 ̸= 00, 𝑇𝑖 > 𝜏)
P (𝑇𝑖 > 𝑡 | FH, 𝑇𝑖 > 𝜏)

⋅ P (𝑋𝑖 ̸= 00 | FH, 𝑇𝑖 > 𝜏) ,
(B.2)

where we also used the fact that P(𝑇𝑖 > 𝑡 | 𝑋𝑖 ̸= 00, FH, 𝑇𝑖 >𝜏) = P(𝑇𝑖 > 𝑡 | 𝑋𝑖 ̸= 00, 𝑇𝑖 > 𝜏).
We then directly haveP(𝑇𝑖 > 𝑡 | 𝑋𝑖 ̸= 00, 𝑇𝑖 > 𝜏) = 𝑆1(𝑡)/𝑆1(𝜏) from Bayes’ rule, P(𝑋𝑖 ̸= 00 | FH, 𝑇𝑖 > 𝜏) = 𝜋, and

P(𝑇𝑖 > 𝑡 | FH, 𝑇𝑖 > 𝜏) = 𝑆(𝑡) which concludes the proof.
Finally, in order to prove (10), we recall that

𝜆 (𝑡) = lim
Δ𝑡→0

P (𝑡 ≤ 𝑇𝑖 < 𝑡 + Δ𝑡 | 𝑇𝑖 ≥ 𝑡, FH)Δ𝑡 ,
𝜆0 (𝑡) = lim

Δ𝑡→0

P (𝑡 ≤ 𝑇𝑖 < 𝑡 + Δ𝑡 | 𝑇𝑖 ≥ 𝑡, 𝑋𝑖 = 00)Δ𝑡 ,
𝜆1 (𝑡) = lim

Δ𝑡→0

P (𝑡 ≤ 𝑇𝑖 < 𝑡 + Δ𝑡 | 𝑇𝑖 ≥ 𝑡, 𝑋𝑖 ̸= 00)Δ𝑡 .
(B.3)

Then,

P (𝑡 ≤ 𝑇𝑖 < 𝑡 + Δ𝑡 | 𝑇𝑖 ≥ 𝑡, FH)
= ∑
𝑋𝑖

P (𝑡 ≤ 𝑇𝑖 < 𝑡 + Δ𝑡, 𝑋𝑖 | 𝑇𝑖 ≥ 𝑡, FH)
= ∑𝑋𝑖 P (𝑡 ≤ 𝑇𝑖 < 𝑡 + Δ𝑡, 𝑋𝑖, FH)

P (𝑇𝑖 ≥ 𝑡, FH)
= ∑
𝑋𝑖

P (𝑡 ≤ 𝑇𝑖 < 𝑡 + Δ𝑡 | 𝑋𝑖)P (𝑋𝑖 | 𝑇𝑖 ≥ 𝑡, FH) ,
(B.4)

using Bayes’ rule and the fact that P(𝑡 ≤ 𝑇𝑖 < 𝑡 + Δ𝑡 | 𝑋𝑖,
FH) = P(𝑡 ≤ 𝑇𝑖 < 𝑡 + Δ𝑡 | 𝑋𝑖) and P(𝑋𝑖, FH | 𝑇𝑖 ≥ 𝑡, FH) =
P(𝑋𝑖 | 𝑇𝑖 ≥ 𝑡, FH). Dividing by Δ𝑡 and taking the limit as Δ𝑡
tends to 0 give
𝜆 (𝑡) = 𝜆1 (𝑡) × P (𝑋𝑖 ̸= 00 | 𝑇𝑖 ≥ 𝑡, FH) + 𝜆0 (𝑡)

× P (𝑋𝑖 = 00 | 𝑇𝑖 ≥ 𝑡, FH) . (B.5)

We showed previously thatP(𝑋𝑖 ̸= 00 | 𝑇𝑖 ≥ 𝑡, FH) = 𝜋𝑆1(𝑡)/(𝑆(𝑡)𝑆1(𝜏)) and P(𝑋𝑖 = 00 | 𝑇𝑖 ≥ 𝑡, FH) = (1 − 𝜋)𝑆0(𝑡)/(𝑆(𝑡)𝑆0(𝜏)) which concludes the proof.

Proof of Lemma 3. The first part of the equality is a standard
result in the competing risk setting: we have, fromBayes’ rule,

𝜆𝛼 (𝑢) = lim
Δ𝑡→0

P (𝑡 ≤ 𝑇𝑖 < 𝑡 + Δ𝑡 | FH)Δ𝑡P (𝑇∗𝑖 ≥ 𝑡 | FH) (B.6)

and consequently 𝜆𝛼(𝑢)𝑆𝛽(𝑢) is equal to the density of 𝑇
conditionally to FH. Then, since 𝜆𝛼(𝑢) = 𝛼𝑗 for 𝑢 ∈]𝑐𝑗−1, 𝑐𝑗],
we have

P (𝑇𝑖 ≤ 𝑡 | 𝑇𝑖 > 𝑐𝑗−1, FH) = ∫𝑡
𝑐𝑗−1

𝜆𝛼 (𝑢) 𝑆𝛽 (𝑢) 𝑑𝑢
= 𝛼𝑗 ∫𝑡

𝑐𝑗−1

𝑆𝛽 (𝑢) 𝑑𝑢
= 𝛼𝑗 ∫𝑡

𝑐𝑗−1

exp(−∫𝑢
0
𝜆𝛽 (V) 𝑑V)𝑑𝑢.

(B.7)
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Now, for 𝑢 ∈]𝑐𝑗−1, 𝑡], 𝑡 ≤ 𝑐𝑗,
∫𝑢
0
𝜆𝛽 (V) 𝑑V = ∫𝑐𝑗−1

0
𝜆𝛽 (V) 𝑑V + 𝛽𝑗 (𝑢 − 𝑐𝑗−1) ,

∫𝑡
𝑐𝑗−1

exp(−∫𝑢
0
𝜆𝛽 (V) 𝑑V)𝑑𝑢

= exp(−∫𝑐𝑗−1
0
𝜆𝛽 (V) 𝑑V)

⋅ ∫𝑡
𝑐𝑗−1

exp (−𝛽𝑗 (𝑢 − 𝑐𝑗−1)) 𝑑𝑢 = 𝑆𝛽 (𝑐𝑗−1)
⋅ ∫𝑡
𝑐𝑗−1

exp (−𝛽𝑗 (𝑢 − 𝑐𝑗−1)) 𝑑𝑢.

(B.8)

The integral on the right side of the equation is straightfor-
ward to compute. This gives

𝑆𝛽 (𝑐𝑗−1)∫𝑡
𝑐𝑗−1

exp (−𝛽𝑗 (𝑢 − 𝑐𝑗−1)) 𝑑𝑢
= 1𝛽𝑗 (𝑆𝛽 (𝑐𝑗−1) − 𝑆𝛽 (𝑐𝑗−1) exp (−𝛽𝑗 (𝑡 − 𝑐𝑗−1))) .

(B.9)

Finally, we conclude by noticing that

𝑆𝛽 (𝑡) = exp(−∫𝑐𝑗−1
0
𝜆𝛽 (𝑢) 𝑑𝑢 − ∫𝑡

𝑐𝑗−1

𝜆𝛽 (𝑢) 𝑑𝑢)
= 𝑆𝛽 (𝑐𝑗−1) exp (−𝛽𝑗 (𝑡 − 𝑐𝑗−1)) .

(B.10)
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