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We presented a novel workflow for detecting distribution patterns in cell populations based on single-cell transcriptome study.
With the fast adoption of single-cell analysis, a challenge to researchers is how to effectively extract gene features to meaningfully
separate the cell population. Considering that coexpressed genes are often functionally or structurally related and the number of
coexpressed modules is much smaller than the number of genes, our workflow uses gene coexpression modules as features instead
of individual genes.Thus, when the coexpressedmodules are summarized into eigengenes, not only can we interactively explore the
distribution of cells but also we can promptly interpret the gene features.The interactive visualization is aided by a novel application
of spatial statistical analysis to the scatter plots using a clustering index parameter. This parameter helps to highlight interesting
2D patterns in the scatter plot matrix (SPLOM). We demonstrated the effectiveness of the workflow using two large single-cell
studies. In the Allen Brain scRNA-seq dataset, the visual analytics suggested a new hypothesis such as the involvement of glutamate
metabolism in the separation of the brain cells. In a large glioblastoma study, a sample with a unique cell migration related signature
was identified.

1. Background

Single-cell RNA sequencing (scRNA-seq) is becoming a
powerful tool for studying heterogeneity and subtypes in
cell populations. Many bioinformatics and computational
tools have been developed to visualize, cluster, and categorize
the cells based on their expression profiles [1, 2]. Different
algorithmic approaches such as principal component analysis
(PCA) or multidimensional scaling (MDS) [3], nonnegative
matrix factorization [4], minimum spanning tree (MST) [5,
6], latent variable modeling [7], diffusion map [8, 9], and
spline models [10] have all been applied and implemented
for such purposes. Moreover, it has been shown that often
the cells in a population do not always form “clusters.”
Instead, the cells form a continuous distribution over the
space of featured genes and gene signatures [1]. Therefore, it
is often of great interest to identify the interesting distribu-
tion patterns (e.g., wishbone pattern and bifurcation) which
often imply important biological processes such as stem cell

differentiation as well as the gene signatures that can be used
to reveal such patterns.

However, this effort often leads to a “chicken-and-egg”
situation. Since the patterns may not always be readily
perceivable from whole genome data, methods such as PCA
andMDSmay not always be effective.Therefore, it often ends
up in an iterative process and a subjective selection of genes
of interests. Another commonly adopted workflow is to first
cluster the cells based on their expression profiles and identify
“gene signatures” that differentiate the clusters followed by
enrichment analysis on these signature genes for potential
biological functions or processes involved in the separation
of the cells. Since there could be many genes involved in
differential analysis, the functional enrichment signals can be
diluted.

In this paper, we propose a visual analytic workflow called
functional virtual flow cytometry (FVFC) for identifying
functional gene groups that can effectively separate the cells
using scRNA-seq data. We specifically take advantage of
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gene coexpression network analysis (GCNA). GCNA aims to
identify modules of genes with similar expression profiles.
It has been well known that the coexpressed genes often are
functionally or structurally related [11–16].Therefore, instead
of surveying all the genes, by focusing on the coexpressed
gene clusters, we can directly study the cells based on
functional gene groups with increased statistical power [17].

Our method is innovative in the following ways. First, it
focuses on the gene modules with clear functional relation-
ships (coexpression) and thus greatly enhances the statistical
power. Secondly, only the gene modules that are “informa-
tive” among the single cells are used. Specifically we focus on
the modules that show bimodal or multimodal distributions
among the cells to ensure separation power of the genes
on the cell population. Thirdly, we apply spatial statistical
methods to detect combinations of gene modules that lead to
interesting spatial patterns or separation of the cells and thus
identify the gene signatures associated with the underlying
biological processes. Last but not least, instead of developing
this workflow as an “algorithm,” we implement it as a visual
analytic workflow, allowing the researchers to interactively
select gene modules and cell distribution patterns of interest
for further investigation. To this end, we take advantage of
the SPLOM combined with various visual cues derived from
spatial statistical calculation. We demonstrate our workflow
using two large single-cell studies on brain and cancer,
respectively.

2. Methods

2.1.Workflow. Figure 1 outlines theworkflow of our approach
that contains three stages. Given a set of processed scRNA-
seq data, the first stage carries out the coexpression network
analysis and summarization of each network module into a
single “eigengene” aswell as enrichment analysis to determine
the function or structural relationships for each module. The
second stage analyzes each eigengene to select the ones with
more information content, in particular, the bimodal ones.
Then scatterplots are generated for every pair of informative
eigengenes.The scatterplots are further analyzed using spatial
statistical parameters to determine if they form interesting
patterns, specifically if there is clustering or clumping in
the scatterplot, implying potential relationships between the
two gene modules associated with the two eigengenes. In
the final stage, the scatterplots are colored based on the
spatial statistical parameters and interesting patterns are
further examined with their functional relevance. Overall,
this workflow provides an intuitive visual analytic approach
for researchers to quickly explore the relationships among
functional gene groups in single-cell populations. The details
of the steps in the workflow are discussed in the following
sections.

2.2. Weighted Gene Coexpression Network Analysis. The first
stage in Figure 1 is to carry out gene coexpression network
analysis. The detailed workflow for this stage is illustrated in
Figure 2. Given a set of 𝑀 genes and their expression levels
over𝑁 cells, the gene expression profile can be expressedwith
a matrix
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Figure 1: The workflow of the functional virtual flow cytometry
system.
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where the 𝑁-dimensional row vector g𝑖 = [𝑔𝑖1 ⋅ ⋅ ⋅ 𝑔𝑖𝑁] is
the expression profile for the 𝑖th gene across the samples (𝑖 =
1, 2, . . . , 𝑁). Then the pairwise correlation matrix 𝐶 can be
represented by

𝐶 =
[[[[
[

𝑐11 ⋅ ⋅ ⋅ 𝑐1𝑀
... d

...
𝑐𝑀1 ⋅ ⋅ ⋅ 𝑐𝑀𝑀

]]]]
]
, (2)

where 𝑐𝑖𝑗 is the correlation coefficient between 𝑖th gene vector
g𝑖 and 𝑗th gene vector g𝑗. In our experiment, we use Spear-
man rank correlation coefficients in the pairwise correlation
matrix since Gaussian distribution cannot be assumed for
RNA-seq data as required by Pearson correlation.

After the correlation matrix was computed, we apply
a recently developed algorithm called Normalized lmQCM
[15]. Compared to widely adopted gene coexpression net-
work analysis software package WGCNA [18], this algorithm
takes a network mining approach allowing overlaps between
modules and also is guaranteed to have a lower bound on
the density of the detected modules. The output of algorithm
lmQCM is a set of genemodules M1,M2, . . . ,M𝐿, where each
module 𝑀𝑘 = {𝑖1, 𝑖2, . . . , 𝑖𝑁𝑘} is composed of a group of 𝑁𝑘
coexpressed genes. The number of modules 𝐿 and the sizes
of the modules are determined by the four parameters of the
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Figure 2: Workflow for weighted GCNA and eigengene calculation.

lmQCM algorithm. While detailed choice of parameters was
discussed in [15], the most important parameter is 𝛾, which
is the threshold for the weight of the first edge of any module
and thus controls the number of modules. Usually we choose
𝛾 to ensure that the maximum size of a module is not too
large (i.e., less than 500 genes). In addition, we focus on gene
modules with at least 10 genes so that meaningful functional
enrichment analysis can be applied.

For each gene module detected by lmQCM, 𝑀𝑘 can
be represented by a gene expression matrix. If we want to
compare one gene module against another, it is advantageous
to take only a representative of thatmodule rather than taking
all the genes. We use PCA to reduce the gene module data
meaningfully and take the first principal component as a
summary of that module. This first principal component is
called “eigengene” in this context. Computationally, we take
the submatrix of G for𝑀𝑘 as

Gk =
[[[[
[

gi1
...

giNk

]]]]
]
∈ R
𝑁𝑘×𝑁. (3)

Gk is centralized and standardized as Gk such that for
each row the mean is zero and the norm is one. Let Gk =
USVT be the singular value decomposition of Gk. Then the

first column ofV (denoted as v1) is the “eigengene” forMk up
to a sign sinceV is an orthonormalmatrixwhose determinant
is 1 or −1. Since the eigengenewk should reflect the directions
of themajority of genes inGk, its projection on themajority of
the genes should be positive. Thus, if ∑ sgn(Gkv1) < 0, then
wk = −v1; otherwise, wk = v1. So each gene module detected
by lmQCM corresponds to one “eigengene.”

For the reported modules, enrichment analyses are car-
ried out using NIH DAVID (https://david.ncifcrf.gov/) [19]
and TOPPGene (https://toppgene.cchmc.org/enrichment.jsp)
[20].

2.3. Identify Eigengenes with Bimodal or Long Tail Distribu-
tion. Before exploring pairwise relationships between gene
modules with eigengenes, we identify and keep eigengenes
which are “informative,” that is, eigengenes whose distribu-
tion follows a bimodal or long tail distribution. Therefore,
eigengenes with unimodal distribution, especially the ones
with narrow sharp peak-shaped distribution, will be filtered
out. To differentiate unimodal distribution with bimodal
or long tail distributions, metrics such as Kurtosis, second
central differences, and likelihood ratio are adopted [21–23].
Specifically, Kurtosis is a measure of the “tailedness” of the
probability distribution of a real-valued randomvariable [24].
Here we use Kurtosis as a measure to filter whether the
histogram of a given eigengene has a very narrow sharp peak

https://david.ncifcrf.gov/
https://toppgene.cchmc.org/enrichment.jsp
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Table 1: The seven gene modules whose eigengenes show long tail distributions.

Eigengene # Index Size Kurtosis Enrichment/notes

1 3 38 10.7844
32 predicted genes: three genes are immunoglobulins and
two are T cell receptors, acute lymphocytic leukemia

(𝑝 = 3.157𝑒 − 7)
2 6 35 5.0379 Ion transport (𝑝 = 3.341𝑒 − 7), synapse (𝑝 = 2.590𝑒 − 7)
3 12 18 8.5550 Glutamate decarboxylation to succinate (𝑝 = 7.715𝑒 − 7),

inhibitory synapse (𝑝 = 7.843𝑒 − 7)
4 13 17 19.9492

Development of lower uro neuro e15.5 BladdPelvicGanglion
Sox10 top-relative-expression-ranked 1000 (1.227𝑒 − 7), six

genes on chromosome X

5 28 11 4.9068 Hydrogen ion transmembrane transport (𝑝 = 4.859𝑒 − 20),
mitochondrial inner membrane (𝑝 = 1.533𝑒 − 16)

6 48 6 3.8686

NADHmetabolic process (𝑝 = 2.960𝑒 − 13), myelin sheath
(𝑝 = 1.643𝑒 − 3), gluconeogenesis (𝑝 = 5.401𝑒 − 14), genes

upregulated in hippocampus at late postnatal stages
(𝑝 = 9.341𝑒 − 10)

7 60 5 12.5680 Mostly predicted genes

distribution. For each eigengene vectorwk, first the histogram
of the vector is computed and then Kurtosis of the histogram
distribution is computed as

Kurt (wk) =
𝐸 [(wk − 𝜇)4]

(𝐸 [(wk − 𝜇)2])2
, (4)

where 𝜇 is mean of wk. In [24], the Kurtosis value between 3
and 9 show peakness of the distribution while higher values
imply sharper peak-shaped distribution. In this paper, we
set the threshold for Kurtosis as user defined parameter. If
Kurtosis value of histogram for a given eigengene is smaller
than a given threshold, then eigengene will be kept.

2.4. Spatial Statistical Analysis of the 2D Scatterplot Using the
Nearest Neighbor Distribution. In order to find the relation-
ship between two coexpressed gene modules, we generate
pairwise scatter plots for all pairs of eigengene vectors in a 2D
space. For two given eigengene vectors 𝑒𝑖 = [𝑒𝑖1, 𝑒𝑖2, . . . , 𝑒𝑖𝑁]
and 𝑒𝑗 = [𝑒𝑗1, 𝑒𝑗2, . . . , 𝑒𝑗𝑁], scatter plot is the points with
coordinates (𝑒𝑖1, 𝑒𝑗1), (𝑒𝑖2, 𝑒𝑗2), . . . , (𝑒𝑖𝑁, 𝑒𝑗𝑁) in the 2D space.
Then we use the nearest neighbor distance (NND) to analyze
the pattern. NND for a data point is the distance to its closest
neighbor. It is a spatial statistical parameter effectively used
for detecting cell patterns in the space [25, 26]. Define 𝑑0 as
the mean NND for all the points. Then we make 100 random
simulations, each time the same number of points is created
in the same region covering (𝑒𝑖1, 𝑒𝑗1), (𝑒𝑖2, 𝑒𝑗2), . . . , (𝑒𝑖𝑁, 𝑒𝑗𝑁),
and the mean NND is calculated. Assuming that 𝑑𝐸 is the
mean of 100 randomly simulated mean NND and 𝜎 is the
standard variation, the 𝑧-score is calculated as

𝑧 = 𝑑0 − 𝑑𝐸
𝜎 . (5)

We call the 𝑧-score as the clustering index for a scatter plot.

2.5. Layout for Visualization. Once the eigengenes with
long tail or bimodal distributions are detected, SPLOM is
generated. Each scatterplot is then colored using the color
scale based on the clustering index. User can then select
plots with interesting patters for further visualization and
analysis.

3. Results

3.1. Datasets and Preprocessing. Weapplied the above analysis
to two large gene expression single-cell datasets. One dataset
is RNA sequencing data of single cells isolated from mouse
dorsal lateral geniculate nucleus (dLGN) of the thalamus,
which is downloaded from Allen Brian Atlas (ABA) website.
This data set includes 1,772 single cells collected from dLGN
in adult mouse and transcriptionally profiled with RNA
sequencing. The dataset contains transcription readings for
45,772 genes and transcripts. However, since many of the
genes have zero readings in most cells, these genes were
filtered out; specifically we removed genes with zeros in more
than half of the cells. In addition, genes whose mean values
are among the lowest 20% and variances are among the lowest
50% were removed. This way, 20,000 genes were retained for
further analysis.

Another dataset is from a single-cell study on human
glioblastoma. The dataset was downloaded from NCBI
Gene Expression Omnibus (GEO) with accession num-
ber GSE57872. It contains transcriptomes from 430 single
glioblastoma cells isolated from 5 individual tumors and 102
single cells from gliomasphere cells lines generated using
SMART-seq [27]. Using the same preprocessing procedure,
5,948 genes were kept for further analysis in this dataset.

3.2. Analysis of the ABAMouse Brain scRNA-Seq Data. Using
the lmQCM algorithm (with 𝛾 = 0.75), 60 coexpressed gene
modules with at least five genes are identified. Using a
threshold 20 for the Kurtosis metric, seven eigengenes are
selected. Table 1 summarizes the information for the seven
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Figure 3: Colored SPLOM for the seven long tail eigengenes from the Allen Brain scRNA-seq data. The subplot in the 𝑖th row, 𝑗th column of
the matrix is a scatter plot of the 𝑖th eigengene against the 𝑗th eigengene. Along the diagonal are histogram plots of each eigengene.

modules. Figure 3 shows the colored SPLOM for the seven
eigengenes.

The color scheme in Figure 3 allows us to further inspect
scatterplots with interesting patterns. In order to determine
if these patterns are associated with specific annotations,
for selected scatter plots, we further overlay the annotation
information using different colors. Figure 4 shows examples
when the broad subtype information about the neurons is
overlaid on the scatter plots as points with different colors.
It is apparent that none of the gene modules can thoroughly
separate the cells based on the subtypes. Instead, some of
them can separate specific subtypes. For instance, as in
Figure 4(a), the cells are separated into two major clusters
based on the “clustering index” as defined in the previous
section, which does not fully reflect the subtypes as the blue
and yellow points are not separated. Instead, the blue and
yellow points are segmented in Figure 4(b) and even further
away in Figure 4(c).

As in Figure 4(b), it is clear that the groups of yellow cells
and cyan cells are separated from the rest groups based on
eigengene #4 that is enriched with genes that are important
to bladder/pelvic ganglion development andmay be involved
in gender development too. At the same time, it can be
noted that the red group is different from the blue, cyan,
and yellow groups based on eigengene #2 that is closely
associated with synapse formation. In addition, according
to Figure 4(c), the blue and yellow groups are separated
when both eigengenes #3 and #4 are involved and eigengene
#3 is closely connected with the glutamate metabolism and
inhibitory synapse development. These neural functions are
critical for the interpretation of the cell population clustering.

It is important to notice that the visual outcome is very
different from traditional PCA based visualization. As shown
in Figure 5(a), if all the genes are used for visualization of

the cells using traditional PCA, there is not a clear separation
of the cells except for a small group. If we limit the gene
features for PCA to the ones involved only in the gene
modules listed in Table 1, we can clearly see three major
groups. As a control, we marked the three groups of cells
in Figure 5(a) with three different colors, and we can see
that there is no clear separation of the cells in Figure 5(a).
However, without explicit functional grouping, it is difficult
to determine which biological processes and functions are
involved in such separation.

3.3. Analysis of the Human Glioblastoma Patients’ Brain
scRNA-Seq Data. Using the lmQCM algorithm (with 𝛾 =
0.2), 18 coexpressed gene modules with at least five genes are
identified. Using a threshold of 5 for the Kurtosis metric, 16
eigengenes are selected.

Figure 6 is the SPLOM for the long tail eigengenes from
the brain tumor study.

From the SPLOM, it is notable that the fourth gene
module not only has an eigengene with bimodal distribution
but also is involved in effective separation of the cells. While
the cells are labeled by the patient and sample IDs, it is
clear that some of the separation cases are closely related to
the differences between different tumor samples as shown in
Figure 7. In particular, eigengene #4 is key in separating the
cells in the green group from the rest while other eigengenes
can separate other groups (e.g., eigengene #6 separates the
yellow cell group from the rest while eigengene #11 separates
the red cell group). Interestingly enrichment analysis shows
that this genemodule for eigengene #4 is highly enrichedwith
extracellular matrix genes (14 genes out of 36, 𝑝 = 6.304𝑒−8)
and the cell migration process (10 genes, 𝑝 = 9.145𝑒 − 5),
suggesting a particular property of the cells in the green
group and it is important as the extracellular matrix and cell
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migration process is considered critical to the invasion of
glioblastoma [28, 29].

4. Discussion and Conclusion

In this work, we presented a workflow for detecting dis-
tribution patterns in cell populations based on single-cell
transcriptome study. With the fast adoption of single-cell
analysis, a challenge to researchers is how to effectively extract
gene features to meaningfully separate the cell population.
However, this often ends up in a chicken-and-egg situation
as the separation of the cells often depends on the choice

of gene features, yet without a clear pattern it is difficult to
determine which gene features are effective. Our workflow
uses the well-developed gene coexpression network analysis
to take advantage of the fact that coexpressed genes are often
functionally or structurally related and the number of coex-
pressed modules is much smaller than the number of genes.
Thus, when the coexpressed modules are summarized into
eigengenes, not only can we quickly explore the distribution
of cells interactively but also we can promptly interpret the
gene features and generate new hypothesis.

Since the cells are separated based on different choices of
the gene features, we dub the workflow as “functional virtual
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flow cytometry,” which achieves separation of the cells based
on salient gene features. The separation of cells leads to new
hypothesis such as the involvement of glutamate metabolism
in the separation of the brain cells in the Allen Brain scRNA-
seq data and the specific glioblastoma samplewith unique cell
migration related signature. While for the latter it is unclear
if this observation is indeed biological or due to batch effect,
our workflow quickly pointed out the pattern for researchers
in deeper examination.

With the interactive visualization, additional advanced
analysis can be carried out. For instance, in both Figures 4(b)
and 7(b), an interesting observation is that the 𝑥- and 𝑦-axes
cannot both have low values, suggesting interesting Boolean
relationships between the gene groups [30].Therefore, as our
ongoing work, these analytic tools along with the workflow
are being implemented in an online single-cell analytics
portal.
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