
Genomics Proteomics Bioinformatics 19 (2021) 848–859
Genomics Proteomics Bioinformatics

www.elsevier.com/locate/gpb
www.sciencedirect.com
METHOD
FunHoP: Enhanced Visualization and Analysis of

Functionally Homologous Proteins in Complex

Metabolic Networks
* Corresponding authors.

E-mail: kjersti.rise@ntnu.no (Rise K), morten.rye@ntnu.no (Rye

MB).

Peer review under responsibility of Beijing Institute of Genomics,

Chinese Academy of Sciences / China National Center for Bioinfor-

mation and Genetics Society of China.

https://doi.org/10.1016/j.gpb.2021.03.003
1672-0229 � 2021 The Authors. Published by Elsevier B.V. and Science Press on behalf of Beijing Institute of Genomics, Chinese Academy of S
China National Center for Bioinformation and Genetics Society of China.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Kjersti Rise
1,*, May-Britt Tessem

2
, Finn Drabløs

1
, Morten B. Rye

1,3,*
1Department of Clinical and Molecular Medicine, NTNU – Norwegian University of Science and Technology, Trondheim
NO-7491, Norway

2Department of Circulation and Medical Imaging, NTNU – Norwegian University of Science and Technology, Trondheim

NO-7491, Norway
3Clinic of Surgery, St. Olavs Hospital, Trondheim University Hospital, Trondheim NO-7491, Norway
Received 3 August 2018; revised 8 May 2019; accepted 18 August 2019

Available online 17 March 2021

Handled by Henning Hermjakob
KEYWORDS

Homologous proteins;

Metabolic network;

Pathway visualization and

analysis;

RNA-seq;

KEGG;

Cytoscape
Abstract Cytoscape is often used for visualization and analysis of metabolic pathways. For exam-

ple, based on KEGG data, a reader for KEGGMarkup Language (KGML) is used to load files into

Cytoscape. However, although multiple genes can be responsible for the same reaction, the KGML-

reader KEGGScape only presents the first listed gene in a network node for a given reaction. This

can lead to incorrect interpretations of the pathways. Our new method, FunHoP, shows all possible

genes in each node, making the pathways more complete. FunHoP collapses all genes in a node into

one measurement using read counts from RNA-seq. Assuming that activity for an enzymatic reac-

tion mainly depends upon the gene with the highest number of reads, and weighting the reads on

gene length and ratio, a new expression value is calculated for the node as a whole. Differential

expression at node level is then applied to the networks. Using prostate cancer as model, we inte-

grate RNA-seq data from two patient cohorts with metabolism data from literature. Here we show

that FunHoP gives more consistent pathways that are easier to interpret biologically. Code and

documentation for running FunHoP can be found at https://github.com/kjerstirise/FunHoP.
Introduction

Metabolic pathway analysis is a common framework for inter-

preting large-scale omics data and revealing functional trends
and patterns in known biological multi-gene pathways. Impor-
tant curated resources of metabolic pathways are the Kyoto

Encyclopedia of Genes and Genomes (KEGG) [1,2],
ciences /
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Reactome [3], Panther [4], and similar knowledge bases [5].
Such resources are increasingly integrated with other know-
ledge bases, as can be seen for example for KEGG [6]. Several

approaches can be used for analyzing metabolic pathways in
the context of general network representations [7], and recent
tools like eXamine [8] and Orthoscape [9] are relevant exam-

ples. For transcriptomics, an often-used approach is to map
differentially expressed genes (DEGs) to known biological
pathways, for example from KEGG. Such pathway represen-

tations can then be analyzed and visualized with commercial
tools like Pathway Studio (www.pathwaystudio.com/) or
iPathwayGuide (www.advaitabio.com/ipathwayguide.html),
or free tools like CellDesigner [10] or Cytoscape [11].

In these tools, metabolic pathways are generally displayed
as a network of metabolic transitions, where each transition
is associated with a node representing the enzyme responsible

for the transition. Each node typically represents a separate
child from a structured pathway file, such as XML format.
However, a challenge occurs when a transition from one

metabolite to another can be catalyzed by more than one pos-
sible enzyme, i.e., by functionally homologous protein families,
or functional homologs [12]. This is best illustrated by a typical

example from KEGG. In the histidine metabolic pathway
(KEGG: hsa00340), the four paralogs of NAD(P)+ dependent
aldehyde dehydrogenase (ALDH3A1, ALDH1A3, ALDH3B1,
and ALDH3B2, KEGG node index 1.2.1.5, Figure 1A) can

all catalyze the transition from methylimidazole acetaldehyde
to methylimidazole acetate. However, KEGG displays only
the first gene, ALDH3A1, both in the website and in the

XML file. In the website, the user can hover the mouse pointer
over the gene in question to see any functional homologs, and
the XML file does contain the KEGG IDs to all of them,

although the corresponding gene names are not available in
the file. In most conditions and cell types, one of these paralogs
might be the preferred for the enzymatic transition, but in cer-

tain conditions one or several of the other three paralogs may
become important, which should be taken into account.
Though the selected example contains only four paralogs, the
number of alternative enzymes can exceed 30 for some transi-

tions, which complicates both visualization and interpretation
of such nodes in the current framework. An example of a large
node is the PLA2G4B node with 21 genes shown Figure 1B. In

particular, the conclusion as to whether a node is overall up- or
down-regulated will depend on the degree of differential expres-
sion of each gene (fold change and/or P value), the relative

expression level of each gene in the node, and the enzymatic
efficacy of the protein. The challenges regarding nodes with
multiple genes are thus twofold. First, there is a need for data
that can help us identify the most important enzyme(s) in con-

ditions where multiple genes are able to perform the same reac-
tion. Second, there is a need for improved visualization
strategies to convey the relative importance of different

enzymes with overlapping function when viewing biological
networks from databases such as KEGG.

Cytoscape is a common tool for pathway visualization and

analysis, often with data from KEGG. Pathways of choice can
be downloaded from KEGG as KGML XML files (KEGG
Markup Language, in XML format) and imported into Cytos-

cape using one of the many apps, such as KEGGscape [13]. In
Cytoscape, the user can define styles, highlight nodes and/or
edges, or change properties (e.g., color, thickness, or shape
of both nodes and edges based on uploaded data, such as gene
expression or protein data). Layouts, statistical analyses, or
specific apps with certain abilities can be applied to analyze
the network in question. Importing the pathway is a crucial

part of the analysis. The limitation in the KEGG XML files
and/or KEGGScape of only showing the first of potentially
multiple genes in each node has consequences for both analysis

and interpretation (Figure 1), since the missing expression data
of the remaining genes in the node makes it impossible to con-
clude on the overall gene expression associated with each node.

It would be a huge advantage if one could expand the analysis
to include differential expression of all genes in a node, and
visualize the expression levels and associated differences for
nodes consisting of multiple genes. This can be used to con-

clude on the overall up- or down-regulation at the node level,
and suggest which gene(s) in the node that may have the lar-
gest influence on the overall activity.

Other options for importing KEGG XML files are
CyKEGGParser [14] and CytoKEGG (http://apps.cytoscape.
org/apps/cytokegg). CyKEGGParser discusses the topic of

paralogs being grouped into single nodes, and their solution
is to create new separate nodes for each of the genes within
a multi-gene node. CytoKEGG is used to search and import

KEGG pathways into Cytoscape. Dealing with multiple genes
in the same node has also been discussed by others in a non-
Cytoscape related context. The Bioconductor package Gra-
phite [15] converts pathway topology to gene networks, and

uses a combination of data from three curated databases
(KEGG, Reactome, and BioCarta/NCI/NPID [16]) to create
more complete networks. For the pathways from KEGG,

Sales et al. [15] discuss how nodes with multiple genes may rep-
resent two different types of groups: protein complexes
(‘‘AND groups”, all genes should be considered together) or

alternative proteins for the same function (functional homo-
logs; ‘‘OR groups”, considering one gene at the time). This sec-
ond group (OR) can be expanded into pathways without any

connections between the alternative genes/proteins. In another
publication, Wang et al. [17] acknowledge nodes with multiple
genes by coloring the same node with multiple colors repre-
senting the different gene expression values. In addition, the

number of genes in each node is displayed next to it. Although
this approach can work for nodes with a limited number of
genes, it will become harder to interpret when the number of

genes increases. Additionally, neither of these approaches
show the expression level for each gene, which can help to
identify the genes that are most likely to be responsible for

the reaction in a given node.
In nodes with multiple functional homologs, the relative

expression levels of the genes in a node can be an accessible
and useful measure to assess the relative importance of the

individual enzymes for a given condition. For microarrays,
the previous golden standard for gene expression analysis,
differences in probe-affinities made it difficult to assess the

relative expression levels between genes in an experiment [18].
However, the replacement of microarrays by RNA sequencing
(RNA-seq) has now made comparison of expression levels fea-

sible [18–21]. Data from RNA-seq could therefore be utilized
to improve the analysis of the overall node activity, as well
as the individual contribution of each gene in the node for a

given metabolic pathway.
Here we present Functionally Homologous Proteins (Fun-

HoP): a method to improve gene expression pathway analysis
and visualization. FunHoP improves the network visualization

http://apps.cytoscape.org/apps/cytokegg
http://apps.cytoscape.org/apps/cytokegg


Figure 1 Comparison of pathway XML files in Cytoscape to the same pathways in KEGG

A. A schematic of histidine metabolism pathway. All nodes in the original Cytoscape display show one single gene, including the

ALDH3A1 node. The ALDH3A1 node from KEGG actually contains four genes: ALDH3A1, ALDH1A3, ALDH3B1, and ALDH3B2. B.

A schematic of glycerophosphocholine metabolism pathway (part). The PLA2G4B node contains 21 genes, despite only showing one in

KEGG.
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and analysis with respect to differential expression of nodes
with multiple genes, and the relative contribution of each gene

in a node. In particular, FunHoP aggregates gene information
for each KEGG node consisting of multiple genes by using
RNA-seq gene expression data for each gene, assuming that
genes in the same node represent overlapping enzymatic poten-

tial (i.e., functional homologs). We show that prioritizing
genes based on read counts from RNA-seq will improve the
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interpretation of differential expression results when analyzed
with KEGGmetabolic pathways. By gaining information from
multiple genes for each node as input for differential expres-

sion analysis, we receive more biologically relevant and reliable
pathways. Using prostate cancer (PCa) as a model system, we
present two case studies showing how gene expression data are

able to explain previously observed metabolic changes when
FunHoP is applied.

Method

RNA-seq data for PCa (read counts and gene identifiers) were
downloaded from The Cancer Genome Atlas (TCGA) [22] at

https://portal.gdc.cancer.gov/repository. For the Prensner
cohort [23], RNA-seq raw reads in fastq-format were down-
loaded with approval from The database of Genotypes and

Phenotypes (dbGap: phs000443.v1.p1, project No. 5870) at
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?
study_id=phs000443.v1.p1.

RawRNA-seq reads weremapped to the hg19 transcriptome
using TopHat2 [24], and featureCounts [25] was used to assign
the reads to each gene. Voom [26] was further used for differen-
tial expression analysis. DEGs with a P value below 0.05 were

extracted, and P values were log2 transformed by:

Value ¼ log2 P value� ð�10Þ � regulationð Þ ð1Þ
where regulation was defined as 1 for up-regulated genes (posi-
tive fold-change) and �1 for down-regulated genes (negative

fold-change). Average RNA-seq read count for each gene
was calculated using the mean of the two average values calcu-
lated over cancer and normal samples, respectively. All read

counts were adjusted for gene lengths by a factor estimated
by taking the gene length of the respective gene (sum of exons)
divided by the average gene length over all genes.

In this study, 85 pathways of relevance to human metabo-
lism, from subcategories 1.1 up to and including 1.11, were
downloaded with human genes from the KEGG pathway
database [27]. 71 of these did not contain any ‘‘line” nodes,

and were used further (see Tables S1 and S2). The initial path-
way analysis was performed by loading original KEGG XML
files into Cytoscape (v. 3.4.) via the KEGGScape app and

using a color gradient based on differential expression. All dis-
plays of differential expression used the same gradient: values
were found on a scale from �1200 (black) to 600 (dark green),

via �600 (purple), �300 (bright red), 0 (light yellow), and 300
(bright green). All values below zero showed down-regulated
gene expression, and all values above zero showed

up-regulated gene expression.
To expand the XML files to show all the genes in all the

nodes, the list of human IDs and corresponding gene names
was downloaded [28]. Using the ElementTree XML API, name

strings in nodes with more than one gene were extended to
include only the human names for all these genes (File S1).
KEGG’s solution to protein complexes was used as a base,

and nodes with more than one gene were expanded. The
expanded nodes were made by creating a new child for each
of the genes that were not included in the initial child, and

combining the new children along with the old child in a com-
mon node. The gene nodes use the same coordinates as the
original gene, making it appear in the same place.
To distinguish gene nodes from protein complexes, the gene
nodes were made bigger than the default size, giving them a
white field on each side. Differential gene expression was first
used in combination with the expanded networks, showing

how all the genes in the pathway were expressed.
To make more interpretable networks yet containing all the

information, all genes within a node were aggregated into one.

Name strings were extracted from all the network files, and the
lists of unique names were defined as unique nodes. These
included both single-gene and multiple-gene nodes. All gene

nodes were named on the form ‘‘gene1-Bx”, where ‘‘gene1”
is the name of the first gene in the gene-name string for a given
node, and ‘‘x” is the number of genes within the node. For
single-gene nodes x is 1. The total read count for a node was

found by adding the read counts for all genes in the node,
and this value was used for differential expression analysis at
the node level. The contribution of each gene to expression

level within a node was calculated as the fraction of the read
count for that gene to the total read count of the node. The
read count for each gene was used to style for expanded net-

works according to the relative expression levels of the genes.
Nodes were colored on a scale from 0 to � 50,000 read counts,
changing from white to dark blue via shades of pink and blue.

The aggregated network files were adapted to work with the
aggregated network gene node names. Changing the name
strings to reflect the first gene name and the number of genes
made the string similar to the gene node name format, and the

network files could again be used together with the output from
differential expression. The previously used style for differential
expression was again used for the aggregated networks.

To show that the method works, two case studies were per-
formed: the histidine metabolism pathway and a minor part of
the metabolic pathway for glycerophosphocholine (GPC). The

original files from KEGG were run through FunHoP’s steps of
creating expanded and aggregated networks, as explained
above, analyzed with differential expression, and visualized

as expanded networks at the gene level and aggregated net-
works at the node level.

Results

Expanding nodes and using RNA-seq counts to improve pathway

analysis

To visualize KEGG pathways using information from all the

individual genes involved, each node containing multiple func-
tional homologs was expanded to show all genes in the node.
Nodes were expanded by adding a new child for each gene
belonging to the node, in addition to the existing child repre-

senting the default gene displayed in the pathway from KEGG
in Cytoscape by KEGGScape. Old and new children of a node
were then connected in a type ‘‘group” child, using the same

strategy as for protein complexes (AND groups). To visually
distinguish nodes with functional homologs (OR) from protein
complexes (AND), the nodes were made bigger than the

default size, giving them a white border on each side
(Figure 2A).

We then used the average RNA-seq read count for each
gene (normalized against gene length), generated from patient

samples in two available PCa cohorts [22,23]. Aggregated
average read counts for all genes in each node were used to
define the total expression level of each node in the network.

https://portal.gdc.cancer.gov/repository
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi%3fstudy_id%3dphs000443.v1.p1
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi%3fstudy_id%3dphs000443.v1.p1


Figure 2 Validation of the FunHoP approach

A. The ALDH3A1 node expanded to show individual genes styled by differential gene expression. B. The expanded PLA2G4B node with

its 21 genes. The PLA2G4B gene itself is not found in the dataset, leading to the whole node to be seen as not significant when only

PLA2G4B is shown, although the other hidden genes are significantly differentially expressed. C. Plots of log2 read count from TCGA and

Prensner (top) and gene abundance ratio in TCGA vs. in Prensner (bottom). D. Gene abundance ratios within the PLA2G4B node from

(B) are comparable between the TCGA and Prensner cohorts.

852 Genomics Proteomics Bioinformatics 19 (2021) 848–859
Moreover, the relative read count for each gene in a node
divided by the total read count for the node was used to define

the relative expression contribution from each gene in a node.
To show the effect of FunHoP, original pathways were

color-coded according to log-transformed P values from

differential gene expression analysis, here comparing PCa
tissue with normal prostate tissue. For showing individual
genes within an expanded node, each gene was color-
coded by both P values and the average read count for

the gene to indicate expression level, giving two expanded
networks that were comparable. The final representation
shows the network with aggregated nodes, color-coded by

differential expression based on overall read counts within
a node.
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Assumptions regarding gene families and expression levels

We introduce two important assumptions for the biological
interpretations in FunHoP. First, we observe that genes
assigned to the same node usually belong to the same func-

tional gene family or are closely related, as in the case of the
nodes for the aldehyde dehydrogenases (Figure 2A) and phos-
pholipases (Figure 2B). Thus, we make the assumption that the
gene products also have similar function, in particular that

they are able to catalyze the same main reaction, and describe
them as enzymes with homologous function, or functional
homologs. Therefore, we assume that each homolog can cat-

alyze the reaction at a comparable rate. This is obviously an
oversimplification, but also a necessary simplification given
the general lack of rate data for most cellular processes.

Second, we assume that read counts from RNA-seq are
indicative of the relative expression level of genes within a sam-
ple cohort. To check this assumption, we used RNA-seq read

counts from two independent datasets. We see that the gene
expression levels based on RNA-seq read counts are highly cor-
related (Figure 2C). We also find that expression ratios for indi-
vidual genes in a node are correlated (Figure 2D). In particular,

there is a very good correspondence for genes having particu-
larly high (> 0.9) or low (< 0.1) ratios, which shows that
RNA-seq data can robustly identify genes with a very high or

very low relative abundance. This pattern is also evident when
looking at individual genes within a node with high complexity,
as the ratio for each gene within the node follows the same trend

independent of which dataset we used (Figure 2D). The highly
expressed PLA2G2A is clearly dominant in both datasets, the
genes with very low number of read counts are the same, and
the genes identified with few and intermediate number of read

counts are also the same, though the relative ratios vary some-
what among the intermediate genes in the two datasets.

Under these assumptions, a gene’s contribution to the overall

node activity is proportional to its expression level. This infor-
mation becomes particularly useful in situations where one
specific gene is dominating within a node. An example of this

is the PLA2G4B node in the glycerophospholipid metabolism
pathway (KEGG: hsa00564). The current Cytoscape/KEGGS-
cape/KEGG framework only shows PLA2G4B, which is not

found in the TCGA dataset, and hence the node seems to be
not significant in the pathway. When the node is expanded, we
see all 21 genes or functional homologs. By comparing the read
counts for each gene, we see how PLA2G2A is expressed at a

level that is ten times higher than the second one on the list
(Figure 2B). Here, the darkest blue corresponds to � 50,000
read counts, whereas the white/pink/light blue corresponds to

< 5000 read counts. The genes indicated in light pink have
<10 read counts, and the ones in white are not expressed. These
genes will most likely not contribute significantly to the pathway

in this case. The KEGG default gene PLA2G4B is not found in
the TCGA dataset, and has a low expression in the Prensner
dataset. In this case, it is reasonable to assume that PLA2G2A
is the main driving force for the transition represented by the

node.

Case studies

To investigate the impact of FunHoP on real biological inter-
pretation of networks, we used PCa as a model system for two
case studies. Metabolic studies have identified significant
changes in metabolites in both histidine and glycerophospho-
lipid metabolism pathways, but gene expression changes in

the original network models were unable to explain the
observed metabolic differences. Our aim was to investigate if
FunHoP could identify the possible changes in expression

levels leading to the observed changes in metabolites. The
dataset from TCGA was further used in the following case
studies due to its high number of samples and thereby statisti-

cal power.
Case study 1: histidine metabolism

The first case study looks at the histidine metabolism pathway.

It has been shown that histidine is elevated in PCa compared
to normal prostate tissue [29]. This elevation cannot be
explained by differential changes in gene expression using the

original pathway (Figure 3A). In the original pathway, his-
tidine is produced from carnosine in two paths, by CNDP2
or CNDP1. Histidine can then be converted back to carnosine
through a loop by CARNS1 (Figure 3A). Looking at the

P values for the respective genes shows that CNDP1 is down-
regulated, and CNDP2 and CARNS1 are up-regulated with P
values within the same order of magnitude. Moreover, of the

genes in the other paths leading away from histidine, HAL is
up-regulated whileHDC and DDC are unchanged (Figure 3A).
Overall, this pathway is not compatible with the observed

increase in histidine levels in PCa.
However, when using the FunHoP-expanded pathway to

visualize all genes and nodes, we can see how the original path-

way is an oversimplification of a more complex pathway
including three nodes with multiple genes (Figure 3B). Many
of these nodes have genes that are up- or down-regulated. As
there are no functional homologs in the nodes most directly

linked to histidine, expanding nodes alone does not lead to
any improved interpretation in this case. However, when
RNA-seq read counts are shown together with differential

expression in the extended pathway, we are able to provide a
possible explanation as to how histidine level may be elevated
(Figure 3C).

For the paths leading to histidine synthesis, the most domi-
nant gene in read counts is CNDP2, which is up-regulated and
has about 11,000 reads. Up-regulation of CNDP2 pushes car-
nosine conversion to histidine. The down-regulated CNDP1

has close to zero read counts and can be ignored. CARNS1,
responsible for the loop back towards carnosine, has less than
100 reads, and is probably less influential than CNDP2. We

can therefore assume that up-regulation of the highly
expressed CNDP2 most likely leads to increased production
of histidine. For the paths leading away from histidine, all

genes in the path leading towards glutamate (including the
up-regulated HAL) have close to zero read counts, and can
be ignored. With HDC and DDC remaining unchanged, there

is no net change in histidine consumption. Increased histidine
production through the highly expressed CNDP2 combined
with ignorable changes in histidine consumption, leads to a
possible explanation for how histidine accumulates. Moreover,

the genes further downstream of histamine (i.e., HNMT and
AOC1) are down-regulated with higher read counts (2519
and 3636 read counts, respectively), creating a bottleneck in

the influx/efflux balance, which can lead to further increase
in histidine levels. The overall read counts in the pathway



Figure 3 Pathway of histidine metabolism

A. Original pathway colored by differential gene expression on a log-scale. B. Expanded pathway colored by differential gene expression.

C. Expanded pathway colored by RNA-seq read counts. D. Aggregated pathway colored by differential gene expression at the node level.
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seems to push towards accumulation of histidine, which is not
used further downstream in any direction, allowing a build-up

of histidine to happen. The histidine pathway also shows
examples of nodes with high difference in read counts between
genes in the node. One example is the ALDH3A1 node, where

ALDH1A3 dominates with 46,595 read counts, while the three
remaining genes have less than 1000 reads each. This further
strengthens the idea that the differential expression of the

dominant gene will determine the overall expression of the
node.

The conclusions from the expanded network are also evi-
dent in the aggregated network at the node level (Figure 3D),

where CNDP2 is clearly highlighted, especially when looking
at the pathway styled with read counts. The aggregated
network shows how nodes that appear to be up-regulated in
the original network are shown to be down-regulated, and vice

versa. Overall, FunHoP provides a more complete pathway
analysis, and is able to give a more precise explanation on
how histidine can be elevated in PCa.

Case study 2: glycerophospholipid metabolism

The second case study looks at part of the glycerophospholipid
metabolism. The complete pathway is extensive and contains

several complex nodes with up to 21 genes, which makes visu-
alization and analysis challenging. Previous studies have
shown elevated levels of GPC in PCa [30–32], and the original

Cytoscape network from KEGG colored by differential
expression is shown in Figure 4A.



Figure 4 Pathway of glycerophospholipid metabolism (part)

A. Original pathway colored by differential gene expression on a log-scale. B. Expanded pathway colored by differential gene expression.

C. Expanded pathway colored by RNA-seq read counts D. Aggregated pathway colored by differential gene expression at the node level.
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The initial pathway does not provide an explanation to how

GPC can be elevated based on differential gene expression val-
ues. In the reaction paths leading from lecithin towards GPC,
three displayed genes are not significantly differentially

expressed (PLA2G16 and PNPLA6 via 1-lysolecithin, and
PLA2G4B towards 2-lysolecithin), and one is down-regulated
(LCAT towards 2-lysolecithin), along with one up-regulated

gene functioning in the opposite direction (up-regulated
LPCAT3 from 2-lysolecithin back to lecithin). This indicates
that even if the conversion from 2-lysolecithin to GPC is

up-regulated by LYPLA1, the reaction is just as much pushed
away from 2-lysolecithin and back towards lecithin by
LPCAT3, instead of towards GPC. Overall, this does not
explain how GPC can be accumulated. However, when

expanding the network, a more complex picture emerges, with
more genes involved in several nodes and huge differences in
RNA-seq read counts among genes and nodes (Figure 4B

and C). The expanded networks provide a different interpreta-
tion of several nodes in the pathway.
A particularly complex node of 21 genes appears in the

original PLA2G4B node. This node contains both non-
significant genes and up-/down-regulated genes, with average
RNA-seq read counts varying over many orders of magnitude.

The clearly dominant gene is PLA2G2A with 71,482 read
counts (Figure 4C), which is also up-regulated (Figure 4B).
Since none of the other genes have read counts of comparable

magnitude (the second highest is PLA2G12A with 4502 read
counts), we see how this node changes from non-significant
in the original network to up-regulated in the aggregated net-

work (Figure 4D). The other nodes in the paths leading to pro-
duction of GPC also show both up- and down-regulated genes.
The most dominant gene in the PNPLA6 node is LYPLA2
(Figure 4C), which is up-regulated (Figure 4B). For the

LYPLA1 node, the dominant gene is LYPLA1 (Figure 4C),
which is up-regulated as in the original network (Figure 4A
and B). Both dominant genes lead to their respective nodes

being up-regulated in the aggregated network (Figure 4D),
enabling two possible paths towards production of GPC. Both
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paths via 1-lysolecithin and 2-lysolecithin, respectively, are
now up-regulated. Even though PLA2G16 in the
1-lysolecithin path is not significant, PLA2G16 still has 3246

reads, which indicates a flux through this path. For the path
via 2-lysolecithin, the up-regulation of both the PLA2G4B
and LYPLA1 nodes reveals an unambiguous up-regulated

path from lecithin to GPC. Though the LPCAT3 node looping
backwards upstream of GPC is also up-regulated, the pathway
as a whole shows a net unambiguous flux towards GPC

through several possible paths, explaining why GPC would
accumulate in PCa. The expanded network also shows that
LCAT (the sole gene of the LCAT node) has fewer reads than
the PLA2G4B and LPCAT3 nodes, making its

down-regulation less important (Figure 4C).
Alongside providing more biological information, the GPC

example also illustrates the possible complexity of nodes. With

the full pathway having four highly complex multi-gene nodes
of 21 genes, as well as several nodes with 4–6 genes, we see how
difficult pathways can be to interpret. Using FunHoP, we

show how we can gain important additional information by
expanding the networks to show all genes, and by looking at
differential expression and gene expression level simultane-

ously for network interpretation.
In order to validate our conclusions on the two case studies

using data from TCGA, we performed the same analysis with
the data from the Prensner cohort. Due to the generally smal-

ler number of samples in the Prensner data, in addition to
lower sequencing depth, many of the significant changes
observed in TCGA were not statistically significant in Pren-

sner. However, the overall patterns are also evident in both
case studies, both in terms of the dominant genes within the
pathway and the differential expression (Figures S1 and S2),

which supports the conclusions on which genes can contribute
to the elevated levels of histidine and GPC in PCa.
Discussion

Metabolic pathway analysis is an important approach for ana-
lyzing gene expression. With the constantly growing amount of

available data, we can improve our understanding of the com-
plexity in biological systems, and continuously develop models
to capture and utilize new data and information. However, the

most commonly used pathway representations from databases
and associated tools often give a simplified picture of meta-
bolic pathways, focusing on only one gene in each network

node, despite the fact that more genes may be able to perform
the same enzymatic reaction. One example, which we have
focused on in this study, is the current integration of KEGG
and Cytoscape using KEGGScape.

We have therefore implemented a strategy for including all
functional homologs of a gene in the analysis, based on the fol-
lowing assumptions:

First, we have to assume that the relevant genes in an
expanded node indeed are functional homologs, i.e., with simi-
lar function. KEGG networks are manually curated, and docu-

mentation can be found within KEGG for genes, compounds,
and reactions. When KEGGScape places a gene within a
certain node, we assume that this gene is able to produce an
enzyme that can catalyze the transition represented by the

node. In FunHoP, we have implicitly made an assumption that
the different genes within a node representing an enzymatic
reaction also catalyze the reaction at a similar rate. This is a
simplification, and to model the enzyme activity one should
ideally also include enzyme efficiency and kinetics for the given

situation. However, data on enzyme kinetics are usually not
available, or very hard to obtain. We believe that our assump-
tion on the enzyme activity correlating with expression level is

at least reasonable for differences spanning several orders of
magnitude, and represents a model improvement compared
to networks where expression levels are not considered at all.

Supporting this assumption is the observation that genes in a
node usually belong to the same gene family. For example,
for the node in the histidine metabolism pathway with
ALDH3A1 on top, all the other genes are aldehyde dehydroge-

nase paralogs that are able to catalyze the same reaction
(Figure 2A).

Secondly, we have to assume that we actually can estimate

relative expression levels of relevant genes. With microarrays
being the previous gold standard to measure changes in gene
expression, differential expression analysis and subsequent net-

work mapping were limited to fold changes and P values. Vari-
ations in probe affinities made it difficult to assume anything
about the real expression level differences between genes.

However, with RNA-seq, one should be able to provide rela-
tive expression level measurements with much improved corre-
lation to the real relative mRNA levels compared to
microarrays.

Using the two assumptions on relative expression levels and
similarity in enzyme efficiency described above, we can predict
which of the genes is/are most likely to be responsible for a

given reaction in a node. Especially for cases where the read-
count difference for two genes in the same node spans several
orders of magnitude, we find it likely that difference in expres-

sion level will take precedence over reaction efficiency. We
have shown that read counts are highly reproducible for two
independent patient cohorts for PCa. We observe that many

pathway nodes typically consist of one or a few dominant
genes in terms of expression level, supporting our claim that
this is a highly relevant measure to include when evaluating
the contribution from different enzymes in a node. For the

single-gene nodes, the approach of looking at absolute gene
expression can also reveal patterns in the pathways that are
not evident from comparing P values alone. By using read

counts, we are also capable of determining whether some paths
are turned completely off, as in the case for the path leading
from histidine to glutamine (Figure 3C).

A possible limitation of our approach is to which degree
tissue-specific isoforms affect enzymatic activity and estimated
expression levels of the genes represented in the nodes. Not all
isoforms of a gene are necessarily enzymatically active. How-

ever, KEGG does not currently provide curated information
on enzyme activity of isoforms. We have thus limited analysis
to the gene level. However, an expansion to isoforms is concep-

tually possible within the FunHoP framework if such data
become available. Another isoform related limitation is that
genes with particularly short or long dominant isoforms com-

pared to the canonical isoform model may lead to aberrant
expression level estimation for the genes affected. In addition,
tissue-specific isoform switches can potentially affect results

from differential expression analysis. In this study, we have
assumed that genes are presented by their canonical isoform.

The starting point for network analysis is usually an expres-
sion table with samples and genes, which for RNA-seq is
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presented as a table of read counts. It is thus preferable
that the network analysis is reproducible with respect to
RNA-seq RNA selection protocols, sequence length, library

size, choice of alignment, and mapping tools. It was not possi-
ble to systematically investigate many settings (mostly due to
lack of available data on prostate), but we demonstrate that

the results are reproducible in two independent PCa cohorts
with different properties. Both cohorts use poly-A selection
of transcripts, but differ in sequence length, library size, and

alignment/mapping tools.
We also assume that changes in transcript level are informa-

tive about changes in protein level. It is well known that a direct
association between mRNA expression level, protein level, and

subsequent protein activity is inaccurate, for example because of
the effects of post-transcriptional and post-translational regula-
tion of proteins on enzyme kinetics; however, the reasons in

most cases are unknown.We cannot say with absolute certainty
that an up-regulated pathway with multiple read counts will
result in a similar increased number of metabolites. A study by

Schwanhäusser et al. [33] shows a correlation between mRNA
and protein copy numbers in NIH3T3 mouse fibroblasts, which
was found to be 0.41. When considering translation rate con-

stants, the correlation went up to 0.95.
Other studies in different organisms have also shown corre-

lations, although this is organism dependent [32,34]. FunHoP
does not pretend to describe the complete picture, but still rep-

resents a significant improvement compared to analyses where
all genes are assumed to have the same expression level, or
where multiple genes in the same node are not taken into

account at all.
In the KEGG database, histidine is also involved in two

other pathways that can affect the overall levels of this

metabolite. In aminoacyl-tRNA biosynthesis (KEGG:
hsa00970), histidine is converted to L-histidyl-tRNA(his), cat-
alyzed by HARS and HARS2. Neither of these genes show sig-

nificant changes, which indicates that this does not affect the
level of histidine between the samples. In beta-alanine metabo-
lism (KEGG: hsa00910), histidine is involved in the same step
as the one in our case study, although we here see a more com-

plete picture of carnosine being converted into histidine and
beta-alanine. This is performed by the same enzymes as in
the case study (CNDP1/CNDP2). As we know, CNDP1 is

down-regulated and has close to zero read counts, and CNDP2
is up-regulated with 11,217 read counts. This should indicate
that beta-alanine is also elevated in PCa, which was confirmed

by the same study [29]. Overall, we see how the case study pro-
vides a possible explanation on how histidine can be elevated
in PCa, and our solution also fits with other available measure-
ments of related metabolites [29].

GPC is also involved in another pathway: ether lipidmetabo-
lism (KEGG: hsa00565), where GPC can also be produced by
conversion of 1-(1-alkenyl)-sn-glycero-3-phosphocholine by

TMEM86B. However, this gene does not show a significant
change between PCa tissue and normal tissue, and hence we
can explain the elevated levels of GPC by the extracted part of

glycerophospholipid metabolism shown in the case study.
Another possibility for GPC to be elevated using the original
network would be if the level of 2-lysolecithin was high, the

up-regulated LYPLA1 converted 2-lysolecithin to GPC. To
our knowledge, 2-lysolecithin has not been documented as high
in PCa.
Choline metabolism in PCa is a well-studied topic, espe-
cially in regard to relevant metabolites and identification of
potential biomarkers [30–32,35,36]. The pathways involved in

the metabolism are still not fully covered, and our findings
from case study 2 are therefore of special interest. These results
will be focused on in later studies.

The current version of FunHoP supports the human meta-
bolic pathways found in KEGG, with exception of the glycan-
related pathways (mostly found in ‘‘Glycan biosynthesis and

metabolism”, category 1.7), which uses a different type of visu-
alization (‘‘lines” instead of the traditional ‘‘rectangles”). These
lines cannot be colored and expanded similarly to gene nodes,
and are hence not suitable for pathway analysis in Cytoscape.

Another challenge with the glycan-related pathways is that
many of the children lack reactions in the downloaded XML
files, even if the genes are presented as rectangles, and hence

parts of the networks seem to consist of random genes with no
connection to the path. It is possible to extend and style these
gene nodes like in other pathways, but the missing reactions will

still be lost. These problems are due to thewayKEGGbuilds the
XML file and how the file is read by KEGGScape.

As seen in the Tables S1 and S2, a total of 64 out of the 71

pathways contain at least one multi-gene node. The 71 path-
ways contain a total of 1974 nodes, of which 768 has multiple
genes. Even though this only accounts for 39% of all nodes, it
still means that for 90% of the pathways there is a possibility

that not all relevant data will be included in the analysis. As we
have shown, a single multi-gene node can change the entire
interpretation of the pathway when all genes are included.

Having at least one multi-gene node for 90% of the
metabolism-related pathways used in this study demonstrates
the importance of developing tools like FunHoP.

The first part of FunHoP, which deals with expanding the
nodes with multiple genes, could possibly be solved also with
other KGML-readers. CyKEGGParser has similar functions

where all the ‘‘hidden” genes get a new node, with its own
edges. This displays all the genes within a node as separate
nodes, and these nodes can be colored and analyzed similarly
as the original ones. However, as this study has shown, there

are some nodes that contain a very large number of genes,

which makes the analysis and interpretation challenging with-
out further filtering by read counts from RNA-seq. CyKEGG-

Parser is a KGML-reader/tweaker and does not have any of
the features of FunHoP with regard to using reads from
RNA-seq to determine an overall expression value for all genes

in a multi-gene node. KEGGScape is a pure KGML-reader,
which allows for running the pathway XML files through
FunHoP locally and using KEGGScape to import the
improved files. KEGGScape does not bend the edges the

way CyKEGGParser does, and does not separate the func-
tional homologs when reading the KEGG XML files. How-
ever, CyKEGGParser has many useful features such as

corrections of inconsistencies in pathways and tissue-specific
tuning, and these features could be interesting to consider in
future studies.

For the cases where a KEGG protein complex contains
nodeswithmultiple genes, it is dealt with by adding an expanded
node on top of the protein complex. All genes can hence be seen

and colored by expression, although the user may have to do a
bit of manual editing of the network. This is a challenge in visu-
alization of the networks, as an expanded node will be placed in
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the same position as the original node, but inmost cases, it takes
up more space than what was originally allocated.

To improve FunHoP and make it easier for others to use it,

solutions for the problems above are under development.
Converting FunHoP into a Cytoscape app is also in develop-
ment, which will make it easier for all users to apply this

method to their own analyses.

Conclusion

In this study, we have shown how FunHoP can be used to
expand nodes from KEGG in Cytoscape to include all alterna-
tive genes present in a node. We have shown how P values

from differential expression are not sufficient to determine reg-
ulation in a pathway, and how using the read counts from
RNA-seq can facilitate metabolic network interpretation.

Finally, we have shown that information in the extended net-
works can be aggregated to create more simplified networks
at the node level, taking data from all genes into account.

By comparison of measured values of histidine and GPC in
PCa and healthy prostate tissue from literature, we have shown
how our analysis can explain why these metabolites are ele-
vated, whereas the original pathway representations could

not. We have also managed to show how differential expression
based on P values does not differentiate between highly
expressed genes and lowly expressed genes. By incorporating

RNA-seq read counts into the analysis, we have highlighted
genes that are highly expressed and more likely to dominate
within a pathway. Overall, we show that FunHoP, by incorpor-

ating more biological information on network nodes and genes
from KEGG, is able to provide improved pathway analysis.
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