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Abstract

Genetic markers, defined as variable regions of DNA, can be utilized for distinguishing individuals or populations. As long as
markers are independent, it is easy to combine the information they provide. For nonrecombinant sequences like mtDNA,
choosing the right set of markers for forensic applications can be difficult and requires careful consideration. In particular,
one wants to maximize the utility of the markers. Until now, this has mainly been done by hand. We propose an algorithm
that finds the most informative subset of a set of markers. The algorithm uses a depth first search combined with a branch-
and-bound approach. Since the worst case complexity is exponential, we also propose some data-reduction techniques and
a heuristic. We implemented the algorithm and applied it to two forensic caseworks using mitochondrial DNA, which
resulted in marker sets with significantly improved haplotypic diversity compared to previous suggestions. Additionally, we
evaluated the quality of the estimation with an artificial dataset of mtDNA. The heuristic is shown to provide extensive
speedup at little cost in accuracy.
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Introduction

Genetic markers are ubiquitous in molecular biology and have

many applications, such as forensic analysis, taxonomic barcoding,

and detection of inherited diseases. While full-length sequences

would be the preferred material for most studies, real-world

circumstances sometimes force the usage of a limited set of

markers as a proxy. In particular, SNPs and short tandem repeats

are commonly used as markers in forensics. How to choose

markers is an important question and many factors can affect such

a decision. For example, sample availability, application, sequenc-

ing technology, cost, time, and practicality has to be taken under

consideration [1–4]. Although high-throughput sequencing has

revolutionized molecular biology and genetics, it is not yet an

economically feasible route for forensic laboratories.

The costs of the analysis and the amount of work are usually

directly dependent on the number of markers that should be

examined. This number is affected by marker length, which in

turn depends on available sequencing technology and the size of

the biological sample.

One specific goal is to maximize the information gained by a set

of markers. A common measurement for the information gained

from a marker is its haplotypic diversity h [5,6]. It describes the

probability that this marker differs in two individuals randomly

chosen from a given population. Hence, h is a measurement of the

genetic variability of the marker. In forensic sciences this diversity

is known as exclusion capacity, because the markers are used to

identify individuals or to exclude them from a panel of suspects.

If the markers are found in nuclear DNA, as is chosen for many

applications, they can often be regarded as statistically indepen-

dent, provided the markers are situated on different chromosomes

or sufficiently far apart if on the same chromosome. Thus, the

haplotypic diversity of a set of markers can be calculated by

multiplying the marker’s diversities.

In some applications, nuclear DNA is less interesting or

unsuitable. In forensics, for example, nuclear DNA is for some

sample types, such as hairs, often highly degraded and many

markers may therefore not be available (see e.g. [7,8]). Another

example can be phylogenetic studies, where other DNA sources

have properties more suitable for the investigation’s purpose [9].

In both cases, DNA from mitochondria (mtDNA), which is many

times more abundant, can be studied. However, a disadvantage

with mtDNA is its relatively small size, and it has to be considered

as one single linkage group. Thus, the information given by its

potential markers may no longer be considered as statistically

independent. This raises a question: if you are given an unbiased

sample of mtDNA sequences from a population and want to find

the most efficient combination of markers, what do you do?

Genetic variability is commonly due to a relatively small and

dispersed set of positions, causing potential markers to be dispersed

as well. If the variable positions, and hence the potential markers,
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are linked, the haplotypic diversity of marker sets cannot directly

be determined from h-values of single markers. Thus, it is not easy

to find the optimal subset of markers. To calculate the most

informative marker subset, haplotypic diversities of the markers

have to be estimated from a sample set of individuals taken from

the population. Since the strength of the informational coupling

between the single markers influences the haplotypic diversity of

their combination, this has to be estimated from the given sample

set as well. Today, this is done by a combination of visual

inspection and subjective choice of markers in the lack of suitable

programs. With this methodology it is very laborious and virtually

impossible to find the best marker sets even for relatively small

datasets.

We present algorithms for finding the most informative subset of

markers, subject to constraints such as marker size and number,

and estimating the markers’ haplotypic diversity from a sample set

given as multiple sequence alignment (MSA). We implemented the

algorithms in the Excap program, which reads an input alignment

in FASTA format and returns an optimal set of markers of a

requested length and size. This is a significant step forward as

compared to current practice.

Materials and Methods

Haplotypic diversity
The calculation of h is based on an estimation for the diversity

of a genetic marker [5]. Considering a sample set of size n and a

marker with q different haplotypes, each with frequency

xi,1ƒiƒq, the haplotypic diversity is estimated as:

h~
n

n{1
1{

Xq

i~1

x2
i

 !
ð1Þ

For technical reasons, a new method to calculate the diversity of

a marker is introduced. Instead of the frequencies xi, the number

of sequences each haplotype comprises, ri~nxi, is used to count

the number of possible pairs of different haplotypes in the sample,

henceforth designated as separation index s:

s~
n2{

Pq
i~1 n2

i

2
ð2Þ

Its maximum smax is
n(n{1)

2
when the number of haplotypes

equals the number of sequences (n) and therefore ri~1,Vi. The

haplotypic diversity can easily be calculated as

h~
s

smax

: ð3Þ

One advantage of this approach is that all s-values can be

handled as integers during the whole calculation without loss of

precision. It furthermore simplifies the estimation of the maximum

h-value a set of markers can achieve, which is used in our branch-

and-bound algorithm.

Data representation
The input data, given as an MSA, is reduced to its polymorphic

columns. Each of those columns is transformed into an integer

vector of length n, representing the different haplotypes. This

vector is further designated as haplocode. The different haplotypes

are numbered from 0 to the number of haplotypes at this position

minus 1. Figure 1 provides a small example.

A marker’s width is the number of columns it spans in the MSA.

Markers that are wider than 1 bp are allowed to overlap, but we

ignore markers that are contained by another marker.

Analoguously to a marker, a set of markers has a haplocode

describing its haplotypic information, too. The set’s haplocode is

easy to calculate in O(n log n) time by combining the haplocodes

of the markers it contains. Furthermore, each marker i has a

separation index si which indicates how many sequence pairs this

marker separates. It is easy to calculate si from the marker’s

haplocode in O(n log n) time. It is analogous to definite a

separation index sC for a marker set C.

Before combining single markers, the complexity of the dataset

is reduced:

1. Elimination of redundancy. If two markers represent the

same information or if the information of one marker is a subset of

another marker’s information, one of them is removed. The first

case is easy to handle because markers that contain the same

information will have the same haplocode. The second case is

detected by looking at the haplocode of the two markers

combined. If the combination’s haplocode is identical to the

haplocode of one of the markers, the other marker is deleted.

2. Sorting of markers. All markers are sorted by their

separation index in decreasing order. This step is necessary for the

estimation-step in the Excap algorithm.

Finding the best marker set
Since the diversity of a marker set cannot be calculated from its

members’ diversities directly, all possible combinations have to be

built up to determine their h-value. The number of possible

combinations grows exponentially, and we will try to limit how

many combinations we have to consider. Later on a heuristic is

provided that gives a good approximation to the optimal solution.

To find the best marker set of size k, the sorted markers are

combined successively using a depth-first search combined with a

branch-and-bound approach. Beginning with the strongest mark-

er, according to its separation index, the next markers with weaker

s- values are added recursively step by step until the set has

reached size k. In each step it is estimated if the current set can

achieve a better separation index than the best one found so far. If

the separation index is worse, the recursion returns to the calling

step and tries to add the marker with the next best s-value to the

set.

The excap algorithm (Figure 2) describes how markers are

combined using a depth-first search. The initial parameters are an

empty set of markers (C), a pointer to the start of the list of sorted

Figure 1. Data representation. Each polymorphic column is
transformed into an integer vector. a) Multiple sequence alignment,
polymorphic columns/markers in bold face. b) Haplocode representa-
tion of the markers. c) Haplocode representation of a combination of
the markers.
doi:10.1371/journal.pone.0079012.g001
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markers (begin), the maximum size of the set (k) and the recursion

depth (depth = 1).

The worst case running time for finding the best combination of

size k out of m available markers is O
m

k

� �
n log n

� �
. To perform a

little better for large values of m and k, we provide a heuristic that

modifies the estimation step and thereby carries out the bounding

step earlier, see section.

A bound for the separation index
In the bounding step, it is estimated how good a set of markers

would be if l further markers were added before the set reached

maximum size. If the set C separates sC sequence pairs and if the

current marker to add i separates si sequence pairs, then the

combination of C and i can at best separate sCzsi sequence pairs.

That is a weak upper bound, relying on marker independence, but

since the strength of the coupling of the single markers is unknown,

it is difficult to estimate how much information they share. Since

the markers are sorted decreasingly by their s-values, the

separation index is bounded a set C can achieve with l additional

markers is bounded by

min (smax,sCzl:si): ð4Þ

As a heuristic approach, we modified the bounding in order to

reduce the number of alternatives. Instead of assuming that each

newly added marker can contribute its whole separation index to

the separation index of the new combination, the marker’s si is

scaled down by a factor 1{f , where f is the heuristic parameter. We

require that 0ƒf v1, and f ~0 corresponds to the normal, non-

heuristic approach, while f ~1 would mean that every added

marker is assumed to contribute no new information. The

separation index is heuristically bounded by

min (smax,sCz(1{f ):l:si): ð5Þ

Note that f most likely has a non-linear effect on the method’s

estimation of h, which is probably undesirable from a user’s

perspective.

Artificial data
An artificial population was generated, represented by 10,000

sequences with a length of 16,000 bp each. Ten markers, each

spanning 800 bp, with different sets of polymorphic columns and

increasing h-values were introduced in sequences. The mutations

were made using the pseudo-random number-generator mt19937

[10] provided by the Boost C++ Library with default parameters.

From the given population, sample sets of different sizes have

been drawn (uniformly at random, using mt19937).

Biological data
The biological dataset consisted of 241 full length mtDNA

sequences also used by Coble et al [11], which were taken from the

mtDB database [12].

All sequences were aligned to the revised Cambridge reference

sequence (rCRS) for human mtDNA [13] using the Kalign

program [14] with its default values. In all calculations the rCRS

Figure 2. The excap algorithm.
doi:10.1371/journal.pone.0079012.g002

Figure 3. Influence of sample size. The estimated heterogozities
and the corresponding standard deviations for sample sizes 10, 50, 100
and 1000.
doi:10.1371/journal.pone.0079012.g003

Table 1. Correlation between sample size and quality of the
estimated h-values.

Estimates for different sample sizes

Region True h 10 50 100 1000

1 0.18 0.19 (0.18) 0.18 (0.07) 0.18 (0.05) 0.18 (0.02)

2 0.20 0.19 (0.18) 0.19 (0.09) 0.20 (0.05) 0.20 (0.02)

3 0.22 0.20 (0.16) 0.23 (0.08) 0.22 (0.06) 0.22 (0.02)

4 0.25 0.26 (0.17) 0.24 (0.08) 0.23 (0.05) 0.25 (0.02)

5 0.28 0.28 (0.21) 0.27 (0.07) 0.29 (0.07) 0.28 (0.02)

6 0.33 0.31 (0.20) 0.33 (0.09) 0.33 (0.06) 0.33 (0.02)

7 0.39 0.39 (0.20) 0.41 (0.09) 0.41 (0.06) 0.39 (0.02)

8 0.49 0.47 (0.21) 0.51 (0.09) 0.48 (0.07) 0.48 (0.02)

9 0.64 0.63 (0.21) 0.62 (0.07) 0.63 (0.06) 0.63 (0.01)

10 0.86 0.88 (0.10) 0.86 (0.06) 0.86 (0.03) 0.86 (0.01)

The second column contains the h-values of the population, which were
estimated from samples (10, 50, 100 and 1000 individuals) using the Excap
algorithm. The values in parentheses are the standard deviations of the
estimated values.
doi:10.1371/journal.pone.0079012.t001

Excap: Selecting Linked Markers

PLOS ONE | www.plosone.org 3 November 2013 | Volume 8 | Issue 11 | e79012



was not considered as a part of the dataset and was only used for

indexing.

This alignment induced 483 polymorphisms, and 264 remained

after reducing redundancy (see Section ).

The 241 input sequences were separated in 18 groups according

to their HV1/HV2 type based on the rules of Coble et al. Some

calculations were limited to 59 significant positions from the

coding region, previously defined by Coble et al.

The disease position exclusions were done according to the

information available in the Mitomap project [15].

Results

Artificial data
To test the accuracy of the estimation and the influence of the

sample size on the quality of the estimated h-values for a given

population an artificial population was created.

All 10,000 sequences were used as input for the Excap program

in order to calculate the`̀true’’ h-values of markers in the whole

population. In the following step the haplotypic diversity of those

markers should be estimated from samples randomly drawn from

the population. This estimation was done using the Excap

program. The procedure was repeated 100 times for each sample

size (except for sample size 1,000 which was drawn 50 times).

From each drawn set the markers’ diversity in the whole

population was estimated. The mean value and standard deviation

of h over all 100 (50) samples was recorded for each specific sample

size.

The tests revealed a strong correlation between sample size and

quality of the estimation, see Figure 3. For weak markers that had

an h-value below 0:2, a sample set of size 10 was of limited value

due to the high the standard deviation. With a sample size of 50

and stronger markers, the influence of the standard deviation sank

and the estimates became more reliable. For a sample of size 10

and a marker with a low h-value (e.g. h~0:179) the standard

deviation (0.177)was almost as high as the estimated value (0.191)

itself and the marker’s utility was therefor relatively uncertain. On

the other hand, a sample size of 50 and a stronger marker (e.g.

h~0:635) had an acceptable standard deviation (0.072).

It is clear that one must be careful not to overstate the

importance of h values estimated from small samples. It is worth

noting, however, that standard deviation seems to be independent

of h and only determined by sample size.

Detailed information about the correlation between sample size

and the quality of the estimation can be found in Table 1.

Tests on biological data
Tests on biological data was a comparison between different

panels of mitochondrial single nucleotide polymorphisms (SNP

panels) from the work of Coble et al. [11] and sets of SNPs created

using the Excap program.

Coble et al. [11] sequenced the mtDNA of 241 individuals of

and presented eight different multiplex panels of overall 59 SNPs

which were designed to complement the results of the HV1/HV2

testing. The panels were chosen to maximize their ability to

separate two individuals from the same subtype. Due to practical

reasons, Coble et al [11] excluded all polymorphic positions related

to diseases or positions with nonsynonymous mutations. All

positions of the hypervariable regions were also disregarded.

To re-evaluate the eight panels, the sequences from their

respective HV1/HV2 types, as designated by [11], were given as

input to Excap. That is, if panel B was most applicable to HV1/

HV2 types H:2, H:3 and H:6, Excap was run on the sequences of

those subtypes. To keep our results comparable, only the 59

positions used in the multiplexed panels proposed by Coble have

been taken as input data for the recalculation. Would Excap

suggest the same marker sets, or find better combinations?

We found that Excap gave better marker sets for each of the

eight panels, either by having a higher haplotypic diversity with

the same number of markers (seven cases) or by having a smaller

marker set (on case) but the same h. The improvements on

diversity ranged from 0 % (but less SNPs used) to 101.81 %. See

Table 2 for all results. The actual differences in terms of chosen

SNPs are shown in Table 3 and they demonstrate why the

automated Excap method does better than visual inspection based

on individual sites’ diversity. Also note that the actual number of

different SNP positions are reduced from 59 to 47.

Even better results were achieved with the input data not

limited to the 59 SNPs present in Coble’s panels. To achieve

similar initial conditions, all positions of the hypervariable regions

(73-340 and 16024-16365), the poly AC repeat (515-524) and all

positions related to diseases (174 positions) were excluded using

information provided by the MitoMap database [15]. Input data

was the same sets of sequences as used for the previous

calculations. All panels could be improved significantly (see Table

4).

Another important result is the correlation between the

haplotypic diversity and the width of the combined markers in

biological data. We computed h-values for up to 9 markers f

widths 1, 30 or 100 bp, on mitochondrial genome sequences. As

few as three SNPs, or two 30 bp markers, have a higher haplotypic

diversity than one 100 bp marker, see Figure 4. Also note that to

get the same h as from nine SNPs, you would need as much as four

100 bp markers or six 30 bp markers.

With increasing set size k, the h-value of a set converges to a

maximum, defined as the diversity of the whole sequence. The size

of the marker set has a higher effect to the convergence than the

width of the included markers and the speed of convergence

decreases with the growing set size. This has an important effect

on practical work because, e.g., typing 20 SNPs instead of 10 SNPs

Table 2. Comparison of multiplexed SNP panels I.

Panel Group Size Achieved ha Sizea Diff
Improvement
(%)

A H:1 32 0.90 (0.89) 11 (11) 0.01 1.21

B H:2, H:3,
H:6

48 0.91 (0.90) 11 (11) 0.01 0.62

C V:1, H:5 38 0.84 (0.81) 10b (11) 0.03 2.95

D J:1, J:2,
K:2, K:3

38 0.89 (0.78) 10 (10) 0.11 14.45

E J:4, T:2,
T:3, H:4

35 0.87 (0.82) 7 (7) 0.05 6.32

F V:1, H:1,
H:2, H:3

93 0.91 (0.45) 10 (10) 0.46 101.81

G J:1, J:3,
T:1

50 0.86 (0.74) 11 (11) 0.12 17.32

H K:1 15 0.87 (0.87) 6b (7) 0.00 0.00b

a The values in parenthesis are the results from Coble et al.
b This is the best possible result for the given input data — all individuals could
be singled out.
The polymorphic positions combined by the algorithm were limited to the 59
SNPs which were part of Coble’s presented multiplexed panel. The size of a
haplogroup refers to the number of sequences in it.
doi:10.1371/journal.pone.0079012.t002
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may be much more expensive, but does not really provide more

information.

Heuristic analysis
Running Excap on large datasets can be time consuming and a

heuristic approach becomes necessary. To get a better under-

standing of our heuristic’s impact on results and execution times,

we again turned to the data from [11].

We ran the Excap algorithm to find an optimal marker set of k

SNPs with different values on the heuristic parameter f , starting

from f ~0 (no heuristic) and up to f ~1. Each calculation was

performed for a single SNP-marker up to a set of seven SNP-

markers.

The more markers a set contained, with consequently higher h,

the more stable the estimation of h was, see Figure 5(a). For a set of

four markers, f ~0:7 still resulted in the optimal solution. For

k~10, we could set f ~0:9 without notably worse estimation of h.

This observation is encouraging, since it is for the larger values on

k that the heuristic becomes indispensable.

In the tested cases, the heuristic approach had a substantial

improvement of execution time. With increasing f , the execution

time dropped exponentially, see Figure 5(b). Calculating the

optimal set of seven SNPs in the data provided by Coble et al. took

143 seconds without heuristic. Using a 80 % heuristic reduced

runningtime to 5 seconds and the provided solution was still the

optimal one. The most dramatic case is for k~10, which dropped

from being a day-to-day calculation to executing in a few seconds

when f ~0:9. As a comparison with Figure 5(c) reveals, f ~0:9
gives a result which is still close to optimal.

Discussion

Our experiments with Excap on artificial and biological data

showed significant advantages. Most sets of variable markers

chosen by hand are not optimal. In almost every case, the most

variable markers do not form the most variable set. In many cases,

one marker with a weak diversity improved the chosen set

significantly, much more than a marker with a much higher h-

value which is not easy to find with à̀ manual’’ approach. Although

our main algorithm’s execution time is exponential, the related

heuristic achieves reasonable and competitive results in many

practical cases. Importantly, our parameterized heuristic allows for

experimentation and adaption to different datasets.

As long as there is a dataset available that is big enough and

representative for a certain population, Excap can be used to

estimate the diversity and to optimize the choice of markers. One

Table 4. Comparison of multiplexed SNP panels II.

Panel Achieved ha Size Diff
Improvement
(%)

A 0.93 (0.89) 11 0.04 4.02

B 0.92 (0.90) 11 0.02 2.05

C 0.90 (0.81) 11 0.09 10.89

D 0.92 (0.78) 10 0.15 18.69

E 0.87 (0.82) 7 0.05 6.75

F 0.91 (0.45) 10 0.46 101.81

G 0.87 (0.74) 11 0.13 18.71

H 0.90 (0.87) 7 0.03 3.80

a The values in parenthesis are the results from Coble et al.
For this calculations HV1, HV2, the poly AC region and all positions related to
diseases were excluded.
doi:10.1371/journal.pone.0079012.t004

Figure 4. Estimated heterogozities. The more markers a combina-
tion contains the less effect the width has to the overall information of
the combination.
doi:10.1371/journal.pone.0079012.g004

Figure 5. Marker set size and h. The more markers a combination
contains and the more variable the combinations get, the more stable
are the estimations also under a stronger heuristic.
doi:10.1371/journal.pone.0079012.g005
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should be aware to keep the size and quality of the provided

sample set in mind and not to overestimate the results.

There are some important consequences arising from having

our program suggesting markers. Besides manual labour being

reduced, the risk of making mistakes decreases significantly.

Achieving the same variability with less and shorter markers also

results in a reduction of costs. It is clear that the quality of chosen

markers improves and that data is utilized better.

There is an important cost-benefit analysis to do when making

decisions on marker sets, since there are limits of utility to

including yet another marker. Excap enables a careful consider-

ation regarding how many markers to use by estimating how much

more information can be gained.

We believe Excap will also help choosing between technologies

for DNA typing, and not just what markers to choose. By

systematically trying different marker sizes and set sizes, one can

determine the most economical and efficient way to reach a

desired haplotypic diversity. As shown in Figure 4, a small number

of SNPs may be more informative than hundreds of bases in larger

markers.

There are opportunities for improvements to the present work.

The suggested heuristic was a first approach to keep computation

time in manageable scales, but is not necessarily the most efficient

one. It could also be worthwhile to analyze the influence of the

heuristic factor f on the quality of the estimated h-value. A

heuristic factor f effecting the results in a more sensitive way than

the linear one might allow a more fine-grained application of the

heuristic. Due to the simple heuristic approach it is possible that a

heuristic with a smaller f -value results in a worse set of markers

than one with a greater f . We would also like to investigate an

approach in which the heuristic was used as a preprocessing step to

reduce a large set of input markers. The optimal algorithm could

then be applied to this more manageable set of markers.

Furthermore, it could be investigated how existing parametrized

algorithms, that solve NP-complete problems for a fixed parameter

in polynomial time, could be applied to this problem. The size of

the optimal set could be such a fixed parameter.

Availability
Excap is written in C++ and the source code is hosted at http://

sourceforge.net/projects/excap, distributed under the GNU

Public License.
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