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Abstract: Humans have been committed to space exploration and to find the next planet suitable for
human survival. The construction of an ecosystem that adapts to the long-term survival of human
beings in space stations or other planets would be the first step. The space plant cultivation system
is the key component of an ecosystem, which will produce food, fiber, edible oil and oxygen for
future space inhabitants. Many plant experiments have been carried out under a stimulated or real
environment of altered gravity, including at microgravity (0 g), Moon gravity (0.17 g) and Mars
gravity (0.38 g). How plants sense gravity and change under stress environment of altered gravity
were summarized in this review. However, many challenges remain regarding human missions to
the Moon or Mars. Our group conducted the first plant experiment under real Moon gravity (0.17 g)
in 2019. One of the cotton seeds successfully germinated and produced a green seedling, which
represents the first green leaf produced by mankind on the Moon.

Keywords: plant gravitropism; signal conversion; abiotic stress; altered gravity

1. Introduction

Earth’s life adapts to environmental factors (temperature, humidity, gravity etc.) and
is very successful at survival [1–3]. Plants exhibit strong life adaptability during a single
environmental change or multiple environmental changes [4]. The scientific significance
of plant microgravity experiments in space biology is to study the mechanism of con-
structing spatial biological regeneration systems and plant sensing gravity. An important
part of human space exploration is the construction of a plant-based life regeneration
ecosystem [5].

Plant biology experiments in ground-controlled environments have contributed to
simulate the various changes in plant growth under a space environment of altered grav-
ity [6,7]. With the establishment of the International Space Station (ISS), plant experiments
under real space microgravity have become possible. With the development of the space
agencies of increasing countries, the experimental facilities in the ISS have been upgraded
and improved. In recent years, basic research on plant gravity response and signal conduc-
tion has been widely developed. It is believed that adaption of roots and stems growth of
plants to the microgravity conditions will be essential [7].

However, the development of human space science can not only be carried out in
space stations but must also strive to find the next planet suitable for human habitation.
Many studies have been carried out to simulate the low-gravity environment of planets
such as the Moon and Mars [7–10]. With the successful landing of the Chang’e 4 probe
at the far side of moon, our group conducted a scientific experiment on plant growth.
The cotton seeds were germinated and grown as the first-ever plant on the Moon.
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The goal of the human space exploration is to further explore outer space (Mars,
the Moon etc.) [11]. The construction of a life-regeneration ecosystem on other planets is
an important technical issue in space biology [12]. Therefore, the simulation of space plant
growth experiments and the development of planetary surface plant experiments must be
further emphasized [13].

2. History of Plant Cultivation Systems in Outer Space

Food and oxygen production, carbon dioxide removal, waste recycling and water
purification by a micro-life support system (MLSS) are some of the key technologies and
problems for long-term manned interstellar travel and immigration. Many studies have
focused on screening a large number of organisms suitable for growth in harsh space
environments and studying how they can adapt to the extreme environment of outer space.
The space plant cultivation system is the key component of an MLSS, and space plants
have been cultivated on four major research platforms and stages [12,14]. In early 2014,
NASA launched the “Vegetable Production System (VEGGIE)”, which is the first system
designed for food production under microgravity, and as a result, astronauts ate self-grown
lettuce on the ISS [14].

In space plant cultivation systems, early-stage tasks include developing small-scale
plant growth systems to produce fresh vegetables and small fruits to supplement astronaut
diets. In the later stages, as the duration of the task increases, plants will provide an
increasing number of important functions, such as food and oxygen production, carbon
dioxide removal and water purification, all of which require innovative horticultural tech-
niques and methods [15–17]. These technologies will include the development of efficient
electrical lighting or solar collectors; innovative design and management of greenhouses
and planting modules; and the development of recycling technology to preserve water and
nutrients [18,19]. Therefore, determining how to successfully cultivate plants in space will
require screening a large number of species and meeting the functional needs of the above
mentioned modules [12].

The ISS has been served by joint efforts of the aerospace industry across various
countries [20,21]. The space station laboratory has evolved from the most basic simple
plant growth carrier to a complete plant test system with high-end molecular facility instru-
ments, which from simple observations of plant growth to complex biological component
determinations and the detection of changes regarding the plant molecular levels [22].
The space plant cultivation system changed from the Oasis series in 1970 to the VIEGGIE
launched by NASA in early 2014 and has been optimized for plant growth space, light
supply and cultivation environment [15,16,23]. The space station plant culture room, as the
core carrier, provides an experimental guarantee for the feasibility and accuracy of plant
microgravity studies [24].

3. How Plants Sense Gravity and Change under Stress Environments of Altered Gravity

Plants evolve and grow under the influence of constant factor, Earth’s gravity (1 g).
In response to this pressure, plants have acquired gravitropism to sense gravity and change
their growth direction and morphogenesis [25,26]. To change the intensity of gravity of
ground simulation to study plant changes is a common method to explore the mechanism
of plant gravitropism [4,27]. Through long-term research, the molecular mechanisms for
sensing gravity were disclosed in different plant species, especially in the model organism
Arabidopsis thaliana [28,29]. Arabidopsis has the advantages of small genome, short life
cycle, easy planting, prolific seed, and a large number of mutants compared to other plant
species [30,31].

3.1. How Plant Sensing Gravity

Gravity sensing in plants is a very complex process, including the perception of gravity
by cells and signal transduction in cells as well as the cells’ responses to change [32]. Amylo-
plast re-precipitation in root columella cells is a critical initial step in gravity sensing when
the plant roots are laterally reoriented. This process somehow causes cytoplasmic alkaliza-



Int. J. Mol. Sci. 2021, 22, 11723 3 of 11

tion of these cells and then repositions the auxin efflux vector (PIN genes) [33]. This changes
the auxin flow throughout the root, producing a lateral gradient of auxin throughout the
cap that causes different cell elongation and gravity when delivered to the elongated region.
Recent studies showed the evidence that these participants transferred signals from amylo-
plasts deposits to the auxin signaling transduction: mechanically sensitive ion channels,
actin, calcium ions, inositol triphosphates, receptors/ Ligand, ARG1/ARL2, spermine and
TOC complex [34,35].

The elongation zone is also a key part of root bending during gravity sensing. Grav-
itropism is the result of different accumulations of auxin on either side of the elongation
zone, resulting in differential growth curvature [36]. Many experiments have demon-
strated the importance of precipitating amyloplasts in gravitropism, and the precipitation
of dense amyloplasts is a critical first step [36–39]. Amyloplast-free mutants still responded
to gravity, and some studies revealed the possible existence of another gravity-sensing
mechanism [39]. In addition to the root cap, there is another gravity sensing site that is
dependent on actin, which is different from the mechanism of columnar actin. Some plant
cells can also sense gravity by the hydrostatic pressure exerted by the protoplasts on the
cell wall [38].

3.2. Transduction of Gravity Signal and Auxin as a Signal

After the plants turned to other orientations, the amyloplasts of the root columella
cells began to drop to the cell’s new bottom-side [35,40]. Auxin is transmitted by columella
cells to the elongation zone to initiate the signal transduction [41]. The auxin influx vector
AUX1 is required for the transmission of gravity signals, and AUX1 plays a crucial role in
the downstream step of the auxin gradient from the root to the elongation zone.

The auxin efflux vector dynamically controls the flow of auxin during gravity; con-
versely, the PIN protein releases auxin from the cell, and PIN2 is critical for the transport of
this differential fluid through the lateral cover and upward through the extension band [42].
The Ca2+ signal is located downstream of the auxin signal and is involved in the conversion
to the auxin signal to the change in extracellular pH value [43]. Inositol triphosphate
may be involved in the interaction between light and gravity reactions. The previous
research suggested that the inositol triphosphate signaling pathway may be involved in the
repositioning of the PIN protein by regulating the intimal system after root reorientation in
the gravitational field. Whether this process depends on Ca2+ remains to be elucidated [44].

The asymmetric distribution of auxin requires the auxin transporters AUX1 and
PIN2 [36]. However, the relationship between AUX1 and PIN2 is unclear [44]. There
is a report that demonstrated that the aux1-T mutant exhibits a stronger defect in root
gravity than pin2-T and that the aux1-T/pin2-T double mutant exhibits an agravitropic
phenotype similar to aux1-T. In the pin2-T, aux1-T and aux1-T/pin2-T mutants, the gravity-
induced auxin response asymmetric distribution could not be established; whereas the
aux1-T/pin2-T double mutant responded the same way as the aux1-T mutant. These results
support the role of AUX1 in upstream of PIN2 [45].

3.3. The Dynamic Model of Amyloplast Sedimentation

The dynamic model of amyloplast sedimentation of the root columella cells is cal-
culated using the following equation. From the differential equation of the motion of a
substance in a liquid, the following can be obtained:

mdv
dt

= mg − Fb − kv

In the formula, m is the mass of the amyloplasts; Fb is the buoyancy of the amyloplasts
in the cytoplasm; k is a constant related to the viscosity of the cytoplasm, which depends
on cell volume; and v is the speed of amyloplast movement (Figure 1).
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Figure 1. Dynamics model of amyloplasts sedimentation in cytoplasm. The big black irregular
circle represents the root columella cell. The small black irregular circle represents the amyloplast
(amyloid). F is the combined force shown by the amyloplasts, G is the gravity of the amyloplasts,
Fb is the buoyancy of the amyloplasts, and Fr is the viscous resistance of the amyloplasts when they
move in the cytoplasm.

When the initial condition t = 0 is set and v = 0, v can be solved by solving the
differential equation.

v =
mg − Fb

k
(1 − e−

kt
m ) (1)

According to Newton’s second law, fluid dynamics and other theories, the resultant
force of the amyloplasts in the cytoplasm can be obtained with the following equation:

F = G − Fb − Fr = ρ1Vg − ρ2Vg − kv (2)

In Formula (2), F is the combined force shown by the amyloplasts, G is the gravity
of the amyloplasts, Fb is the buoyancy of the amyloplasts, Fr is the viscous resistance of
the amyloplasts when they move in the cytoplasm, ρ1 is the amyloplast density, ρ2 is the
density of the cytoplasm, and V is the volume of the amyloplasts (Figure 1).

Then,

a =
F

ρ1V
=

ρ1 − ρ2

ρ1
g − kv

ρ1V
=

ρ1 − ρ2

ρ1
ge−

kt
ρ1V (3)

s =
1
2

at2 =
1
2

ρ1 − ρ2

ρ1
e−

kt
ρ1V gt2 (4)

In the formula, s is the displacement of amyloplasts in the cytoplasm.
Equation (4) simplifies to

s = k1e−k2tgt2 (5)

Thus, k1 = 1
2

ρ1−ρ2
ρ1

, k2 = − k
ρ1V

3.4. The Lateral Root Sense Altered Gravity

Recently research demonstrated that lateral roots can serve as a good system for
exploring amyloplast-dependent mechanisms [46]. Arabidopsis lateral roots have stronger
amyloplast-dependent gravitational pathways than primary roots. There is evidence that
an amyloplast -independent mechanism plays a role in primary roots; however, this is
difficult to determine [18].

3.5. The Plant Gravitropism Related to Phototropism

Light regulates many physiological processes related to plant development, thus,
affecting seed germination and seedling morphology, especially in the activation and
regulation of cellular and molecular functions [47,48]. The interaction between light and
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gravity induction of plants was studied under the action of spatial microgravity [49,50].
In fractional gravity studies, the wild-type and mutant phytochrome A and B genotypes
of Arabidopsis thaliana showed an attenuation of red-light-based phototropism in both
roots and hypocotyls of seedlings occurring due to gravitational accelerations ranging
from 0.l to 0.3 g. In contrast, blue-light negative phototropism in roots, which was enhanced
in microgravity compared with the 1g control, showed a significant attenuation at 0.3 g [51].

4. The Plant Experiments under Simulated and Real Altered Gravity Environment
4.1. The Plant Experiments under Simulated Microgravity (0 g), Moon Gravity (0.17 g) and Mars
Gravity (0.38 g) Environment

Numerous studies on plant growth and development have been conducted in altered
gravity environments since the beginning of human spaceflight; however, how gravity
affects plant growth and development is still unclear [9,52–54]. Inclinometers and Random
Positioning Machine (RPM) are used to simulate microgravity. Two types of methods using
RPM to simulate partial gravity were developed, one by implementing a centrifuge on the
RPM and the other by driving a RPM motor using a specific software protocol [55,56].

Gene expression levels under microgravity conditions involved in regulating the cell
polarity, cell wall development, oxygen status, and cell defense or stress were found to
be more than twice as large as those under earth gravity experiments, which indicates
microgravity as an important factor affecting these key genes [29]. The effects of light and
gravity on plants were investigated under microgravity conditions, and the photoreaction
of blue and red light in Arabidopsis roots was found, indicating an antagonistic relationship
between light and gravity signals during early plant growth and development [48,50].
Furthermore, the epigenetic modifications of chromatin and a serious disturbance of cell
proliferation were identified due to altered gravity effects that affect the cellular functions
for normal plant development [8,36,57].

In addition, the cell proliferation of fixed root meristematic cells from 4-day grown
Arabidopsis thaliana seedlings appeared increased, and cell growth was depleted under
Moon gravity compared with the 1 g control [52]. However, the results at the simulated
Mars level were close to the 1 g static control, which suggests that the threshold for sensing
and responding to gravity alteration in the root would be at a level intermediate between
Moon and Mars gravity [52]. Depending on the organisms examined, studies suggest that
the threshold for gravity required for living systems to operate normally is 0.3 g or less,
which is supported by other observations [4,9,46,54].

In another study, the in vitro cell culture of Arabidopsis thaliana was placed under
different conditions of simulated microgravity, at Mars gravity (0.38 g) and hypergravity
(2 g), to study the cell proliferation, growth and appearance [8,58]. The most relevant
changes occurred in the 24-h treatment, which was more pronounced for simulated gravity
decline than for supergravity, which indicated that changes in gravity effects include severe
interference with cell proliferation and growth [58]. The key transcripts responded to
altered gravity have been identified. For example, 396 transcripts were at least 100% up-
regulated during the microgravity phase of the parabola, among them 25 Ca2+-dependent
genes, such as members of the Ca2+-binding protein family, or Ca2+-dependent protein
kinases [59].

4.2. The Plant Experiment under a Real Moon Gravity Environment (0.17 g)

Our group conducted the first plant experiment under real Moon gravity (0.17 g) in
2019. The biological experiment payload (BEP) is a cylindrical structure with a weight
of 2.608 kg, which meets the requirements of the Chang’e 4 probe. The BEP includes a
control module, a thermal control module, a structural module, a light-guiding module,
and a biological module. The biological space has a volume of approximately 0.82 L,
contains cotton seeds, rapeseed seeds, potato seeds, Arabidopsis seeds, insects and yeast,
and constitutes a micro-life cycling system. The BEP has a very small light-transmitting
hole with a diameter of Φ10.
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The BEP was installed on the lander of the Chang’e 4 probe and successfully completed
the first-ever soft landing on the far side of the Moon at 10:26 a.m. on 3 January 2019, Beijing
time (Figure 2). The ground-controlled BEP was set up at the same time. Surprisingly,
a cotton seed in the BEP on the Moon germinated 22 h from the water injection time (WIT).
The first leaf of the cotton seedling in the BEP on the Moon was observed at 82 h from
the WIT. There was no large difference in leaf size between the two pictures taken at 82
and 190 h, suggesting that growth retardation occurred at this stage. Cotton seeds were
germinated in the ground-controlled BEP 53 h from the WIT. The seedlings grew rapidly,
and only the stalk was captured by the camera after 190 h (Figure 2). No other sign of
germination in the BEP of the Moon except for the cotton seedling was observed within
the view of the camera.

Figure 2. Brief comparison between the ground-controlled BEP and the BEP on the Moon. The brown circles represent
seeds. The brown circles with a light grey tail represent germinated seeds. The green seedlings represent the seedlings of
cotton or rapeseed. The time from the WIT is indicated in h. The germination of the cotton seed on the Moon was much
faster than that on Earth. Horizontal elongation of the embryonic root and growth retardation 92 h after the WIT were
observed in the BEP on the Moon.

The growth retardation of the cotton seedling observed in this study is consistent
with previous simulation studies [4,9,46,54]. Plant growth and development is greatly
affected by the actual lunar microgravity environment. Under the 1 g gravity circumstance,
the amyloplasts in the columella cells will fall to the lower side of the cell membrane in
response, which is the key step in gravity sensing [35,46]. The following activating of PIN3
and PIN7 accumulation in the lower side of the cell membrane could cause rapid efflux of
auxin [34,45]. In this case, the auxin content in the upper side of the root tip is higher than
the auxin content in the lower side, resulting in rapid growth of the cells in the upper part
of the root tip. The root will grows in the direction of gravity [39,41,49].

Why amyloplasts fall in gravity sensing? The amyloplasts has a density of 1.5 g/cm3,
whereas the surrounding cytoplasm has a density of approximately 1.02–1.1 g/cm3.
Will this falling change according the gravity variation? A dynamics model of amylo-
plast sedimentation in cytoplasm under gravity variation was set up based on Newton’s
second law (Figure 1). The fluid dynamics theories are shown in Figure 3a.
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Figure 3. Dynamic model of amyloplast sedimentation in the cytoplasm. (a) The correlation between
the descent velocity of amyloplast sedimentation in the cytoplasm and gravity variation. The two
turning points at 0.25 g and 0.11 g indicate that the displacement of amyloplasts will be much slower
under 0.25 g or less gravity. (b) At 1g gravity, the amyloplasts in the columella cells fall to the lower
side of the cell membrane, which is the key step in gravity sensing. The subsequent activation of
PIN3 and PIN7 accumulation on the lower side of the cell membrane causes a rapid efflux of auxin.
In this case, the auxin content on the upper side of the root tip is higher than the auxin content on the
lower side, resulting in rapid growth of the cells in the upper part of the root tip. The root will grow
in the direction of gravity. Under the 1/6 g gravity of the Moon, the amyloplasts in the root tip cells
are insensitive to gravity and cannot sink to the lower part of the cell membrane rapidly. In this case,
PIN3 and PIN7 are evenly distributed in the cell membrane. The auxin on both sides of the root tip
is also uniformly distributed, causing the root tip to grow straight. The threshold calculated by the
amyloplast precipitation model is 0.25 g. When gravity is less than 0.25 g, the sedimentation rate
of the amyloplasts will be greatly reduced, and the root tip cannot bend and grow in response to
gravity.

As the gravity declined, the descent velocity of amyloplasts declined in the dynamics
model, in which 0.25 g and 0.11 g were the two turning points. This indicates that the
displacement of amyloplasts will be much slower under 0.25 g or less gravity circumstances
(Figure 3b). This will affect the development of the plant root system and, subsequently,
the growth of the whole plant, which made the horizontal elongation of embryo roots in
BEP on Moon under only 1/6 g (Figure 3b). This might be the prime cause of the threshold
for gravity required for plant living systems to operate normally, which was found to
be 0.3 g or less from other studies; however, further investigation and evidence, such as
actual microscope captures with amyloplast displacement under 0.3 g gravity, will be
needed [4,9,46,54].

5. Concluding Remarks and Future Perspectives: Mars and Lunar Base Construction

Over the years, humans have been committed to space exploration and finding the
next planet suitable for human survival [60,61]. There are hopes to build an ecosystem that
adapts to the long-term survival of human beings in space stations or other planets [61].
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Many plant cultivation system have been carried out on the ISS, which are related to
the effects of microgravity on plant growth [14,62]. However, many challenges remain
regarding human missions to the Moon or Mars. We present a few suggestions that might
be helpful.

First, establishing a base, cultivating crops and maintaining a biological life support
system (BLSS) on the Moon or Mars will be very difficult. Not only gravity alterations but
also magnetic field alterations, photoperiod alterations, extreme environmental tempera-
tures and unforeseeable radiation will be major obstacles to crop cultivation systems on
the Moon or Mars [9,52].

Second, more on-ground experiments simulating specific Moon or Mars conditions
are required. Fundamental research on higher-plant regulatory networks at the molecular
level is urgently needed to understand the molecular signals in the distinct phases of the
stress response and adaptation. Such information will speed up the development of crop
varieties without gravitropism and magnetoreception but with the ability to quickly adapt
to other long-term abiotic stresses [59].

Third, the performance of each organism and the interactions among organisms in the
BLSS should be investigated [4,24]. Advanced cultivation facilities exploring the benefits
of candidate plant species for a specific function, such as resistance to gravity alterations,
a high rate of oxygen production, a high biomass production rate and radiation resistance,
are needed.

Author Contributions: D.Q., G.X. and Y.Z. designed research program. D.Q., Y.J., G.X. and Y.Z.
analyzed data and wrote the manuscript. All authors have read and agreed to the published version
of the manuscript.

Funding: This work was funded by Natural Science Foundation of Chongqing, China. (Project No.:
cstc2020jscx-msxm1333, The development and large-scale production application of potato late blight
compound vaccine). 2. This work was funded by Fundamental Research Funds for the Central
Universities (2021CDJZYJH-002). 3. This work was funded by the third pre-research projects of the
civil space project from China National Space Administration (CNSA), and the project name is The
Key Technology for the Construction of Micro-Ecospheres Adapted to the Lunar Environment.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We thank Weiren Wu, Jizhong Liu, Guobin Yu, Yuhua Tang, Zhe Zhang (Lunar
Exploration and Space Engineering Center of the State Administration of Science, Technology and
Industry for National Defence, PRC) for their support. We thank Department of Science and Technol-
ogy, Ministry of Education, PRC. We thank Peijian Ye, Zezhou Sun, He Zhang, Xueying Wu, Youwei
Zhang, Fei Li, Zhiling Ye, Mei Yang, Jiang Bai (Beijing Institute of Spacecraft System Engineering,
Beijing, China) for their scientific assistance. We thank Jian Li (Beijing Aerospace Control Center,
Beijing, China), Chunlai Li (National Astronomical Observatories, Chinese Academy of Science,
Beijing, China), Yutu Zhang, Feng Zhan, Lin Li, Libin Wang, Jun Zhao, Junqiang Xiao (Shandong
Institute of Space Electronic Technology, Yantai, Shandong, China), Congzheng Wang (Institute of
Optics and Electronics, Chinese Academy of Science, Chengdu, China) for their scientific assistance.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Rothschild, L.J.; Mancinelli, R.L. Life in extreme environments. Nature 2001, 409, 1092–1101. [CrossRef]
2. Tazi, L.; Breakwell, D.P.; Harker, A.R.; Crandall, K.A. Life in extreme environments: Microbial diversity in Great Salt Lake, Utah.

Extrem. Life Under Extrem. Cond. 2014, 18, 525–535. [CrossRef] [PubMed]
3. Tych, K.M.; Hoffmann, T.; Batchelor, M.; Hughes, M.L.; Kendrick, K.E.; Walsh, D.L.; Wilson, M.; Brockwell, D.J.; Dougan, L.

Life in extreme environments: Single molecule force spectroscopy as a tool to explore proteins from extremophilic organisms.
Biochem. Soc. Trans. 2015, 43, 179–185. [CrossRef]

4. Ruyters, G.; Braun, M. Plant biology in space: Recent accomplishments and recommendations for future research. Plant Biol.
2014, 16, 4–11. [CrossRef]

http://doi.org/10.1038/35059215
http://doi.org/10.1007/s00792-014-0637-x
http://www.ncbi.nlm.nih.gov/pubmed/24682608
http://doi.org/10.1042/BST20140274
http://doi.org/10.1111/plb.12127


Int. J. Mol. Sci. 2021, 22, 11723 9 of 11

5. Bamsey, M.; Graham, T.; Thompson, C.; Berinstain, A.; Scott, A.; Dixon, M. Ion-specific nutrient management in closed systems:
The necessity for ion-selective sensors in terrestrial and space-based agriculture and water management systems. Sensors 2012, 12,
13349–13392. [CrossRef] [PubMed]

6. Vandenbrink, J.P.; Kiss, J.Z.; Herranz, R.; Medina, F.J. Light and gravity signals synergize in modulating plant development. Front.
Plant Sci. 2014, 5, 563. [CrossRef] [PubMed]

7. Vandenbrink, J.P.; Kiss, J.Z. Space, the final frontier: A critical review of recent experiments performed in microgravity. Plant Sci.
Int. J. Exp. Plant Biol. 2016, 243, 115–119. [CrossRef] [PubMed]

8. Kamal, K.Y.; Herranz, R.; van Loon, J.; Medina, F.J. Simulated microgravity, Mars gravity, and 2g hypergravity affect cell cycle
regulation, ribosome biogenesis, and epigenetics in Arabidopsis cell cultures. Sci. Rep. 2018, 8, 6424. [CrossRef]

9. Kiss, J.Z. Plant biology in reduced gravity on the Moon and Mars. Plant Biol. 2014, 16 (Suppl. 1), 12–17. [CrossRef]
10. Wamelink, G.W.; Frissel, J.Y.; Krijnen, W.H.; Verwoert, M.R.; Goedhart, P.W. Can plants grow on Mars and the moon: A growth

experiment on Mars and moon soil simulants. PLoS ONE 2014, 9, e103138. [CrossRef]
11. Gibney, E. How To Build a Moon Base Researchers are ramping up plans for livimg on the Moon. Nature 2018, 562, 474–478.

[CrossRef]
12. Wolff, S.A.; Coelho, L.H.; Karoliussen, I.; Jost, A.I. Effects of the Extraterrestrial Environment on Plants: Recommendations for

Future Space Experiments for the MELiSSA Higher Plant Compartment. Life 2014, 4, 189–204. [CrossRef]
13. Vernikos, J.; Walter, N.; Worms, J.C.; Blanc, S. THESEUS: The European research priorities for human exploration of space. NPJ

Microgravity 2016, 2, 16034. [CrossRef]
14. Zabel, P.; Bamsey, M.; Schubert, D.; Tajmar, M. Review and analysis of over 40 years of space plant growth systems.

Life Sci. Space Res. 2016, 10, 1–16. [CrossRef]
15. Paul, A.L.; Amalfitano, C.E.; Ferl, R.J. Plant growth strategies are remodeled by spaceflight. BMC Plant Biol. 2012, 12, 1–15.

[CrossRef] [PubMed]
16. Morrow, R.C.; Crabb, T.M. Biomass production system (BPS) plant growth unit. Adv. Space Res. 2000, 26, 289–298. [CrossRef]
17. Paul, A.L.; Bamsey, M.; Berinstain, A.; Braham, S.; Neron, P.; Murdoch, T.; Graham, T.; Ferl, R.J. Deployment of a Prototype Plant

GFP Imager at the Arthur Clarke Mars Greenhouse of the Haughton Mars Project. Sensors 2008, 8, 2762–2773. [CrossRef]
18. Bingham, G.E.; Jones, S.B.; Or, D.; Podolski, I.G.; Levinskikh, M.A.; Sytchov, V.N.; Ivanova, T.; Kostov, P.; Sapunova, S.; Dandolov,

I.; et al. Microgravity effects on water supply and substrate properties in porous matrix root support systems. Acta Astronaut.
2000, 47, 839–848. [CrossRef]

19. Stutte, G.W.; Monje, O.; Goins, G.D.; Tripathy, B.C. Microgravity effects on thylakoid, single leaf, and whole canopy photosynthesis
of dwarf wheat. Planta 2005, 223, 46–56. [CrossRef]

20. Hamatani, S.; Uetake, Y.; Karahara, I.; Masuda, K.; Kamisaka, S.; Hoson, T.; Wakabayashi, K.; Soga, K.; Nishitani, K.; Goto, N.;
et al. Examination of growth environment for a long-term growth experiment of Arabidopsis thaliana L. on International Space
Station. Uchu Seibutsu Kagaku 2001, 15, 262–263.

21. Link, B.M.; Durst, S.J.; Zhou, W.; Stankovic, B. Seed-to-seed growth of Arabidopsis thaliana on the International Space Station. Adv.
Space Res. 2003, 31, 2237–2243. [CrossRef]

22. Driss-Ecole, D.; Legue, V.; Carnero-Diaz, E.; Perbal, G. Gravisensitivity and automorphogenesis of lentil seedling roots grown on
board the International Space Station. Physiol. Plant. 2008, 134, 191–201. [CrossRef]

23. Porterfield, D.M.; Neichitailo, G.S.; Mashinski, A.L.; Musgrave, M.E. Spaceflight hardware for conducting plant growth experi-
ments in space: The early years 1960–2000. Adv. Space Res.-Ser. 2003, 31, 183–193. [CrossRef]

24. Jost, A.I.; Hoson, T.; Iversen, T.H. The Utilization of Plant Facilities on the International Space Station-The Composition, Growth,
and Development of Plant Cell Walls under Microgravity Conditions. Plants 2015, 4, 44–62. [CrossRef]

25. Robinson, S.; Kuhlemeier, C. Global Compression Reorients Cortical Microtubules in Arabidopsis Hypocotyl Epidermis and
Promotes Growth. Curr. Biol. CB 2018, 28, 1794–1802.e2. [CrossRef]

26. Kume, A.; Kamachi, H.; Onoda, Y.; Hanba, Y.T.; Hiwatashi, Y.; Karahara, I.; Fujita, T. How plants grow under gravity conditions
besides 1 g: Perspectives from hypergravity and space experiments that employ bryophytes as a model organism. Plant Mol. Biol.
2021. [CrossRef]

27. Paul, A.L.; Wheeler, R.M.; Levine, H.G.; Ferl, R.J. Fundamental Plant Biology Enabled by the Space Shuttle. Am. J. Bot. 2013, 100,
226–234. [CrossRef] [PubMed]

28. Benavides Damm, T.; Walther, I.; Wuest, S.L.; Sekler, J.; Egli, M. Cell cultivation under different gravitational loads using a novel
random positioning incubator. Biotechnol. Bioeng. 2014, 111, 1180–1190. [CrossRef]

29. Correll, M.J.; Pyle, T.P.; Millar, K.D.L.; Sun, Y.J.; Yao, J.; Edelmann, R.E.; Kiss, J.Z. Transcriptome analyses of Arabidopsis thaliana
seedlings grown in space: Implications for gravity-responsive genes. Planta 2013, 238, 519–533. [CrossRef]

30. Kuang, A.; Popova, A.; Xiao, Y.; Musgrave, M.E. Pollination and embryo development in Brassica rapa L. in microgravity. Int. J.
Plant Sci. 2000, 161, 203–211. [CrossRef]

31. Sychev, V.N.; Levinskikh, M.A.; Gostimsky, S.A.; Bingham, G.E.; Podolsky, I.G. Spaceflight effects on consecutive generations of
peas grown onboard the Russian segment of the International Space Station. Acta Astronaut. 2007, 60, 426–432. [CrossRef]

32. Foster, J.S.; Wheeler, R.M.; Pamphile, R. Host-microbe interactions in microgravity: Assessment and implications. Life 2014, 4,
250–266. [CrossRef] [PubMed]

http://doi.org/10.3390/s121013349
http://www.ncbi.nlm.nih.gov/pubmed/23201999
http://doi.org/10.3389/fpls.2014.00563
http://www.ncbi.nlm.nih.gov/pubmed/25389428
http://doi.org/10.1016/j.plantsci.2015.11.004
http://www.ncbi.nlm.nih.gov/pubmed/26795156
http://doi.org/10.1038/s41598-018-24942-7
http://doi.org/10.1111/plb.12031
http://doi.org/10.1371/journal.pone.0103138
http://doi.org/10.1038/d41586-018-07107-4
http://doi.org/10.3390/life4020189
http://doi.org/10.1038/npjmgrav.2016.34
http://doi.org/10.1016/j.lssr.2016.06.004
http://doi.org/10.1186/1471-2229-12-232
http://www.ncbi.nlm.nih.gov/pubmed/23217113
http://doi.org/10.1016/S0273-1177(99)00573-6
http://doi.org/10.3390/s8042762
http://doi.org/10.1016/S0094-5765(00)00116-8
http://doi.org/10.1007/s00425-005-0066-2
http://doi.org/10.1016/S0273-1177(03)00250-3
http://doi.org/10.1111/j.1399-3054.2008.01121.x
http://doi.org/10.1016/S0273-1177(02)00752-4
http://doi.org/10.3390/plants4010044
http://doi.org/10.1016/j.cub.2018.04.028
http://doi.org/10.1007/s11103-021-01146-8
http://doi.org/10.3732/ajb.1200338
http://www.ncbi.nlm.nih.gov/pubmed/23281389
http://doi.org/10.1002/bit.25179
http://doi.org/10.1007/s00425-013-1909-x
http://doi.org/10.1086/314254
http://doi.org/10.1016/j.actaastro.2006.09.009
http://doi.org/10.3390/life4020250
http://www.ncbi.nlm.nih.gov/pubmed/25370197


Int. J. Mol. Sci. 2021, 22, 11723 10 of 11

33. Ganguly, A.; Lee, S.H.; Cho, H.T. Functional identification of the phosphorylation sites of Arabidopsis PIN-FORMED3 for its
subcellular localization and biological role. Plant J. Cell Mol. Biol. 2012, 71, 810–823. [CrossRef] [PubMed]

34. Harrison, B.R.; Masson, P.H. ARL2, ARG1 and PIN3 define a gravity signal transduction pathway in root statocytes. Plant J.
Cell Mol. Biol. 2008, 53, 380–392. [CrossRef]

35. Su, S.H.; Gibbs, N.M.; Jancewicz, A.L.; Masson, P.H. Molecular Mechanisms of Root Gravitropism. Curr. Biol. CB 2017, 27,
R964–R972. [CrossRef] [PubMed]

36. Liu, H.; Liu, B.; Chen, X.; Zhu, H.; Zou, C.; Men, S. AUX1 acts upstream of PIN2 in regulating root gravitropism. Biochem. Biophys.
Res. Commun. 2018, 507, 433–436. [CrossRef] [PubMed]

37. Scherer, G.F.; Pietrzyk, P. Gravity-dependent differentiation and root coils in Arabidopsis thaliana wild type and phospholipase-A-I
knockdown mutant grown on the International Space Station. Plant Biol. 2014, 16 (Suppl. 1), 97–106. [CrossRef] [PubMed]

38. Harmer, S.L.; Brooks, C.J. Growth-mediated plant movements: Hidden in plain sight. Curr. Opin. Plant Biol. 2018, 41, 89–94.
[CrossRef] [PubMed]

39. Soga, K.; Wakabayashi, K.; Kamisaka, S.; Hoson, T. Stimulation of elongation growth and xyloglucan breakdown in Arabidopsis
hypocotyls under microgravity conditions in space. Planta 2002, 215, 1040–1046. [CrossRef]

40. Manzano, A.I.; van Loon, J.J.; Christianen, P.C.; Gonzalez-Rubio, J.M.; Medina, F.J.; Herranz, R. Gravitational and magnetic field
variations synergize to cause subtle variations in the global transcriptional state of Arabidopsis in vitro callus cultures. BMC
Genom. 2012, 13, 105. [CrossRef] [PubMed]

41. Abas, L.; Benjamins, R.; Malenica, N.; Paciorek, T.; Wisniewska, J.; Moulinier-Anzola, J.C.; Sieberer, T.; Friml, J.; Luschnig, C.
Intracellular trafficking and proteolysis of the Arabidopsis auxin-efflux facilitator PIN2 are involved in root gravitropism. Nat.
Cell Biol. 2006, 8, 249–256. [CrossRef]

42. Kordyum, E.L. Plant cell gravisensitivity and adaptation to microgravity. Plant Biol. 2014, 16 (Suppl. 1), 79–90. [CrossRef]
[PubMed]

43. Fasano, J.M.; Swanson, S.J.; Blancaflor, E.B.; Dowd, P.E.; Kao, T.H.; Gilroy, S. Changes in root cap pH are required for the gravity
response of the Arabidopsis root. Plant Cell 2001, 13, 907–921. [CrossRef]

44. Wang, H.Z.; Yang, K.Z.; Zou, J.J.; Zhu, L.L.; Xie, Z.D.; Morita, M.T.; Tasaka, M.; Friml, J.; Grotewold, E.; Beeckman, T.; et al.
Transcriptional regulation of PIN genes by FOUR LIPS and MYB88 during Arabidopsis root gravitropism. Nat. Commun. 2015, 6,
8822. [CrossRef] [PubMed]

45. Kleine-Vehn, J.; Ding, Z.; Jones, A.R.; Tasaka, M.; Morita, M.T.; Friml, J. Gravity-induced PIN transcytosis for polarization of
auxin fluxes in gravity-sensing root cells. Proc. Natl. Acad. Sci. USA 2010, 107, 22344–22349. [CrossRef] [PubMed]

46. Baldwin, K.L.; Strohm, A.K.; Masson, P.H. Gravity sensing and signal transduction in vascular plant primary roots. Am. J. Bot
2013, 100, 126–142. [CrossRef]

47. Hader, D.P.; Lebert, M. Graviperception and gravitaxis in algae. Adv. Space Res. 2001, 27, 861–870. [CrossRef]
48. Valbuena, M.A.; Manzano, A.; Vandenbrink, J.P.; Pereda-Loth, V.; Carnero-Diaz, E.; Edelmann, R.E.; Kiss, J.Z.; Herranz, R.;

Medina, F.J. The combined effects of real or simulated microgravity and red-light photoactivation on plant root meristematic cells.
Planta 2018, 248, 691–704. [CrossRef] [PubMed]

49. Chen, G.H.; Liu, M.J.; Xiong, Y.; Sheen, J.; Wu, S.H. TOR and RPS6 transmit light signals to enhance protein translation in
deetiolating Arabidopsis seedlings. Proc. Natl. Acad. Sci. USA 2018, 115, 12823–12828. [CrossRef]

50. Vandenbrink, J.P.; Herranz, R.; Medina, F.J.; Edelmann, R.E.; Kiss, J.Z. A novel blue-light phototropic response is revealed in roots
of Arabidopsis thaliana in microgravity. Planta 2016, 244, 1201–1215. [CrossRef]

51. Kiss, J.Z.; Millar, K.D.; Edelmann, R.E. Phototropism of Arabidopsis thaliana in microgravity and fractional gravity on the
International Space Station. Planta 2012, 236, 635–645. [CrossRef]

52. Manzano, A.; Herranz, R.; den Toom, L.A.; Te Slaa, S.; Borst, G.; Visser, M.; Medina, F.J.; van Loon, J. Novel, Moon and Mars,
partial gravity simulation paradigms and their effects on the balance between cell growth and cell proliferation during early
plant development. NPJ Microgravity 2018, 4, 9. [CrossRef]

53. Hoson, T. Plant Growth and Morphogenesis under Different Gravity Conditions: Relevance to Plant Life in Space. Life 2014, 4,
205–216. [CrossRef]

54. Zheng, H.Q.; Han, F.; Le, J. Higher Plants in Space: Microgravity Perception, Response, and Adaptation. Microgravity Sci. Technol.
2015, 27, 377–386. [CrossRef]

55. Ferl, R.J.; Paul, A.L. Lunar plant biology—A review of the Apollo era. Astrobiology 2010, 10, 261–274. [CrossRef]
56. Fisahn, J.; Klingele, E.; Barlow, P. Lunar gravity affects leaf movement of Arabidopsis thaliana in the International Space Station.

Planta 2015, 241, 1509–1518. [CrossRef] [PubMed]
57. Baque, M.; Verseux, C.; Bottger, U.; Rabbow, E.; de Vera, J.P.; Billi, D. Preservation of Biomarkers from Cyanobacteria Mixed with

Mars-Like Regolith Under Simulated Martian Atmosphere and UV Flux. Orig. Life Evol. Biosph. J. Int. Soc. Study Orig. Life 2016,
46, 289–310. [CrossRef] [PubMed]

58. Wolff, S.A.; Palma, C.F.; Marcelis, L.; Kittang Jost, A.I.; van Delden, S.H. Testing New Concepts for Crop Cultivation in Space:
Effects of Rooting Volume and Nitrogen Availability. Life 2018, 8, 45. [CrossRef]

59. Zhang, Y.; Wang, L.; Xie, J.; Zheng, H. Differential protein expression profiling of Arabidopsis thaliana callus under microgravity on
board the Chinese SZ-8 spacecraft. Planta 2015, 241, 475–488. [CrossRef]

http://doi.org/10.1111/j.1365-313X.2012.05030.x
http://www.ncbi.nlm.nih.gov/pubmed/22519832
http://doi.org/10.1111/j.1365-313X.2007.03351.x
http://doi.org/10.1016/j.cub.2017.07.015
http://www.ncbi.nlm.nih.gov/pubmed/28898669
http://doi.org/10.1016/j.bbrc.2018.11.056
http://www.ncbi.nlm.nih.gov/pubmed/30449597
http://doi.org/10.1111/plb.12123
http://www.ncbi.nlm.nih.gov/pubmed/24373011
http://doi.org/10.1016/j.pbi.2017.10.003
http://www.ncbi.nlm.nih.gov/pubmed/29107827
http://doi.org/10.1007/s00425-002-0838-x
http://doi.org/10.1186/1471-2164-13-105
http://www.ncbi.nlm.nih.gov/pubmed/22435851
http://doi.org/10.1038/ncb1369
http://doi.org/10.1111/plb.12047
http://www.ncbi.nlm.nih.gov/pubmed/23731198
http://doi.org/10.1105/tpc.13.4.907
http://doi.org/10.1038/ncomms9822
http://www.ncbi.nlm.nih.gov/pubmed/26578169
http://doi.org/10.1073/pnas.1013145107
http://www.ncbi.nlm.nih.gov/pubmed/21135243
http://doi.org/10.3732/ajb.1200318
http://doi.org/10.1016/S0273-1177(01)00149-1
http://doi.org/10.1007/s00425-018-2930-x
http://www.ncbi.nlm.nih.gov/pubmed/29948124
http://doi.org/10.1073/pnas.1809526115
http://doi.org/10.1007/s00425-016-2581-8
http://doi.org/10.1007/s00425-012-1633-y
http://doi.org/10.1038/s41526-018-0041-4
http://doi.org/10.3390/life4020205
http://doi.org/10.1007/s12217-015-9428-y
http://doi.org/10.1089/ast.2009.0417
http://doi.org/10.1007/s00425-015-2280-x
http://www.ncbi.nlm.nih.gov/pubmed/25795423
http://doi.org/10.1007/s11084-015-9467-9
http://www.ncbi.nlm.nih.gov/pubmed/26530341
http://doi.org/10.3390/life8040045
http://doi.org/10.1007/s00425-014-2196-x


Int. J. Mol. Sci. 2021, 22, 11723 11 of 11

60. Aerts, J.W.; Roling, W.F.; Elsaesser, A.; Ehrenfreund, P. Biota and biomolecules in extreme environments on Earth: Implications
for life detection on Mars. Life 2014, 4, 535–565. [CrossRef]

61. Grotzinger, J.P.; Sumner, D.Y.; Kah, L.C.; Stack, K.; Gupta, S.; Edgar, L.; Rubin, D.; Lewis, K.; Schieber, J.; Mangold, N.; et al.
A Habitable Fluvio-Lacustrine Environment at Yellowknife Bay, Gale Crater, Mars. Science 2014, 343. [CrossRef] [PubMed]

62. Hendrix, A.R.; Hurford, T.A.; Barge, L.M.; Bland, M.T.; Bowman, J.S.; Brinckerhoff, W.; Buratti, B.J.; Cable, M.L.; Castillo-Rogez, J.;
Collins, G.C.; et al. The NASA Roadmap to Ocean Worlds. Astrobiology 2019, 19, 1–27. [CrossRef] [PubMed]

http://doi.org/10.3390/life4040535
http://doi.org/10.1126/science.1242777
http://www.ncbi.nlm.nih.gov/pubmed/24324272
http://doi.org/10.1089/ast.2018.1955
http://www.ncbi.nlm.nih.gov/pubmed/30346215

	Introduction 
	History of Plant Cultivation Systems in Outer Space 
	How Plants Sense Gravity and Change under Stress Environments of Altered Gravity 
	How Plant Sensing Gravity 
	Transduction of Gravity Signal and Auxin as a Signal 
	The Dynamic Model of Amyloplast Sedimentation 
	The Lateral Root Sense Altered Gravity 
	The Plant Gravitropism Related to Phototropism 

	The Plant Experiments under Simulated and Real Altered Gravity Environment 
	The Plant Experiments under Simulated Microgravity (0 g), Moon Gravity (0.17 g) and Mars Gravity (0.38 g) Environment 
	The Plant Experiment under a Real Moon Gravity Environment (0.17 g) 

	Concluding Remarks and Future Perspectives: Mars and Lunar Base Construction 
	References

