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Abstract: Non-synonymous SNPs and protein coding SNPs within the promoter region of genes
(regulatory SNPs) might have a significant effect on carcass traits. Imputed sequence level data of
10,215 Hanwoo bulls, annotated and filtered to include only regulatory SNPs (450,062 SNPs), were
used in a genome-wide association study (GWAS) to identify loci associated with backfat thickness
(BFT), carcass weight (CWT), eye muscle area (EMA), and marbling score (MS). A total of 15, 176,
and 1 SNPs were found to be significantly associated (p < 1.11 × 10−7) with BFT, CWT, and EMA,
respectively. The significant loci were BTA4 (CWT), BTA6 (CWT), BTA14 (CWT and EMA), and BTA19
(BFT). BayesR estimated that 1.1%~1.9% of the SNPs contributed to more than 0.01% of the phenotypic
variance. So, the GWAS was complemented by a gene-set enrichment (GSEA) and protein–protein
interaction network (PPIN) analysis in identifying the pathways affecting carcass traits. At p < 0.005
(~2,261 SNPs), 25 GO and 18 KEGG categories, including calcium signaling, cell proliferation, and
folate biosynthesis, were found to be enriched through GSEA. The PPIN analysis showed enrichment
for 81 candidate genes involved in various pathways, including the PI3K-AKT, calcium, and FoxO
signaling pathways. Our finding provides insight into the effects of regulatory SNPs on carcass traits.

Keywords: Hanwoo; GWAS; non-synonymous SNP; gene-set enrichment; pathway analysis;
marbling; carcass weight; eye muscle area; backfat thickness; imputation

1. Introduction

Hanwoo (Bos taurus coreanae) is the indigenous premium beef cattle of South Korea. It has been
intensively selected for higher meat and carcass quality for the last four decades [1]. It is well known for
its extensive marbling, texture, flavor, and juiciness, making it the most economically important species
in Korea [2,3]. In spite of its premium price, due to its superior meat quality, Hanwoo beef is very
popular amongst both Korean and foreign consumers. The breeding value and the genetic worth of
Hanwoo is estimated based on the marbling score (MS), carcass weight (CWT), backfat thickness (BFT),
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and eye muscle area (EMA) [4]. Though substantial improvement in carcass and meat quality have
been achieved, due to market requirement for higher quality, and for improving the economic value of
Hanwoo, continuous improvement of economically important trait is required [5,6]. A genome-wide
association study (GWAS) is an affordable and powerful tool to discover candidate genes and loci
associated with quantitative traits [7]. GWASs in livestock, including in Hanwoo [8–11], have resulted
in remarkable insights into the genetic architecture of carcass traits. Genetic variation in complex traits
such as carcass and meat quality traits are, however, due to the contribution of many mutations with
small effects [1,12] (polygenic effect). Though some of these mutations have been successfully identified
through GWASs, the high significance thresholds required to correct for the multiple testing problem
results in the identification of only SNPs with a large effect size [7,12]. Further, a GWAS does not make
use of the fact that genes work together in a network, and multi-allelic QTL might not be captured
due to the bi-allelic nature of SNPs [13]. Moreover, epistasis is an important genetic component
underlying phenotypic variation that also accounts for missing heritability [14]. Therefore, a GWAS
alone might result in only limited understanding of the nature of complex traits [13]. Suggested
solutions to overcome this limitation and understand the genetic complexities regulating complex traits
are to complement a GWAS with gene-set enrichment, a protein–protein interaction network (PPIN),
and pathway analyses [15–18]. In GSEA and pathway analysis, a group of related genes harboring
significant SNPs identified through a GWAS is tested for enrichment in a specific pathway. While
PPIN, which is defined as “Functional epistasis”, looks for an interaction between proteins (genetic
elements) within the pathway or with proteins that form complexes with one another [19,20]. Dadousis
et al. [13,21] had used the results of a GWAS to provide biological insights into the pathways affecting
milk composition and cheese-producing ability in dairy cattle through GSEA and pathway analysis.
In those studies, they had used a nominal post GWAS threshold of p < 0.05 for generating a list of
the top associated SNPs that were then annotated to genes, and which were then used for identifying
pathways significantly enriched in the targeted traits. Therefore, supplementing a GWAS with the
abovementioned analyses could lead to a better understanding of the mechanisms regulating complex
traits [22].

While GWAS identifies many traits associated SNPs, since most of them are in non-coding region,
it is hard to map them to biological processes that are crucial for understanding complex traits [23].
In fact, the most important polymorphic loci are those that cause protein-coding differences and can
regulate gene expression [24]. Moreover, non-synonymous SNPs change the genetic and amino acid
sequence, which might have a deleterious effect on protein function; such mutations are likely to
have a phenotypic effect [12]. Most of the SNPs that affect gene expression are reported to fall very
close to the gene [25,26]. Hindorff et al. [27] and Kindt et al. [28] had reported that non-synonymous
(missense) and promoter SNPs (5kb-promoter region) were significantly overrepresented in association
studies, suggesting that regulatory proteins coding SNPs (non-synonymous SNPs + promoter SNPs)
might be enriched for trait-associated variants. Therefore, the objective of this study was to use
sequence-level imputed SNP data to perform a GWAS with regulatory SNPs (protein coding promoter
and non-synonymous (missense) SNPs) and complement it with GSEA, PPIN, and pathway analysis
to identify the candidate genes and pathways associated with CWT, BFT, MS, and EMA in Hanwoo
cattle. We also estimated the marker effects, variance components, and heritability captured by the
regulatory SNPs for the four complex traits.

2. Materials and Methods

2.1. Animals and Phenotypes

A total of 10,215 Hanwoo steers born between 2006 and 2016 on farms across South Korea were
used in this study. All the steers were the progeny of 324 sires and 8331 dams (1–3 progenies per dam).
Relevant guidelines formulated by the Institutional Animal Care and Use Committee (IACUC) of the
National Institute of Animal Science (NIAS), Korea, were followed. The animals were fed a mixture of
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concentrate and rice straw and were slaughtered between 17 and 62 months of age. The carcass and
meat quality traits analyzed in this study were carcass weight (CWT), backfat thickness (BFT), eye
muscle area (EMA), and marbling score (MS). Traits were measured as described by Bhuiyan et al. [29].
A descriptive statistical summary of the phenotypes are given in Table 1.

Table 1. Descriptive summary of phenotype data and results of variance component estimation.

Traits
Phenotypic Data Variance Components

Mean SD Max Min CV σ2
g σ2

p h2

Backfat Thickness (mm) 14.08 4.9 43 2 0.35 6.79 16.98 0.29
Carcass Weight(kg) 441.22 52.7 682 159 0.12 660.25 1962.58 0.25

Eye Muscle Area (cm2) 95.8 12.0 155 34 0.13 38.23 95.69 0.29
Marbling Score (1–9) 6.1 1.9 9 1 0.31 1.24 2.04 0.38

σ2
g—additive genetic variance; σ2

p—phenotypic variance; h2—heritability.

2.2. SNP Genotyping, Imputation, and Filtering for Regulatory SNPs

Genomic DNA was isolated from 10,215 Hanwoo tissue samples using the DNeasy Blood and Tissue
Kit (Qiagen, Valencia, CA, USA). After checking for quality and quantity on a Nanodrop 1000 (Thermo
Fisher Scientific, Wilmington, DE, USA), the samples were genotyped on a Customized Hanwoo SNP50
BeadChip (58,990 SNPs). Only autosomes were included in the analysis. The genotypes were then
phased using Eagle v.2.3.2 [30] and then imputed, one chromosome at a time, using Minimac3 [31], to a
high-density level, using a reference population consisting of 480 animals genotyped with Bovine HD
BeadChip (777,962 SNPs). They were then imputed to the sequence level one chromosome at a time,
using whole genome sequence data of a reference population of 311 progeny tested Hanwoo bulls [1],
resulting in a total of 27,980,473 SNPs; the imputation pipeline followed for imputing from 770K to
the sequence level was the same as the one used for 50K to HD imputation. Following a previous
study [32], only SNPs with Minimac3 imputation quality statistic (R2) higher than 0.4 were retained for
further analysis, resulting in a total of 12,980,473 SNPs. The overall average imputation accuracy, post
quality control (R2) was 0.76, which was similar to a previously reported study [33].

The physical position of the imputed SNPs was determined using the bovine genome assembly
UMD3.1 [34] and the SNPs were annotated with SnpEff version 4.3 [35]. The SNPs were then filtered
with SnpSift [36] to include only non-synonymous (missense) SNPs and protein coding SNPs within
5-kb upstream of a gene. These SNPs were considered as regulatory SNPs due to their effect on the
protein structure and gene expression [26,37]. The SNPs were further filtered for quality with PLINK
v.1.9 software [38] under the following criteria: minor allele frequency (MAF) < 0.01, genotype call
rate < 0.10, individual call rate < 0.10, and Hardy–Weinberg equilibrium <0.000001. This resulted
in a final set of 450,062 SNPs and 9693 animals for further analysis. All relevant data generated in
this study are available within the paper or in the supplementary files. The SNP file generated in this
study is freely available for download from National Agricultural Biotechnology information center
(www.nabic.rda.go.kr) under the accession no NV-0622.

2.3. Genome-Wide Association Analysis, Heritability, and Variance Component Estimation

A genome-wide association study (GWAS) was performed using a mixed linear model
implemented in GCTA v.1.91.4 beta3 [39]. Farm (1419), birth year (2006–2016), birth month (1–12),
slaughter year (2008–2018), slaughter month (1–12), age (17–62 months), slaughter place (53), sire
(324), and dam (8331) were tested for fixed effects. Fixed effects that were significant for all the traits
were fitted in the model; this included farm, birth year, slaughter year, slaughter place, age, and sire.
The single trait model used was as follows:

y = a + bx + g + e

www.nabic.rda.go.kr
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where y is the phenotype; a is the mean; b is the additive effect (fixed effect) of the candidate SNP
to be tested for association; x is the SNP genotype coded as 0, 1, or 2; g is the accumulated effect of
all the SNPs captured by the GRM (genetic relationship matrix, calculated using all the SNPs), and
e is the residual effect. Bonferroni corrections were applied to correct for multiple testing, and the
genome-wide significance threshold at 5% was p < 1.11 × 10−7 (0.05/450062). Manhattan and QQ-plots
were drawn using CMplot [40].

The genetic correlation between pairs of traits was estimated using bivariate REML implemented
in GCTA v.191.4. beta3 [39]. Variance components were estimated using restricted maximum likelihood
analysis (REML) implemented in GCTA v.191.4. beta3 [39], while heritability (h2) was calculated using

REML estimates as
σ2

g

σ2
g+σ

2
e

and its variance.

The genetic contribution of SNPs was estimated using a Bayesian mixture model implemented in
BayesR software [41] (https://github.com/syntheke/bayesR) that fitted all markers simultaneously with
four posterior distributions for each marker. The method assumes the SNPs in the mixture model to be
normally distributed and that the SNP effects are derived from a combination of four distributions
with effect size proportions between 0 and 1 (i.e., explaining 0, 0.01, 0.1, and 1% of the genetic variance).
For mixing, a chain length of 50,000 samples was used with the first 20,000 samples being discarded as
burn-in [42].

2.4. Gene-Set Enrichment Analysis and Protein–Protein Interaction Analysis

The analysis was performed following the method described by Dadousis et al. [13,21]; briefly, for
each trait a nominal p < 0.005 was used to filter for SNPs from the GWAS analysis. Using the SNP
ID’s, gene names assigned to SNPs were filtered from the VCF file that was previously annotated
with SnpEff version 4.3 [35]. The genes were then assigned to functional categories using the Gene
Ontology (GO) [43] database under biological process and molecular function categories, and the
Kyoto Encyclopedia of Genes and Genomes (KEGG) [44] pathway database. The gene-set enrichment
analysis was performed using goseq R package [45]. A Fisher’s exact test was performed to test for
overrepresentation of the genes in each function/pathway (gene-sets) and a false discovery rate (FDR)
correction (5%) was applied to account for multiple testing. The background for the GSEA analysis
was all the genes to which the SNPs used in the GWAS was annotated to (14,267 genes).

Finally, a protein–protein interaction network (PPIN) analysis was performed using the STRING
database [46]. The PPIN analysis was limited to high confidence interactions with scores > 0.99;
the network was clustered with an MCL with the default inflation parameter. The KEGG pathway
enrichment of the PPI network was carried out using ClueGO v.2.5.5 [47].

3. Results and Discussion

Regulatory SNPs that control gene expression and genetic variants that cause protein coding
changes can contribute to phenotypic variation. However, since complex traits are controlled due the
additive genetic effects of a large number of genes that have small effects, several of these SNPs fail to
reach the stringent thresholds adopted in GWAS to control for multiple testing. Therefore in this study,
we performed a regulatory SNP GWAS (promoter and non-synonymous protein coding SNPs) and
complemented it with GSEA and PPIN analysis to understand the genetic contribution and regulatory
role of these SNPs on four carcass traits (BFT, CWT, EMA, and MS) in Hanwoo cattle.

3.1. Phenotypes and Genomic Heritability Estimates

The carcass traits of the sample were normally distributed (Table 1). The mean values of CWT,
BFT, EMA, and MS measured at a similar slaughter age were consistent with those of Roh et al. [48]
but differed marginally with [49]. Several previous studies have reported lower estimates for these
traits [29,50], which could be attributed to differences in the number of animals investigated or
nutritional status during finishing period or due to differences in the methods employed for measuring

https://github.com/syntheke/bayesR
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the phenotypes. The lower phenotypic CV for CWT and EMA (12% and 13%) and higher estimates for
BFT and MS (35% and 31%), are consistent with previous studies [29,51]. The Genetic and phenotypic
correlation between traits are given in Figure 1; the phenotypic correlation among traits was stronger
than their respective genetic correlation. CWT was genetically and phenotypically positively correlated
with BFT, EMA, and MS, with the strongest correlation between CWT and EMA, whereas BFT had
a low phenotypic correlation with EMA and MS, while it had a low negative genetic correlation
with EMA. MS was highly positively correlated with EMA, both phenotypically and genetically. The
high positive correlation between CWT and EMA, both genetically and phenotypically, is consistent
with previous reports in Hanwoo [29,50,52,53]; similar correlations have been reported in Brahman
and Japanese Brown cattle [54,55]. Kim et al. [51] had also reported a medium negative correlation
between EMA and BFT. The genetic and phenotypic correlation estimated between MS and EMA was
higher than what was reported previously by Roh et al. and Son et al. [48,56] but consistent with the
estimates of Hwang et al. [49]. These results suggest that a selection based on CWT will have a low to
medium improvement in BFT, EMA, and MS, while a selection based on BFT or MS will have minimal
improvement on BFT.
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Figure 1. Phenotypic (upper diagonal) and genetic (lower diagonal) correlation among carcass traits in
Hanwoo. The genetic correlation was calculated using bivariate reml in GCTA. The colors represent
the strength of the correlation given in the scale next to the plot.

The proportions of genomic variance attributed to the regulatory SNPs were found to be 0.29,
0.25, 0.29, and 0.38 for BFT, CWT, EMA, and MS, respectively (Table 1). This is between 44% and 77%
of the heritability estimated in a previous study using 11.2 million SNPs from across the genome of
Hanwoo [1], suggesting that the regulatory SNPs might have a large effect on the traits evaluated
in this study. This is consistent with previous reports that had reported that the missense variants
(non-synonymous variants) are able to capture a large proportion of the genetic variance in beef and
dairy cattle [12,57]. The genic region, i.e., the protein coding regions, were also able to capture more
genetic variances than other regions for complex traits in humans [58].

3.2. Genome-Wide Association Study

The GWAS was performed with 450,062 regulatory SNPs (protein coding, promoter SNPs, and
non_synonymous SNPs) to find regions associated with the four traits studied. The mixed linear
model-based GWAS revealed that 15, 176, and 1 SNPs were significantly associated with BFT, CWT, and
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EMA, respectively (Figure 2, Supplementary Table S1). The significantly associated SNPs for BFT ware
located on BTA19, BTA4, BTA6, BTA14, and BTA19 for CWT; and for EMA on BTA 14. No significant
loci were detected for MS. These significant regions were harbored by 4 (BFT), 115 (CWT), 7 (EMA),
and 2 (MS) genes (Table 2). The most significant SNPs were rs109467607 (BFT), rs210030313 (CWT),
and rs210030313 (EMA) located in NOG (Noggin) and CHCHD7 (Coiled-coil-helix-coiled-coil-helix
Domain Containing 7) (CWT and EMA) (Figure 2, Table 2). The majority of the significantly associated
SNPs for BFT were located on a 3.933 Kb region on BTA19 spanning the NOG gene for BFT; all the
15 significant SNPs on this gene were promoter SNPs.
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The most significantly associated SNPs for CWT was located in a 42.01 Mb region on BTA14,
which included genes such as CHCHD7, UBXN2b (UBX Domain Protein 2B), C8orf34 (Chromosome 8
Open Reading Frame 34), and TRIM55 (Tripartite Motif Containing 55).

A previous GWAS with 50K and 777K data have revealed major QTL for CWT on BTA 14,
BTA4, and BTA6 in Hanwoo [1,8]; here we also detected significant QTLs on BTA17 and BTA19.
Among the most significant SNPs for CWT on BTA14 were variants located in CHCHD7, UBXN2b,
C8or34, FAM184B, TRIM55, POLR2K, CYP7A1, SDCBP, PRKDC, TOX, and PLAG1. Variants around
PLAG1, CHCHD7, UBXN2B, FAM184B, and TOX have been previously reported to be associated
with CWT [8,59], stature [60], live weight [61], reproductive traits [62], and puberty [63] in Hanwoo,
Japanese black cattle, Nellore cattle, and Brahman cattle. A few of these loci were also associated
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with EMA (Figure 3). Most of these variants were all 5′ upstream promoter variants, and the large
number of variants over several genes suggests a synergistic effect for the major QTL on BTA14 for
CWT in Hanwoo, confirming the findings of Bhuiyan et al. [1]. Among the significantly associated
SNPs for CWT, 9 SNPs were non _synonymous SNPs; these were located on TBC1D31 (TBC1 Domain
Family Member 31), SPIDR (Scaffold Protein Involved in DNA Repair), PRKDC (Protein Kinase, DNA
activated Catalytic Subunit), DNAJC5B (DNAJ Heat Shock Protein Family (Hsp40) member C5 β),
CRH (Corticotropin Releasing Hormone), ADHFE1 (Alcohol Dehydrogenase Iron Containing 1), and
NCAPG (Non-SMC Condensin I complex Subunit G). These included rs449968016 and rs41726906 on
BTA14 and rs109570900 on BTA6. NCAPG, which is involved in chromatin condensation [64], has
been found to be associated with CWT and body frame size [65,66]. Mutations in this gene has been
implicated with cattle growth in three cattle populations [65,67]. Previous studies had not detected any
significant QTL for BFT in Hanwoo [1,8]; however, we detected a significant QTL on BTA19, nearby
the NOG (Noggin) gene, which induces stem cell adipogenesis [68] and was found to be associated
with meat quality traits in Nellore cattle [69].

Table 2. Top 5 SNPs associated with carcass traits in Hanwoo.

Trait SNP_ID Chr Position p-Value SNP Effect Gene Type

Backfat rs109467607 19 7617020 8.89E-11 0.0579 NOG Promoter
Thickness rs110172746 19 7617964 8.89-11 0.0323 NOG Promoter

rs109749187 19 7618889 8.89E-11 0.00256 NOG Promoter
rs110056766 14 7616793 1.50E-10 0.0354 NOG Promoter
rs109266249 19 7617322 1.50E-10 0.0311 NOG Promoter

Carcass rs210030313 14 25052440 4.12E-30 0.0849 CHCHD7 Promoter
Weight rs209809798 14 26269386 1.07E-27 0.002 UBXN2B Promoter

rs210867053 14 34422595 2.82E-16 0.0006 C8orf34 Promoter
rs210421179 14 34425147 2.82E-16 0.001 C8orf34 Promoter
rs208243667 14 23986995 2.33E-14 0.004 RP1 Promoter

Eye Muscle
Area rs210030313 14 25052440 3.54E-08 0.4121 CHCHD7 Promoter

rs209809798 14 26269386 5.00E-07 0.06 UBXN2B Promoter
rs41734611 14 29827599 3.05E-06 0.007 YTHDF3 Promoter
rs108943384 14 29828860 3.05E-06 0.0097 YTHDF3 Promoter
rs110364554 14 29829523 3.05E-06 0.0051 YTHDF3 Promoter

Marbling
Score Novel 22 11888027 8.23E-06 8.49E-03 ACVR2B Non-synonymous

rs109436056 20 36013931 1.08E-05 9.17E-03 EGFLAM Non-synonymous
rs109353762 11 30965508 1.08E-05 5.42E-03 ENSBTAG00000027015 Promoter
rs109921982 19 50470876 1.17E-05 3.40E-03 ZNF750 Promoter
rs109995364 11 30963318 1.27E-05 6.31E-03 ENSBTAG00000027015 Promoter
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3.3. Contribution of Genomic Variants

The SNP effects was estimated using BayesR, to understand the genetic architecture and the
proportion of variance explained the SNPs in each of the four distributions (with the variance 0* σ2

A,
10−4* σ2

A, 10−3* σ2
A, and 10−2* σ2

A). The results are given in Tables 2 and 3. The SNPs that had the largest
effects for the traits analyzed were located on BTA3 and BTA19 (BFT), BTA6 and BTA14 (CWT), BTA14
(EMA), and BTA 11 (MS) (Supplementary Figure S1). The effects were small, with ~98% of the analyzed
SNPs having close to zero effects, with the rest having different degrees of genetic contribution to
the traits studied. The percentage of SNPs that had the largest effect (10−3* σ2

A and 10−2* σ2
A) varied

between 0.001%–0.04% but they explained only 16.06%–50.83% of the total genetic variance. The effect
size estimated are in agreement with previous reports [1,42,70] that reported a large proportion of
SNPs contributing a zero to close to zero effect, and the infinitesimal theory. The number of SNPs
having a large effect size varied between 5050 (CWT) and 8524 (MS), indicating the polygenic nature of
these traits. The effect sizes of the top markers are given in Supplementary Table S2. The SNPs with
the largest effect size for the traits analyzed were rs109974824 on BTA19 for BFT, rs109062047 on BTA6
for CWT, rs210030313 on BTA14 for EMA, and rs136161587 on BTA11 for MS.

Table 3. Proportion of variants in each of the four distributions identified from BayesR analysis.

Trait nSNPs σ2
g

Number of SNPs in Mixture Component

0 × σ2
A 10−4 × σ2

A 10−3 × σ2
A 10−3 × σ2

A

Backfat Thickness 8085 7.02 441,977 (98.2) 7920 (1.76) {5.57} 157 (0.03) {1.08} 8 (0.002) {0.37}
Carcass Weight 5050 606.40 445,011 (98.9) 4875 (1.08) {298.25} 148 (0.03) {87.07} 28 (0.01) {221.21}

Eye Muscle Area 8118 43.53 441,944 (98.20) 7927 (1.76) {34.47} 186 (0.04) {7.93} 5 (0.001) {1.04}
Marbling Score 8524 1.37 441,538 (98.11) 8361 (1.86) {1.15} 161 (0.04) {0.21} 2 (0.01) {0.01}

nSNPs—Number of SNPs; σ2
g—total genetic variance explained by the SNPs. Values in parenthesis denotes the

proportion of SNPs in that particular mixture component. σ2
A—genetic variance. The sum of squares of the SNP

effects for the particular mixture component is given in { } brackets.

3.4. Gene-Set Enrichment and Protein–Protein Interaction Network Analysis Analyses

Though several regulatory SNPs were found to be significant for CWT, very few SNPs reached
the significance threshold for other traits. Therefore, we decided to supplement the GWAS analysis
with GSEA and PPIN analyses. Out of the 450,062 SNPs tested in GWAS, 348,088 were located in
annotated genes or within 5 Kb windows upstream of the genes. In total, 14,267 background genes were
annotated (Figure 1) in the Bos taurus UMD3.1 assembly. A total of 2657, 3064, 2261, and 2362 SNPs
had a nominal b < 0.005 (Table 4) for BFT, CWT, EMA, and MS, respectively. They were mapped to 759,
731, 626, and 628 genes (Supplementary Table S2). GSEA showed that 25 GO and 18 KEGG terms were
significantly enriched (Table 5). Genes involved in positive regulation of transcription from the RNA
polymerase II promoter, Neuron projection development, Phospholipase activity, Extracellular matrix
binding, and calcium ion binding ABC transporters were enriched amongst BFT associated SNPs,
while regulation of cell proliferation, cell adhesion, the PI3K-Akt signaling pathway, Calcium signaling
pathway, and cell cycle were enriched among genes harboring SNPs associated with CWT. Valine,
leucine and isoleucine degradation, folate biosynthesis, glycerophospholipid metabolism, choline
metabolism, and the insulin receptor signaling pathways were enriched amongst genes harboring
SNPs associated with MS. For EMA, the associated SNP-bearing genes for cell cycle, the p53 signaling
pathway, cell adhesion molecules, cell adhesion, and blood vessel development were enriched.
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Table 4. Number of significant SNPs identified from the genome-wide association study (GWAS) and
the genes that were mapped to traits.

Traits No. of Suggestive SNPs
(p < 0.005)

No. of Genes Mapped within
5Kb of Suggestive SNPs

Backfat Thickness 2657 759
Carcass Weight 3064 731

Eye Muscle Area 2261 626
Marbling Score 2362 628
Background c 450,062 14,267

PA—Pathway Analysis. c Background refers to the total number of SNPs used in the GWAS.

Since a large number of promoter SNPs were used in this study, we performed a PPIN
(protein–protein interaction network) analysis using all the genes previously used for GSEA, to
identify significant SNP harboring genes that physically interact (“Functional epistasis”). Sixty-five
genes were found to interact (Figure 3a) through the PPIN analysis. These three clusters were
found to have a high degree of interaction. Cluster 1 (Figure 3a) included SF3A1 (Splicing factor 3A
subunit 1), EFTUD2 (Elongation Factor Tu GTP Binding Domain Containing 2), SNRPB (Small nuclear
Ribonucloprotein Polypeptides B and B’), DHX16 (DEAH-box helicase 16), and SRSF2 (Serine and
Arginine Rich Splicing Factor 2); they are all spliceosomal proteins (Figure 3b), indicating their role
in post translational modification. The second cluster included members of the AVPR1A (Arginine
Vasopressin Receptor 1A), EDNRB (Endothelin receptor type B), GHRL (Ghrelin and Obestatin
Prepropeptide), PROKR1 (Prokineticin Receptor 1), NMS (Neuroleptic malignant syndrome), and
CCKAR (Cholecystokinin A receptor); they are part of the calcium signaling pathway. In turn, the
third cluster included members of the ubiquitin-mediated proteolysis pathway; they were UBE2E2
(Ubiquitin Conjugating Enzyme E2), FBXO32 (F-Box Protein 32), ANAPC4 (Anaphase Promoting
Complex Subunit 4), NEDD4 (E3 ubiquitin-protein ligase), UBE2K (Ubiquitin conjugating enzyme
E2K), and CUL2 (Cullin 2). Genes in this pathway have been previously found to be associated
with growth and carcass traits in cattle [71]. Ubiquitin-mediated proteolysis ensures cell survival
through protein turnover, and ubiquitination is also essential for signal transduction, endocytosis, and
chromatin rearrangement and repair [72,73]. Functional enrichment analysis of the genes in the cluster
showed that they were part of the calcium signaling, spliceosome, and ubiquitin-mediated proteolysis
pathways. Genes belonging to the TGF-β signaling pathway, pathways in cancer, PI3KT signaling
pathway, and ECM receptor interaction pathways were also enriched (Figure 3b).
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Table 5. Gene Ontology (GO) terms and KEGG pathways significantly enriched using genes associated with traits.

Trait Category Term_ID Term Count % p-Value Genes Fold
Enrichment

BFT BP_DIRECT GO:0045944
Positive regulation of

transcription from RNA
polymerase II promoter

38 5.34 0.002

MEF2C, GDF2, NOG, FOXA2, CREM, F2RL1,
PRKDC, NUFIP1, FLCN, NR2C2, KDM1A, TCF20,
GALR3, HEY2, PKD2, PSIP1, POU4F2, NFATC4,

TAF9, SPIC, FGF1, PIK3R1, CYR61, NFATC1, TWIST1,
NPAS4, FZD5, DDX5, SREBF2, LPIN3, ACVR2A,

ZMIZ2, CAMK1, BMP7, NR5A2, PBX2, ATAD2B, IL2

1.71

BP_DIRECT GO:0031175 Neuron projection
development 10 1.41 0.002 NCAM1, GPRIN1, PTPRM, RAC3, CAMSAP2,

STMN4, MAP4, LAMB1, AGER, FRY 3.62

BP_DIRECT GO:0007200
Phospholipase C-activating
G-protein coupled receptor

signaling pathway
7 0.98 0.007 C3AR1, PLCE1, LTB4R, GALR3, LTB4R2, HTR1F, F2R 4.07

MF_DIRECT GO:0042626
ATPase activity, coupled to
transmembrane movement

of substances
7 0.98 0.009 ABCA10, TAP2, TAP1, ABCB6, ABCA5, ABCA12,

ABCG2 3.84

MF_DIRECT GO:0050840 Extracellular matrix
binding 5 0.70 0.009 DMP1, OLFML2A, THBS1, CYR61, SPP1 5.87

MF_DIRECT GO:0005509 Calcium ion binding 34 4.78 0.014

MYL3, SYT2, EFCAB3, MYL10, SYT6, KCNIP4,
MMP24, CAMKK2, SMOC2, PLCB4, CD93, EEF2K,

TPT1, PKD2, HEG1, THBS1, IHH, PNLIPRP2,
CRTAC1, NCALD, CDHR2, MMP16, PCDH7,

PKD2L1, CDH12, THBD, CALM, EFHB, RYR3,
NOTCH4, PDCD6, LRP4, CASQ2, VLDLR

1.53

MF_DIRECT GO:0031681 G-protein β-subunit
binding 3 0.42 0.020 F2RL1, ARF6, F2R 12.91

KEGG_PATHWAY bta04512 ECM-receptor interaction 11 1.55 0.001 CD47, SDC1, CD36, ITGA8, COL6A2, ITGA2,
LAMB1, THBS1, SV2C, HMMR, SPP1 3.56

KEGG_PATHWAY bta02010 ABC transporters 7 0.98 0.003 ABCA10, TAP2, TAP1, ABCB6, ABCA5, ABCA12,
ABCG2 4.69

KEGG_PATHWAY bta03450 Non-homologous
end-joining 4 0.56 0.010 DCLRE1C, PRKDC, NHEJ1, MRE11 8.66

KEGG_PATHWAY bta04080 Neuroactive
ligand-receptor interaction 18 2.53 0.030

GABRG1, C3AR1, F2RL1, VIPR2, CRHR1, EDNRB,
CHRM2, LTB4R, GALR3, P2RY14, AVPR1B, LTB4R2,

CNR2, HTR1F, GLP1R, GHR, OPRD1, F2R
1.73

CWT BP_DIRECT GO:0042127 Regulation of cell
proliferation 11 1.58 0.038 SGK1, TNFRSF11B, SGK3, TNC, JTB, EGLN3, PKD2,

GHRL, TNK1, NDRG1, RPA3 2.09

BP_DIRECT GO:0007155 Cell adhesion 12 1.72 0.047 IBSP, NOV, PARVG, ITGAL, CD47, OPCML, TNC,
SULF1, GP1BA, GRHL2, CTNNA3, SPP1 1.92
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Table 5. Cont.

Trait Category Term_ID Term Count % p-Value Genes Fold
Enrichment

MF_DIRECT GO:0044822 Poly(A) RNA binding 45 6.46 0.010

YWHAZ, ASS1, GRB2, NOC3L, PRKDC, KNOP1,
RPS19BP1, NUFIP2, RPS27, PRR3, RPL7, MAK16,

MACF1, DHX37, SND1, NUDT16L1, PSIP1, DHX16,
RBM47, RPL12, RPS20, CDC42EP4, TNRC6A,

MTERF1, KHDRBS3, MRPS28, ZC3H15, TBL2, TSR1,
MAGOH, EFTUD2, PKN2, RPL26, CASC3, NUPL2,

RBBP6, FLNB, CMSS1, SRSF2, SYNE1, PTCD3, POP1,
DDX31, DNTTIP2, KCTD12

1.46

MF_DIRECT GO:0005096 GTPase activator activity 14 2.01 0.017
PREX2, ASAP2, ARHGAP24, RGS22, ARHGAP31,

RGS20, RABEP1, ARHGAP42, TBC1D1, CDC42EP4,
RAP1GAP2, ARAP2, CDC42EP3, TBC1D20

2.09

MF_DIRECT GO:0005509 Calcium ion binding 31 4.45 0.029

NKD1, CLSTN3, EFCAB5, DUOX2, MMP27,
MMRN1, ZZEF1, KCNIP4, SMOC2, MACF1, FAT3,

CRB2, PLA2G12A, EFCAB1, PKD2, SRR, PLCB2,
HPGDS, NCALD, PCDH8, DLL1, PCDH7, SLIT2,
PCDH18, ATP2C1, RYR3, NUCB2, SULF1, SCIN,

ANXA13, ADGRL4

1.48

KEGG_PATHWAY bta04151 PI3K-Akt signaling
pathway 21 3.01 0.021

PPP2R1B, FGF6, IBSP, CRTC2, YWHAZ, SGK1, SGK3,
GRB2, TNC, PKN2, CDK6, GNG11, NFKB1, GNGT1,

LAMA3, MAPK3, PDGFRA, PIK3R5, FGF1, MYC,
SPP1

1.70

KEGG_PATHWAY bta04713 Circadian entrainment 9 1.29 0.021 GNGT1, ADCY8, GRIA1, RYR3, MAPK3, CACNA1I,
GNG11, CACNA1C, PLCB2 2.61

KEGG_PATHWAY bta04020 Calcium signaling pathway 12 1.72 0.071
CCKAR, ADRB1, P2RX1, ADCY8, PHKG1, RYR3,

CACNA1I, PDGFRA, AVPR1A, PPP3CA, CACNA1C,
PLCB2

1.78

KEGG_PATHWAY bta04110 Cell cycle 9 1.29 0.075 YWHAZ, RAD21, ANAPC4, BUB1, PRKDC, CDK6,
MYC, BUB3, STAG1 2.02

MAR BP_DIRECT GO:0016477 Cell migration 11 1.82 0.006 CUL3, TNS3, ERG, SDC1, FSCN2, PLCG1, IL12A,
SIX2, IL12B, BAMBI, SRMS 2.79

BP_DIRECT GO:0042127 Regulation of cell
proliferation 11 1.82 0.024 TNFRSF6B, ITK, SGK2, BIRC7, EGLN3, GHRL,

TOPORS, TFAP2C, LGR5, SRMS, NKX2-3 2.25

BP_DIRECT GO:0008286 Insulin receptor signaling
pathway 5 0.83 0.037 SLC2A8, PDK2, FOXO1, RHOQ, ZNF106 3.94

BP_DIRECT GO:0006874 Cellular calcium ion
homeostasis 6 0.99 0.058 EDN3, ATP2C2, ATP2C1, PKHD1, CCL8, ATP13A3 2.85
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Table 5. Cont.

Trait Category Term_ID Term Count % p-Value Genes Fold
Enrichment

MF_DIRECT GO:0005524 ATP binding 50 8.28 0.086

MLH1, SKIV2L2, ACSF2, MTHFD1L, LONP1,
PIP5KL1, DDX28, PRKACB, SGK2, MYH3, OLA1,

CFTR, LIG4, CDK4, NEK11, CDKL4, MAST3,
ATP2C2, ACVR2B, DHX29, ATP2C1, NEK7, XYLB,

DNAH9, SPO11, KIT, ITM2B, STK40, VRK3,
MAP3K1, ENTPD8, LMTK3, ITK, PDK2, SMCHD1,
AK1, TGFBR2, TRIO, ATP1A1, STRADB, ATP13A3,
TRANK1, SMC4, TP53RK, TEX14, PLK2, PSMC3,

MYO16, FPGS, SRMS

1.23

MF_DIRECT GO:0005509 Calcium ion binding 26 4.30 0.089

LALBA, GPD2, LPO, MYL2, EFCAB5, CRTAC1,
PAMR1, PCDH10, CDHR3, SYT9, SYT6, PCDH8,

STAB2, LPCAT2, SLIT1, ZZEF1, HMCN2, CDH12,
ANXA6, EGFLAM, CLGN, FAT3, PLCG1, ATP2C1,

FAT1, MCFD2

1.38

KEGG_PATHWAY bta04060 Cytokine-cytokine receptor
interaction 17 2.81 0.000

TNFRSF6B, TGFBR2, CCL8, IL10, IL12RB2, CCR9,
ACVR2B, IL17B, IL12RB1, PRLR, CCR4, IL12A,

TNFRSF19, CSF3R, IL12B, IFNGR2
2.83

KEGG_PATHWAY bta05200 Pathways in cancer 22 3.64 0.003

RALBP1, TGFBR2, BIRC7, EGLN3, MLH1, FOXO1,
LEF1, ITGA3, NFKB2, KIT, CDK4, MMP2, AGTR1,

EDNRB, CUL2, PLCG1, SOS1, RALB, CSF3R, HHIP,
PRKACB, TRAF6

2.00

KEGG_PATHWAY bta00280 Valine, leucine and
isoleucine degradation 5 0.83 0.047 HMGCS2, OXCT1, DLD, IL4I1, ACAD8 3.62

KEGG_PATHWAY bta00790 Folate biosynthesis 3 0.50 0.048 GGH, FPGS, GCH1 8.37

KEGG_PATHWAY bta00564 Glycerophospholipid
metabolism 7 1.16 0.050 GPD2, CHKA, ADPRM, ETNK1, LPCAT2, PLPP1,

PLPP2 2.61

KEGG_PATHWAY bta05231 Choline metabolism 7 1.16 0.054 CHKA, PLCG1, SOS1, SLC22A5, PLPP1, PLPP2,
SLC22A1 2.56

KEGG_PATHWAY bta04630 Jak-STAT signaling
pathway 9 1.49 0.055 IL12RB2, IL12RB1, PRLR, SOS1, IL12A, CSF3R, IL12B,

IFNGR2, IL10 2.16

EMA BP_DIRECT GO:0031663 Lipopolysaccharide-mediated
signaling pathway 4 0.34 0.057 MAPK3, NFKBIA, PRKCE, PTAFR 4.52

BP_DIRECT GO:0001568 Blood vessel development 4 0.34 0.057 MEF2C, PSEN1, ITGAV, RAPGEF2 4.52

BP_DIRECT GO:0042127 Regulation of cell
proliferation 9 0.77 0.090 SGK1, PTGS2, TNC, LCK, CHST11, NFKBIA, FAS,

PLAU, TEC 1.95
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Table 5. Cont.

Trait Category Term_ID Term Count % p-Value Genes Fold
Enrichment

BP_DIRECT GO:0007155 Cell adhesion 10 0.85 0.096 ITGAL, LYVE1, TNC, NPHS1, ACAN, ITGA2,
GP1BA, PRKCE, FN1, MYH10 1.83

MF_DIRECT GO:0008168 Methyltransferase activity 6 0.51 0.004 ZCCHC4, METTL21B, TRMT10A, PRMT9, NSUN3,
METTL18 5.52

MF_DIRECT GO:0005524 ATP binding 54 4.61 0.013

KIF22, SEPHS2, INO80, IARS2, PIP5KL1, MOS,
PRKACB, SIK2, ABCE1, SGK1, MYH3, CDK6, LIG4,

PRKCE, UBE2C, CDK4, CDKL4, UBE2N, MAST4,
UBE2K, ATP2C1, RIPK1, LCK, MAPK3, RRM1,

DNAH9, PEAK1, PRKDC, CHEK2, ITM2B, DNAH5,
STK40, ENTPD8, STK38L, ABCA13, AATK, TEC,

DHX8, PDK2, ALPK3, AK1, AK7, RIMKLB, TP53RK,
GLYCTK, DYRK1A, ATP2A1, DGKZ, ABCC2,
NLRP13, FPGS, KATNAL2, MYH10, ATAD2B

1.38

MF_DIRECT GO:0005509 Calcium ion binding 29 2.47 0.016

GALNT3, TBC1D9, MMP8, MMP27, C2CD4D, EDIL3,
KCNIP1, CRB2, ACAN, CDH26, HPGDS, GPD2,

NOX5, ADGRE3, HSPG2, S100A10, STIM1, TC2N,
CABYR, CLGN, CDH17, ATP2C1, ATP2A1, DSC3,

RYR2, DSC2, ANXA13, SGCA, LCP1

1.59

KEGG_PATHWAY bta04110 Cell cycle 11 0.94 0.005 E2F2, YWHAH, HDAC1, RBL1, ANAPC4, PRKDC,
CDK6, ANAPC10, ORC6, CHEK2, CDK4 2.89

KEGG_PATHWAY bta04115 p53 signaling pathway 7 0.60 0.020 RFWD2, CASP3, CDK6, CHEK2, FAS, CDK4, CCNG1 3.24

KEGG_PATHWAY bta04514 Cell adhesion molecules
(CAMs) 10 0.85 0.044 GLG1, CLDN8, ITGAL, CLDN18, CD86, VTCN1,

ITGAV, CD274, NEO1, CLDN25 2.13
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3.5. Calcium Signaling Pathway

GSEA and PPIN revealed that calcium-related processes such as calcium ion binding, cellular
calcium ion homeostasis, and the calcium signaling pathways were amongst the enriched terms. In total,
109 calcium-related genes were part of the gene set (Table 4, Figure 3). Calcium plays an important
role in meat tenderization, feed efficiency, and muscle contraction, and several genes involved in
calcium-related processes were also found to affect meat quality in Angus cattle [74,75]. Calcium
signaling is also key for regulating muscle growth is beef cattle [76]. Moreover, the calpain/calpastatin
system, which is a key regulator of meat tenderness and is associated with carcass and meat quality
traits such are tenderness, flavor and juiciness, and marbling score, [77–81] is calcium dependent.
Some key calcium signaling pathway genes enriched were AVPR1A (Arginine vasopressin Receptor
1A), CCKAR (Cholecystokinin A), CHRM2 (Cholinergic Receptor Muscarinic 2), EDNRB (Endothelin
Receptor Type B), GHRL (Ghrelin and Obestatin Prepropeptide), PROKR1 (Prokineticin Receptor 1),
and NMS (Neuromedin-S). Polymorphisms in several of these genes were found to be associated with
meat quality and productivity traits [82–84].

3.6. ECM Receptor Interaction, PI3K-Akt Signaling, and Pathways in Cancer

The extra cellular matrix (ECM) is critical for tissue architecture and is involved in adipogenesis [85].
ECM comprises of a mixture of macromolecules, including glycosaminoglycans and fibrous proteins
such as lammin, elastin, collagen, and fibronectin [85]. Several ECM-related terms, such as cell adhesion
and extra cellular matrix interaction, were also enriched (Table 4). ECM receptor interaction has
been previously implicated in adipogenesis and meat tenderness and was found to be upregulated
in subcutaneous fat and intramuscular fat [86]. The PI3K-Akt signaling pathway plays a central
role in controlling skeletal muscle mass and metabolism by increasing protein synthesis together
with inhibition of protein degradation [87,88]. Members of the PI3K-Akt signaling pathway were
enriched amongst cattle with a larger eye muscle area and also affected their intramuscular fatty acid
content [89,90]. Several genes that function in cellular proliferation and cell division were part of
pathways in cancer, including GHRL (Ghrelin and obestatin Prepropeptide), polymorphisms which
are associated with growth and economically important traits in beef cattle [91,92].

These pathways shared several genes, and some key genes enriched included SDC1 (Syndecan 1),
HMMR (Hyaluronan Mediated Motility Receptor), CD47 (Cluster of Differentiation 47), ITGA1 (Integrin
α-1/β-1), LAMA3 (Laminin subunit α 3), SPP1 (Secreted phosphoprotein 1), CHRM2 (Cholinergic
Receptor Muscarinic 2), TNC (Tenascin C), SGK1 (Serine/glucocorticoid-regulated kinase 1), FOXO1
(Forkhead Box O1), GRB2 (Growth factor receptor-bound protein 2), MAPK3 (Mitogen activated protein
kinase 3), FGF1 (Fibroblast growth factor 1), PPP2R1B (Protein Phosphatase 2 Scaffold Subunit Abeta),
EGLN2 (Egl-9 Family Hypoxia Inducible Factor 2), and EGLN3 (Egl-9 Family Hypoxia Inducible
Factor 3); several of them have been found to be associated with marbling and other carcass traits in
cattle [91,93–98].

3.7. Other Important Pathways and Terms Enriched

Several other important pathways were enriched. These included the insulin receptor signaling
pathway, glycerophospohlipid metabolism, choline metabolism, and cell cycle. Insulin has a critical
effect on adipogenesis [99]. The genes enriched included FOXO1, a forkhead box transcription factor,
which plays an important role in energy metabolism, stress resistance, apoptosis, and cell cycle arrest;
polymorphisms in this gene are associated with growth traits in Qinchuan cattle [100].

Glycerophospholipid are a major class of complex lipid with an esterified glycerol backbone,
two fatty acids, and a polar head group [101]. Glycerophospholipid metabolism regulates beef fatty
acid content and affects beef taste. GPD2 (glycerol-3-phophate dehydrogenase 2), which is involved
in glyerophospholipid metabolism, was previously found to be associated with marbling score in
Hanwoo cattle [93,102]. Choline is an essential nutrient that improves lipogenesis [103]. PLCG1
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(Phospholipase C, gama 1), a gene involved in choline metabolism, was found to be significantly
associated with carcass traits in Hanwoo [104].

4. Conclusions

The pathways and genes identified in this study enrich our standing of the molecular mechanisms
underlying complex traits in Hanwoo. The candidate SNPs identified to be associated with the
evaluated traits will help in breeding Hanwoo cattle with superior carcass traits. Our result shows that
the regulatory SNPs are able to capture a large proportion of the total genetic variation. The genes in
the associated pathways identified in this study, such as calcium signaling, ECM receptor signaling,
PI3K-Akt signaling, regulation of cell proliferation, insulin signaling, glycerophospholipid, and choline
metabolism, might be good candidates for identifying markers that might be associated with carcass
traits in cattle. Integrating gene expression data along with the regulatory SNPs used in this study
might help in identifying genes and SNPs that have a significant effect on carcass traits.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/11/3/316/s1,
Figure S1: Manhattan plot with estimated genetic variation explained by individual SNPs for BFT, CWT, EMA
and MS. Combination of normally distributed variance ranging between 0 to 1% were used for estimating SNP
effects using BayesR. Table S1: List of significant SNPs (p < 1 × 10−5) associated with BFT, CWT, EMA and MS,
Table S2: List of all SNPs (p < 0.005) associated with BFT, CWT, EMA and MS that were used for GSEA and
pathway analysis.
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