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Abstract

Despite progress in fighting undernutrition, Africa has the highest rates of undernutrition

globally, exacerbated by drought and conflict. Mobile phones are emerging as a tool for

rapid, cost effective data collection at scale in Africa, as mobile phone subscriptions and

phone ownership increase at the highest rates globally. To assess the feasibility and biases

of collecting nutrition data via computer assisted telephone interviews (CATI) to mobile

phones, we measured Minimum Dietary Diversity for Women (MDD-W) and Minimum

Acceptable Diet for Infants and Young Children (MAD) using a one-week test-retest study

on 1,821 households in Kenya. Accuracy and bias were assessed by comparing individual

scores and population prevalence of undernutrition collected via CATI with data collected

via traditional face-to-face (F2F) surveys. We were able to reach 75% (n = 1366) of study

participants via CATI. Women’s reported nutrition scores did not change with mode for

MDD-W, but children’s nutrition scores were significantly higher when measured via CATI

for both the dietary diversity (mean increase of 0.45 food groups, 95% confidence interval

0.34–0.56) and meal frequency (mean increase of 0.75 meals per day, 95% confidence

interval 0.53–0.96) components of MAD. This resulted in a 17% higher inferred prevalence

of adequate diets for infants and young children via CATI. Women without mobile-phone

access were younger and had fewer assets than women with access, but only marginally

lower dietary diversity, resulting in a small non-coverage bias of 1–7% due to exclusion of

participants without mobile phones. Thus, collecting nutrition data from rural women in

Africa with mobile phones may result in 0% (no change) to as much as 25% higher nutrition

estimates than collecting that information in face-to-face interviews.
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Introduction

Undernutrition among mothers is one of the leading causes of neonatal death globally [1] and

is responsible for the death of an estimated 3.5 million children under the age of five per year

[2], as well as reduced educational attainment and economic productivity among adults [3].

Diet, and dietary diversity in particular, are closely linked with undernutrition among both

women and young children [4], and has been identified as a key area for research [5] and pro-

gramming [6] to combat malnutrition. In recognition of the global impact of malnutrition, the

United Nations General Assembly declared a Decade of Action on Nutrition (2016–2026), and

the Sustainable Development Goals have set the ambitious target of ending hunger and under-

nutrition by 2030 [7].

Advances in reducing undernutrition depend on the ability to monitor nutritional status of

at-risk populations in order to respond rapidly to crises and scale-up successful programming.

Both require systematic data collection at a high spatial resolution and temporal frequency

[8,9]; however, current approaches used to collect nutrition data do not meet the requisite

demand [10]. Nutrition data is typically obtained by physically visiting the study location and

conducting face-to-face (F2F) household surveys at relatively high cost and with variable data

quality [11, 12]. Consequently, nutrition data collection is limited in scope and frequency, and

disproportionately rare in areas of insecurity, disease outbreak, or poor infrastructure [11, 13].

New approaches that can generate information at the right time and places are critical to scale

effective and efficient programming and to meet global goals on undernutrition [7].

Mobile phones are increasingly used to conduct surveys at scale in low- and middle-income

countries (LMICs) [14]. This is in part possible because subscriptions to mobile services are

increasing rapidly, including in Sub-Saharan Africa where approximately 46% of the popula-

tion was connected in 2015 [15]. Despite these gains in mobile penetration, many at risk and

vulnerable populations (target beneficiaries) may be missed due to lack of connectivity. For

example, poor, rural women remain the most under-represented group in terms of both

mobile phone ownership and usage [16]. Regardless, the proliferation of mobile devices and

data collection platforms has catalyzed their use in monitoring efforts in health, food security,

household characterization, disaster response, and other fields [17–20].

Data collection on nutrition via mobile phones may present novel challenges compared

with traditional F2F surveys. There are four primary methods of mobile-phone based data col-

lection: short messaging service (SMS); interactive voice response (IVR) either via telephone

keypad or speech recognition; unstructured supplementary service data (USSD); and com-

puter-assisted telephone interviewing (CATI) either with a human or computer operator.

Each mode has inherent strengths and limitations for use in the developing world [14, 21, 22].

While SMS is perhaps the most cost-effective data collection mode, it requires literate partici-

pants, preventing its widespread use, particularly in Africa [15]. IVR provides greater flexibility

in the types of questions that can be asked and ability to reach low-literacy users compared to

SMS and may have similar reliability to SMS in LMIC contexts [22, 23] (but see [24] for con-

trast). However, IVR with speech recognition can be challenging to implement in local lan-

guages due to the need to create word banks with many speakers [25], and generally, IVR

suffers from both lower response and completion rates than other modes when used in survey

contexts [14, 22, 26]. USSD requires close collaboration with telecom companies, which may

not be available in all locations [27], and does not directly address monitoring or research

questions. In contrast, CATI offers the flexibility to adapt questions and survey administration

to local languages and phone usage patterns and does not require literate participants. In addi-

tion to mobile money applications, voice calling is the most common use of mobile phones in
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LMICs [28], making CATI a promising mode of mobile data collection for food security and

nutrition applications.

Changes in data collection mode may introduce bias and thereby alter the measures and

inferences generated from the data [29]. These biases mainly arise from two sources: sampling

biases and the interaction between the enumerator and respondent. When surveys are con-

ducted via mobile phones, those without access to mobile devices or networks are necessarily

excluded from the survey, potentially creating a non-coverage bias in estimates of population

level metrics. Although the digital divide is shrinking [30], cost is still a large barrier to mobile

phone ownership in the developing world [28], and mobile phone ownership often correlates

with wealth, particularly among poor or rural households [16, 31, 32]. As wealth is also gener-

ally correlated with better nutrition and food security [33, 34], this may bias estimates of popu-

lation level nutrition indicators measured with mobile phones. Survey mode may also alter the

non-response bias in the data, which results from differences in those who chose to participate

in mobile phone surveys or not. For example, women tend to be less trusting of calls from

unknown numbers than men [35], potentially limiting their participation in call-based

surveys.

A second source of bias results from the interactions between the respondent and the sur-

vey administrator (or lack thereof). During F2F interviews enumerators are able to observe the

local context of the respondent and possibly able to elicit accurate answers to survey questions

via informed interrogation. Alternatively, the degree of sociality or anonymity of the interview

process can also introduce bias in survey data [36]. In particular, respondents may be more

reluctant to give responses that they find socially undesirable the more social the survey pro-

cess is, due to physical or verbal presence of the survey administrator [37, 38]. Therefore, sur-

veys conducted via mobile phones, including via CATI, may be less subject to social-

desirability bias than those conducted via F2F interviews.

Here, we tested the accuracy and potential bias of using CATI to collect nutrition data

through a test-retest survey on two nutrition indicators in households in rural Kenya. While

Kenya has high rates of undernutrition, typical within sub-Saharan Africa (26% of children

under five are stunted, and 11% are underweight [39]), it also has the highest rates of mobile

penetration in East Africa (81 mobile subscriptions per 100 people compared to a regional

average of 53 [40]) and the lowest gender gap in phone ownership (7% compared to 13% for

Sub-Saharan Africa [35]), making Kenya an ideal country to evaluate the accuracy of data col-

lection with mobile phones. We hypothesized that CATI would generate (a) individual dietary

diversity scores equivalent to F2F, (b) equivalent population-level prevalence of dietary diver-

sity to F2F, but (c) a non-coverage bias resulting in higher estimates of dietary diversity among

phone users compared to non-phone users.

Materials and methods

Study sites

We selected Baringo and Kitui Counties in Kenya as study sites, as these counties differ in

socioeconomic and environmental conditions, mobile phone access and network coverage (S1

Table). Baringo County (0˚ 28’ N, 35˚ 59’ E) is characterized by mixed crop-livestock farming

systems in the highlands and pastoralism in the lowlands, and generally receives adequate rain-

fall for agriculture throughout the county [41]. In Baringo, approximately 52% of the popula-

tion is below poverty line [42], 30% of children are stunted [43], and 50% of the population

owns a mobile phone [16]. Kitui County (1˚ 22’ S, 38˚ 23’ E) is generally at lower elevation

than Baringo and is dominated by agro-pastoralism with sorghum, millet, and small livestock.

There is inadequate rainfall for agriculture in the easternmost parts of the county. Kitui has
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higher rates of poverty (60%), child stunting (46%), and lower mobile phone ownership (25%),

than Baringo (see above references).

Study locations within each county were selected through a combination of purposeful and

random sampling of administrative units. We included all districts within each county (Kitui

has two districts and Baringo four). Within each district in Kitui, we purposefully selected the

divisions with the highest and lowest number of households. From the two districts in Baringo

with the highest population, we purposefully selected the divisions with the lowest number of

households, while from the two districts with the lowest population, we selected the divisions

with the highest number of households, for a total of four divisions in each county. Within

each division, we randomly chose two sublocations, for a total of 32 sublocations representing

the economic and geographic variation within each county.

Indicators

We tested data collection mode with two internationally-validated nutrition indicators: Mini-

mum Dietary Diversity for Women (MDD-W) [44] and Minimum Acceptable Diet (MAD)

for infants and young children [45] (Table 1). MDD-W accesses the micronutrient adequacy

in the diet of women of reproductive age, a critical predictor of both maternal and child nutri-

tion. MAD assesses the adequacy of Infant and Young Child Feeding (IYCF) based on both

dietary diversity (MDD) and meal frequency (MMF). We also included a sociodemographic

indicator, the Kenya Progress Out of Poverty Index (PPI) [46] as a wealth proxy to assess dif-

ferences in mode effect on MDD-W and MAD by wealth. The indicators can be collected in

short surveys of approximately five minutes, do not rely on pictorial demonstrations of food

groups, and are calculated on a scorecard methodology based on respondents’ answers to sev-

eral questions. The indicators differ in target population, type of data generated in question

response, and conversion of scores to population prevalence (Table 1). To meet the threshold

for adequate dietary diversity, participants must have consumed at least five food groups out

of ten in the past 24 hours for MDD-W and four out of seven for MDD. Recommended MMF

is satisfied when either (a) breastfed infants less than nine months old eat at least twice a day,

Table 1. Summary of indicators.

Indicator Measures Target Population No.

Qs

Data Types Score Prevalence Conversion to

Prevalence

MDD-W: Minimum

Dietary Diversity for

Women

Micronutrient deficiency in

women of reproductive age

Women aged 15–49

years

10 Binary 0–10 Proportion of women

consuming at least 5 out of

10 food groups

Step function

MAD: Minimum

Acceptable Diet

IYCF, children’s

undernutrition

Caretakers of

children aged 6–23.99

months

15 Binary

Continuous

P/F Proportion of children

consuming a minimum

acceptable diet

Compound step

function

MDD: Minimum

Dietary Diversity

IYCF, micronutrient

deficiency, stunting

Caretakers of

children aged 6–23.99

months

8 Binary 0–7 Proportion of IYC

consuming at least 4 out of 7

food groups

Step function

MMF: Minimum Meal

Frequency

IYCF, caloric deficiency,

wasting

Caretakers of

children aged 6–23.99

months

7 Continuous 0-1 Proportion of IYC

consuming an adequate

number of meals

Conditional1 step

function

PPI: Progress Out of

Poverty Index

Below Poverty line Adults 10 Binary

Continuous

Categorical

0–100 Likelihood of being below

poverty line

Logistic or

Exponential

function2

Sector, target population, survey length, data type, and conversion of score to prevalence for indicators in this study.
1 MMF is considered a conditional step function because the inflection point of the function depends on the age and breastfeeding status of the child.
2 The type of function used to convert PPI score to poverty likelihood depends on the definition of poverty used (e.g. national poverty line, $1.25/day, etc.).

https://doi.org/10.1371/journal.pone.0210050.t001
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(b) breastfed infants older than nine months eat at least three times per day, or (c) non-

breastfed infants regardless of age consume milk at least twice per day and other foods at least

four times per day. Both MDD and MMF criteria must be satisfied for MAD. Finally, PPI raw

scores are converted into below poverty-line (defined as $1.25/day) likelihoods using nonlin-

ear conversion tables [46]. Thus, we were able to examine the equivalence between modes at

three levels: population prevalence, individual indicator score, and responses to indicator

subquestions.

Experimental design

Two separate surveys were used concurrently for different target populations: MDD-W, PPI,

and basic demography for women of reproductive age, and MAD, PPI and basic demography

for adult caretakers of children aged 6–23.99 months. We used a test-retest design with four

treatment arms (T1-T4) to evaluate the effect of data collection mode on nutrition indicators

(Fig 1). In the main treatment arms T1 and T2, participants were interviewed with both CATI

and F2F modes. We included two control arms to the experimental design. For the first control

arm (T3), participants were interviewed via F2F mode in both rounds to understand potential

learning and/or temporal effects. A fourth arm (T4) of F2F interviews for respondents with no

phone access was included for MDD-W, to better understand non-coverage bias in conducting

studies via CATI. Phone access was defined as owning a mobile phone or having access to one

via intrahousehold sharing and was determined by asking potential participants.

Participants were systematically assigned to treatment arms during the test round, whereby

participants meeting the inclusion criteria for the indicators were alternately assigned to T1

and T2, and every sixth house visited per day was assigned to T3. For participants in T1 (CATI

first), phone numbers were collected and participants were called the next day. For partici-

pants in T2 and T3, F2F interviews were conducted immediately. In the retest round respon-

dents were re-interviewed using the other mode, e.g. participants in T1 were relocated and

Fig 1. Experimental design. Test-retest mode experiment on two nutrition indicators, MDD-W and MAD. Survey consisted of four treatment

arms: two main treatment arms testing for mode differences, arm 3 controlling for temporal effects and arm 4 controlling for non-coverage bias.

Target sample sizes are indicated.

https://doi.org/10.1371/journal.pone.0210050.g001
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interviewed F2F, while T2 participants were called via CATI. Participants in T3 were reinter-

viewed using F2F (Fig 1). The retest round occurred approximately nine days (8.7 ± 4.4 days)

following the first survey, accounting for activities such as market days that may have altered

diet choices when possible. G�Power [47] was used to calculate sample sizes to detect a mode

bias of 1.5 in population prevalence using McNemar’s Exact Test for paired nominal data,

assuming 25% of participants would switch indicator status (above or below threshold)

between rounds. Although attrition rates in mobile surveys can vary dramatically with mode

and location, for the sample size calculations we assumed a 15% attrition rate as CATI and F2F

have low attrition rates, and studies with only two rounds have lower attrition rates than panel

surveys [14]. For the power analyses, we used alpha = 0.2 and beta = 0.05 to minimize the rate

of false equivalences. The resulting target sample size was 1000 participants, which we split

evenly into the T1 and T2 arms. Control group sizes were chosen as 12.5% or 125 respondents

for F2F controls, and 20% or 200 respondents for no-phone controls.

Data collection

Thirty-two field enumerators (16 men and 16 women) and eight phone (3 men and 5 women)

operators were recruited from local populations in Baringo and Kitui Counties to ensure

familiarity with local languages, diets, and context. Enumerators and operators were trained

together for two days to standardize survey methodology and interpretation of responses. To

collect phone numbers and conduct F2F interviews, enumerator teams working simulta-

neously in Kitui and Baringo visited each identified sublocation in sequence. In each subloca-

tion, enumerators sampled households semi-randomly, as enumerators traveled between

households on foot, but were located in different parts of the sublocation, and did not sample

adjacent households. Household sampling continued until 70 suitable households were

identified for participation in the experiment. Only one participant was interviewed per

household.

Both enumerators and operators used the same survey instrument, Enketo (Ona, Nairobi,

Kenya and Washington, DC, USA), based on the Open Data Kit platform [48], to collect sur-

vey data. Operators used Enketo’s web form on desktops in United Nations World Food Pro-

gramme’s in-house call center in Nairobi to conduct CATI interviews, while enumerators used

a similar offline platform on tablets for the face-to-face surveys in the field. All data were

uploaded daily to a centralized ODK server from where raw data was then extracted and

analyzed.

Data analysis

We use F2F results as the “control” scores and CATI scores as the “treatment”, as F2F is the

standard mode of nutrition data collection. We evaluated effect of data collection mode in sev-

eral ways. First, paired t-tests evaluated mean score as a function of mode for participants that

received both CATI and F2F modes. At the population level, Kolmogorov-Smirnov tests com-

pared distributional differences (mean, variance, skew and kurtosis) of indicator scores

between modes. Equivalence Tests [49] against varying levels of difference assessed if differ-

ences by mode were clinically significant (large enough in magnitude to alter a nutritionist’s

interpretation of the resultant data). Linear mixed-effects models were used to examine survey

methodology effects on nutrition scores, such as mode bias, enumerator bias [50], or temporal

effects. Using a top-down approach [51], we first used the most complex fixed effects of inter-

est (a three-way interaction between survey mode, round and enumerator gender) and found

the optimal structure for the random effects (such as county and enumerator). Then, using the
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resulting random effects, we determined the optimal fixed-effects structure. For model selec-

tion we computed both Akaike’s Information Criterion (AIC) and the Bayesian Information

Criterion (BIC). Both AIC and BIC reward model explanatory power and penalize model com-

plexity, but BIC also accounts for the number of observations in the dataset [51]. Where AIC

and BIC disagreed on the best-fit model, we chose the model with the lowest AIC, in order to

guard against false negatives (e.g. declaring there in no effect of survey mode when there may

be). Differences in responses to indicator component questions at the individual level were

examined via McNemar’s Exact Test and paired t-tests for categorical and continuous data

respectively. Resulting p values were corrected for multiple testing using the false discovery

rate method [52].

Non-coverage bias was assessed by comparing dietary diversity, PPI, and demographic data

between the phone access and no phone access groups in the retest round for MDD-W. The

magnitude of the non-coverage bias, or the relative change in population-level estimates of die-

tary diversity by only surveying women with mobile phones, was estimated as

Relative Bias ¼
N2

N1

�Y 1 �
�Y 2ð Þ

�Y 1

Where �Y 1 and �Y 2 are the mean MDD-W scores for women with and without phone access,

respectively, and
N2

N1

� �
is the proportion of women without access to mobile phones [53]. We

estimated mobile phone access in our population from published sources [16, 35]. All data

analyses were conducted in R [54].

Ethical considerations

The study protocol received research clearance and ethical approval from Kenya’s National

Commission for Science, Technology and Innovation (NACOSTI), as well as the London

School of Hygiene and Tropical Medicine (LSHTM). All methods were performed in accor-

dance with NACOSTI and LSHTM guidelines. For all participants, oral informed consent was

obtained by the enumerator and/or operator before beginning each survey. All efforts were

made to ensure confidentiality of the participants. The data were stored in a password-pro-

tected computer and made accessible only to the core study team members. The analyses are

presented in an aggregate format, phone numbers have been deleted, and all data has been

anonymized. No incentives or remunerations were given for participation in this study.

Results

Survey completion

A total of 1,466 and 953 respondents for MDD-W and MAD, respectively, completed at least

one round of the study (S2 Table). Twenty-four percent of participants did not participate in

both survey rounds. Failure to reach participants twice was principally the result of unsuccess-

ful phone interviews (65% of failures), rather than inability to relocate participants for F2F

interviews (32% of failures). Inability to complete interviews via CATI, due to unanswered

calls, poor network connectivity, unavailable interviewees, or wrong numbers was 20.1%

across all indicators and locations (S2 Table). Subsequently, total sample sizes for MDD-W

were 788 respondents in the main treatment arms (T1 & T2), 191 respondents in the F2F-F2F

control arm (T3), and 210 in the no-phone control (T4). For MAD, 578 respondents were in

the main treatment arms (T1 & T2) and 126 in the F2F-F2F control arm (T3).
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Prevalence of adequate diet with mode

Survey mode had inconsistent effects on measured prevalence of adequate diet in the sampled

population (Table 2). Mode had no effect on prevalence of adequate dietary diversity in

women of reproductive age (MDD-W) (Difference = 1.5% ± 2.2%, two-tailed Z = 0.692,

p = 0.49). However, inferred prevalence of adequate dietary diversity for infants and young

children (MDD) changed with mode, with 17.8% ± 2.6% higher prevalence of adequate dietary

diversity measured via CATI (two-tailed Z = 6.738, p<0.00001). Similarly, the inferred preva-

lence of adequate meal frequency for infants and young children (MMF) was 12.3% ± 2.8%

higher via CATI than F2F (two-tailed Z = 4.404, p = 0.00001). Similar to MDD and MMF, the

compound metric MAD showed a difference in inferred prevalence with mode; it was 17.3% ±
2.3% higher via CATI than F2F (two-tailed Z = 7.399, p<0.00001). Overall, the rate of agree-

ment in individual indicator status with mode was approximately 70%. For participants who

received F2F interviews in both the test (R1) and retest (R2) rounds, there was no difference in

the prevalence of adequate diet with round for women of reproductive age (MDD-W) or

infants and young children (MAD), and the rate of agreement in individual indicator status

between rounds was somewhat higher than between modes at 80% (S3 Table).

Equivalence of scores with mode

Paired responses revealed statistically significant effects of the CATI treatment across all indi-

cators and locations. Both MDD-W and MAD scores were higher under CATI than F2F, with

the exception of MDD-W in Kitui County, which was lower on average with CATI (Table 3).

In addition to higher mean scores under CATI for the MDD and MMF components of MAD,

we also find higher variance in MDD and MMF scores with the CATI mode (F = 0.68,

p<0.0001), but no differences in the distribution of MDD-W scores with CATI. While

Table 2. Changes in nutrition indicators with data collection mode.

Indicator N F2F

N (%)a
CATI

N (%)a
Agreement N (%)b X2c pc

MDD-W 788 196 (24.9 ± 3.0) 208 (26.4 ± 3.2) 586 (74.4) 0.60 0.44

MDD 578 122 (21.1 ± 3.5) 225 (38.9 ± 4.0) 387 (67.0) 54.47 <0.0001

MMF 578 338 (58.5 ± 4.1) 409 (70.8 ± 3.8) 379 (65.5) 24.62 <0.0001

MAD 578 71 (12.3 ± 2.8) 171 (29.6 ± 3.9) 416 (72.0) 60.50 <0.0001

a Number (N) and percentage (%) of respondents who met the threshold for adequate nutrition for the given indicator via each data mode. Confidence intervals around

the percentage meeting the threshold were calculated using the Clopper-Pearson exact method.
b Number (N) and percentage (%) of participants whose indicator status did not change between modes.
c Based on McNemar’s Exact Test on respondents’ indicator status.

https://doi.org/10.1371/journal.pone.0210050.t002

Table 3. Changes in nutrition score with CATI by county.

Score Kitui Baringo

N Difference t p N Difference t p

MDD-W 445 -0.29 5.20 <0.0001 343 0.14 1.97 0.049

MDD 357 0.39 5.24 <0.0001 251 0.53 6.36 <0.0001

MMF 357 0.76 5.32 <0.0001 251 0.72 4.45 <0.0001

Mean paired difference in respondent scores, CATI Score minus F2F Score. For MDD-W and MDD, units are food groups. Units for MMF are meals per day. All tests

are two-tailed paired t-tests.

https://doi.org/10.1371/journal.pone.0210050.t003
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differences in scores were numerically significant for all indicators and locations, the magni-

tude of the mode effect differed between MDD-W and MAD. For MDD-W, the mean differ-

ence between modes was 0.1 food groups (on a scale from 0–10). When converted into

percentage differences, the modes give equivalent scores for MDD-W at the level of 2% differ-

ence, but yield non-equivalent scores at the 1% level (Fig 2). The magnitude of differences in

score with mode was larger for the MAD components than with MDD-W. Overall, caregivers

reported that children consumed an average of 0.45 more food groups per day (on a scale of

0–7 food groups) and ate an average of 0.75 more meals per day (average number of meals per

day in this study was five, with 95% of scores falling at 10 or fewer meals per day) via CATI as

compared to F2F; therefore, scores for MDD and MMF are only equivalent between modes at

the 9% level (Fig 2).

Scores for all nutrition indicators were lower in the retest round than in the test round (S3

Table). On average, MDD-W scores were reduced by 0.1 food groups (paired t = 3.10,

p = 0.002), MDD by 0.22 food groups (paired t = 4.4, p<0.0001), and MMF by 0.2 meals per

day (t = 2.18, p = 0.029). This effect was seen regardless of data collection mode. When

accounting for differences in scores using linear mixed effects models, we found significant

conditional effects of enumerators and locations across all three nutrition indicator scores (S4

and S5 Tables), which explained more than 50% of the variance in each indicator (S6 Table).

Marginal effects of survey methodology explained a small but significant amount of residual

variation in nutrition indicator scores, however, the influence of survey mode, round, and

Fig 2. Equivalence of CATI and F2F scores for all nutrition indicators. While CATI and F2F give equivalent metric scores at the 2% for

MDD-W, scores for MAD components MDD and MMF were only equivalent at the 9% level.

https://doi.org/10.1371/journal.pone.0210050.g002

Collecting nutrition data via mobile phones in Kenya

PLOS ONE | https://doi.org/10.1371/journal.pone.0210050 January 30, 2019 9 / 20

https://doi.org/10.1371/journal.pone.0210050.g002
https://doi.org/10.1371/journal.pone.0210050


enumerator gender differed between indicators. For MDD-W, only enumerator gender had a

significant impact on dietary diversity score, with males tending to give lower scores by

0.6 ± 0.1 (t = -3.95) food groups regardless of survey mode or round (S6 Table). For MAD

components MDD and MMF, we found evidence for three-way interactions between survey

mode, round, and enumerator gender (Fig 3). In particular, we found that male enumerators

gave lower MDD and MMF scores in the retest survey round when conducting interviews

using CATI by 0.9 ± 0.3 food groups (t = -3.03) and 1.8 ± 0.6 meals per day (t = -3.22),

respectively.

Food group mode effects

The mode of survey collection affected answers to 40% of questions related to specific food

groups. Consumption of pulses was consistently reported more frequently via CATI than F2F

across both dietary diversity indicators (MDD-W in Table 4 and MDD in Table 5). In contrast,

reported dairy consumption was consistently higher in F2F interviews, except for consump-

tion of milk by infants in Kitui County. The effect of mode on reporting consumption of

locally uncommon food groups (those reported by less than 20% of the respondents, such as

eggs, fruit, and vitamin-A rich foods, see S7 and S8 Tables) differed between the two indica-

tors. In MDD-W, women tended to report more consumption of uncommon food groups

under F2F (e.g. meat consumption is consistently higher via F2F). However, consumption of

uncommon food groups was reported more frequently via CATI for the MDD module of

MAD. Notably, caregivers reported significantly more consumption of fruits and vegetables by

infants via CATI than F2F in both Kitui and Baringo Counties.

Non-response bias

In both the MDD-W and MAD surveys, respondents who did not participate in both rounds

were significantly younger and less likely to own a mobile phone than those who completed

both rounds of the survey (S9 Table). They were also less likely to live in a household where

Fig 3. Interactions between survey mode, round and enumerator gender on nutrition indicator scores. Predicted nutrition indicator scores

based on linear mixed-effects models for a) MDD-W in number of food groups, b) MAD MDD in number of food groups, and c) MAD MMF

in number of meals per day. While only enumerator gender had an effect on MDD-W score, there were significant three-way interactions

between enumerator gender, survey round and survey mode on MAD components MDD and MMF.

https://doi.org/10.1371/journal.pone.0210050.g003
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the male head was formally employed; however, they did not differ in their likelihood of pov-

erty as measured by PPI score, or in their education level. While non-respondents in the

MDD-W survey did not differ from respondents in their MDD-W scores, in the MAD survey,

non-respondents had lower MDD and MMF scores than those who completed both rounds of

the survey.

Non-coverage bias

Across all of the treatment arms, rounds and locations, dietary diversity and adequacy scores

were correlated with measures of wealth such as the progress out of poverty (PPI) score (S10

and S11 Tables). PPI was also correlated with the number of phones owned by a household.

When we look at participants in the T4 “no phone” control arm, we find that women without

Table 4. Comparison of MDD-W food group reporting via CATI in Kitui and Baringo counties.

Kitui (n = 445) Baringo (n = 343)

Food Group Agreement (%)a Δ Nb X2c pc Agreement (%)a Δ Nb X2c pc

Grains 98 -5 3.13 0.139 100 0 0 1.00

Pulses 76 +25 5.38 0.045 66 +46 18.1 <0.001

Dairy 67 -72 35.75 <0.001 74 -52 28.9 <0.001

Dark Greens 73 -15 1.65 0.257 80 +4 0.06 0.911

Vegetables 56 -4 0.12 0.821 51 +68 50.7 <0.001

Fruits 85 -14 2.56 0.165 79 -8 0.51 0.617

Meat 91 -21 11.61 0.003 89 -23 12.4 0.001

Eggs 98 0 0 1.00 91 -5 0.52 0.617

Vitamin A 90 -20 8.56 0.010 87 -8 1.07 0.540

Nuts & Seeds 100 0 NA NA 98 -1 0 1

a Percentage of respondents who reported the same consumption (either yes or no) of the food group under CATI and F2F.
b The number of respondents who reported consuming that food group under CATI minus the number under F2F.
c Based on McNemar’s Exact Test on respondents’ reporting under CATI vs. F2F and corrected for multiple testing with the false discovery rate method.

https://doi.org/10.1371/journal.pone.0210050.t004

Table 5. Comparison of MDD food group reporting via CATI in Kitui and Baringo counties.

Kitui (n = 357) Baringo (n = 251)

Food Group Agreement (%)a Δ Nb X2c pc Agreement (%)a Δ Nb X2c pc

Grains 90 -7 0.28 0.825 94 +4 2.4 0.330

Pulses 66 +22 4.01 0.083 62 +5 0.26 0.959

Milk 64 +37 12.34 0.001 87 -22 9.8 0.007

Other Dairy 98 0 0 1 99.6 +1 0 1

Meat 93 +2 0.042 0.924 94 -2 0.06 1

Eggs 94 +2 0.056 0.924 92 +2 0.05 1

Vitamin A 71 -10 0.52 0.739 64 +39 16.2 <0.0001

Fruits & Vegs 59 +73 41.2 <0.0001 48 +98 72.4 <0.0001

Fortified Foods 80 +37 19.34 <0.0001 94 +6 1.56 0.462

Breastfed Ever 97 +5 4.9 0.059 96 +2 0.9 0.623

Breastfed Yesterday 88 -21 7.23 0.019 90 -3 0 1

a Percentage of respondents who reported the same consumption (either yes or no) of the food group under CATI and F2F.
b The number of respondents who reported consuming that food group under CATI minus the number under F2F.
c Based on McNemar’s Exact Test on respondents’ reporting under CATI vs. F2F and corrected for multiple testing with the false discovery rate method.

https://doi.org/10.1371/journal.pone.0210050.t005
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mobile phone access differed significantly from women with access (personal or household) in

terms of their age, education level, and household characteristics (Table 6). Women without

mobile phone access tended to be younger (-2 years, t = 2.73, pcor = 0.025) and were more

likely to have not completed any level of schooling (X2 = 5.89, pcor = 0.039). They were also

more likely to live in households without a male head (X2 = 15.23, pcor<0.0001), and more

likely to fall below the poverty line (+10% more likely, t = -4.86, pcor<0.0001). Despite these

differences, however, lack of phone access was not correlated with a difference in MDD-W

score (t = 1.85, pcor = 0.108). Given national mobile phone ownership rates for women in

Kenya of 42.5% and weighting scores only based on phone ownership, the estimated relative

bias for conducting nutrition surveys over mobile phones is 6.8% (overestimation of total pop-

ulation MDD-W score by 6.8% or 0.24 food groups). However, reported rates of phone owner-

ship among women in our sample were much higher than the published national data for

Kenya (S9 Table). If instead we calculate relative bias using the reported rate of phone owner-

ship in our MDD-W survey of 85%, conducting nutrition surveys over mobile phones would

only overestimate population level MDD-W by 0.9%.

Discussion

In this study, we tested the utility of using computer assisted telephone interviewing (CATI)

for cost effective, large scale nutrition data collection amongst women in rural Africa. We

Table 6. Differences between target women with and without access to a mobile phone.

Phone Access No Phone Access t/X2 pcor

N 790 205

Age group
15–19 6% (4%-8%) 11% (7%-16%) 5.05 0.050

20–29 35% (32%-39%) 39% (32%-46%) 0.94 0.397

30–39 35% (32%-39%) 30% (24%-37%) 1.79 0.272

40–49 24% (21%-27%) 20% (15%-27%) 0.83 0.437

Mean Age (years) 32.1 ± 8.6 30.2 ± 9.2 2.73 0.025

Education Level
No school completed 11% (9%-14%) 18% (13%-24%) 5.89 0.039

Completed primary 65% (62%-69%) 61% (54%-68%) 0.96 0.420

Completed secondary 17% (15%-20%) 18% (13%-24%) 0.03 0.910

Post-secondary 6% (4%-8%) 2% (0%-6%) 3.37 0.108

Male Employment
No male head 13% (11%-16%) 25% (19%-31%) 15.23 0.0006

Not formally employed 62% (59%-66%) 64% (57%-70%) 0.12 0.819

Labor employment 9% (7%-11%) 4% (2%-8%) 5.08 0.050

Non-labor employment 11% (9%-13%) 5% (2%-9%) 6.28 0.036

Other 4% (3%-6%) 2% (0%-6%) 1.05 0.420

Household Characteristics
Household Size 6.6 ± 2.4 6.1 ± 2.2 2.93 0.018

PPI Score 36.9 ± 14.9 31.6 ± 13.7 4.79 <0.0001

Poverty Likelihood 48.2% ± 28.3% 58.5% ± 26.7% -4.86 <0.0001

Nutrition Indicators
MDD-W 3.57 ± 1.24 3.39 ± 1.21 1.85 0.108

Data are proportions plus 95% confidence intervals unless otherwise noted. Differences were tested with X2 or t-tests for proportion or continuous data, respectively. All

p values were corrected for multiple comparisons using false discovery rate methods.

https://doi.org/10.1371/journal.pone.0210050.t006
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found that changing the data collection mode from traditional face-to-face (F2F) interviews to

CATI resulted in higher nutrition indicator scores, but not for all indicators tested among

rural women in Kenya. Dietary diversity scores did not differ in a clinically significant way

(mean difference of less than 2%) with the mode of data collection when women were asked

about their own diet, meaning that the inferenced population prevalence of adequate dietary

diversity for women of reproductive age would have been the same regardless of the mode of

data collection. In contrast, when women were asked about the diet of infants and young chil-

dren in their care, the scores for MDD and MMF generated via CATI were 11–14% higher

than those generated for the same child when the survey was administered F2F. This large dif-

ference in score between modes raised the inferred population prevalence of adequate dietary

diversity (MDD, 18%), meal frequency (MMF, 12%), and overall diet (MAD, 17%) for infants

and young children in our study populations. This mode effect also interacted with other sur-

vey methodology parameters, including survey round and the gender of the enumerator.

Thus, we detected a significant, but inconsistent mode effect for nutrition data collection from

rural women with mobile phones.

The observed difference in mode effect between MDD-W and MAD indicators could arise

from several sources including: the types of data generated, the conversion between responses

and indicator, the sensitivity of the indicator to the given local conditions, or the social percep-

tion of the questions asked. Both MDD-W and MAD ask participants to recall what they

(or children within their care) ate in the previous 24 hours, and enumerators convert the

responses into binary yes/no food group consumption scores, making it unlikely that differ-

ences in the types of data generated could lead to observed mode effects. Indeed, mode effects

were observed for infant dietary diversity scores (MDD) but not for women’s dietary diversity

scores (MDD-W). In contrast to MDD-W, MAD is a compound indicator that relies on meet-

ing thresholds in two sub-indicators (MMF and MDD). MMF relies on participants giving a

free, numeric response to questions on the frequency of consumption of milk, other milk

products, semi-solid food and infant formula in the past 24 hours. Although, a mode effect

in just one module of MAD would generate a mode effect in the compound indicator, we

observed similar magnitude and direction of mode effects for both MDD and MMF compo-

nents towards higher dietary diversity and more frequent meals reported via CATI. Therefore,

it is unlikely that the observed differences in mode effect between MDD-W and MAD arose

from differences in data type or conversion between score and prevalence.

Alternatively, the difference may be the consequence of the type of information asked with

MAD. Questions that are considered sensitive, because they may reveal embarrassing or unde-

sirable information about the respondent have been shown to show strong social-desirability

bias, and the magnitude of this bias can change with survey mode [36–38]. In general, respon-

dents tend to give more socially-desirable answers the more social the survey process is. For

example, in Zimbabwe, youth were more likely to respond to sensitive questions about sexual

health in both self-administered questionnaires with no interviewer and audio computer-assis-

ted calls than in face-to-face interviews [55]. While social desirability may strongly affect self-

reported responses in terms of dietary intake [56], asking a caregiver about the diet of infants

in their care and their breastfeeding practices may be much more sensitive, and thus subject to

stronger social-desirability bias than questions about their own eating habits or household

assets. If infant care is more socially-sensitive than personal diet, this may explain why we see a

mode effect of CATI with the MAD indicator, but not MDD-W.

Although we find evidence of a mode bias in potentially sensitive survey questions, the

directionality of the bias is opposite to that predicted by social-desirability. We found that the

less-social survey methodology of CATI actually resulted in higher nutrition indicator scores

compared to F2F. While both F2F and CATI involve social interactions with an administrator
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in the same local language, we suspect that discomfort with receiving calls on mobile phones

might have led to respondents giving more socially-desirable answers via CATI compared to

F2F. Security concerns (including calls from unknown numbers, harassment, fraud, and

spam) are the third largest barrier to women’s mobile phone use in Kenya after cost and net-

work access [35]. Therefore, conducting nutrition interviews via CATI calls to mobile phones

may have made the respondents less comfortable and thus more susceptible to the social-desir-

ability bias than F2F interviews, resulting in the observed higher scores on MAD via CATI.

We also found evidence of enumerator gender effects on nutrition indicator scores. Male

enumerators tended to record lower scores by more than half of a food group than female enu-

merators for MDD-W. For both components of MAD, enumerator gender interacted with

survey mode and round. Men also tended to record lower nutrition indicator scores in the

retest round of the survey when using CATI for MDD and MMF. Biases due to enumerator

gender have been increasingly documented in the developing world [50] and are most com-

mon when survey questions deal with gender-sensitive topics [57]. MDD-W and MAD both

rely on 24-hour recall methods and require enumerators to be familiar with the components

of dishes and to probe respondents about aspects of their diet. Meal preparation is still largely

the responsibility of women in Kenyan societies, which may mean that men are less familiar

with the components of common dishes, and thus the food groups consumed. While gender

biases in data recording have been well documented, how those biases interact with data col-

lection mode and technology is less well known and deserves further study.

Collecting data via different survey modes can create sampling biases, when the reachable

population via said mode differs from the general population (non-coverage bias), or when the

participating population differs from the population that does not participate (non-response

bias). A non-coverage bias is particularly important when data are intended to give informa-

tion on aggregate level conditions. For example, in countries such as the United States and

Australia, surveys conducted via landline telephones may generate substantial non-coverage

bias as younger people are less likely to have landline telephones, skewing national estimates of

demographic characteristics, health status [58], alcohol use [59], or election results [60]. In

Sub-Saharan Africa, where mobile phone ownership is largely correlated with wealth and the

majority of mobile phones are owned by men, conducting surveys via mobile phones may gen-

erate a non-coverage bias by disproportionately excluding the less wealthy and women. In this

study, we also found that women of reproductive age who do not have personal or household

mobile phones were significantly younger and less wealthy (as measured by PPI) than women

who did have access to mobile phone. They also had marginally lower dietary diversity than

women with mobile phone access, resulting in an estimated bias of 1–7% in MDD-W score

from surveying only women with mobile phones. This magnitude of bias (0.03–0.25 food

groups out of a mean score of 3.6 food groups) would not have changed the inferred popula-

tion prevalence of adequately diverse diet among women of reproductive age. However, stud-

ies that intend to measure or monitor nutrition status with mobile calling among a broader

population segment (e.g. including men and women, a larger age range, or both rural and

urban populations) should weight survey results not only by the relative mode bias [53] but

also by the demographics of the sampled population relative to the overall population [59].

While mobile phone surveys in rural Africa are likely to only select certain subpopulations,

whether this bias will affect population level estimates of nutrition will depend on the

proportion of the population that can be reached by mobile and the nutrition status of the

population.

Even within the reachable population for a given mode, there may be differences between

those who choose to participate in a survey, and those who choose not to. We found significant

differences in mobile phone ownership, network access, and age between women who
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participated in both rounds of the nutrition survey and those who did not, either due to a

missed or incomplete CATI call or a missed F2F interview. While these differences did not

result in any differences in MDD-W among women of reproductive age, non-respondent care-

takers of young children did report lower dietary diversity and lower meal frequency than

those who participated in both rounds of the MAD survey. This likely reflects a nonrandom

bias, whereby the likelihood of participating in the survey (via mobile phone ownership) is

also correlated with the nutrition indicators of interest (higher infant nutrition indicators

when measured by mobile interviews) [61]. This may explain why we see lower MAD scores

but not lower MDD-W scores among non-responders, despite lower phone ownership and

younger age for non-responders in both surveys.

Although we found substantial evidence for both a bias in data collected via CATI, a non-

coverage bias among women who could not be reached via mobile phones, and a non-response

bias among women who did not complete the survey, evidence of bias with survey mode does

not necessarily invalidate the mode. Consistent bias may actually increase the utility of the

mode [62], particularly when results can be calibrated (due to bias in score) or weighed to be

representative (due to non-coverage bias) [53, 59]. We find that across indicators and loca-

tions, there was a consistent tendency for participants to report a better diet (higher dietary

diversity, more frequent meals for infants and young children) via CATI. Although we only

find marginal evidence of a non-coverage bias in terms of women’s dietary diversity, we did

find that women without mobile phones in our study area had fewer assets, and that fewer

assets was correlated with lower dietary adequacy. Based on our data, we estimate that con-

ducting nutrition surveys via CATI could increase measured dietary scores by as little as 0%

(no change) to as much as 25% (18% maximum mode effect + 7% maximum non-coverage

bias), with concomitant effects on population prevalence of dietary adequacy. The exact mag-

nitude of the bias will depend on the sensitivity of the survey questions to mode and the pro-

portion and demographics of the population with access to mobile phones.

Despite the potential biases in using mobile phones to collect household survey data, there

were numerous advantages to the mode. The cost of implementing the nutrition surveys was

substantially lower using CATI compared to conducting traditional face to face surveys in the

field. CATI costed US$ 5 per successful survey as compared to US$ 16 per successful survey

via F2F. Furthermore, the CATI mode allowed us to reach participants despite an outbreak of

insecurity in two of our sub-locations during the study. We also found high participation rates

in the mobile phone administered surveys (approximately 75% participation), which is higher

than mobile participation experienced in other CATI surveys in LMICs that do not provide

phones to participants [14]. Early sensitization of communities in partnership with trusted

local agencies, as well as multiple call attempts may have helped to increase participation in

this study. Thus, mobile phones could be an important tool for monitoring vulnerable popula-

tions in places of high insecurity and geographical inaccessibility, as well as in situations where

resources are limited.

In summary, our findings suggest that CATI can be used to successfully and cost-effectively

collect MDD-W and MAD nutrition data among rural women in Kenya. Although dietary

data collected via CATI is biased towards higher dietary diversity and more adequate diets for

infants and young children as measured by MAD, this bias is consistent across locations and

indicators, and may be corrected for if data collected via CATI must be compared to data col-

lected via traditional F2F surveys. No mode effect of CATI was detected for women’s dietary

diversity (MDD-W). Additionally, where mobile penetration rates are high, and the mobile

accessible population does not differ from the population of interest, the non-coverage from

excluding participants without mobile phones can be negligible. If nutrition data do not need

to be benchmarked against F2F data and mobile penetration is high, then CATI can provide a

Collecting nutrition data via mobile phones in Kenya

PLOS ONE | https://doi.org/10.1371/journal.pone.0210050 January 30, 2019 15 / 20

https://doi.org/10.1371/journal.pone.0210050


particularly cost-effective method of collecting longitudinal nutrition data, even in rural com-

munities and in areas of insecurity.
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