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ABSTRACT Here, we report the genome sequence of a jumbo Escherichia phage
vB_EcoM_EC001, a myovirus isolated from primary sludge using enterohemorrhagic
Escherichia coli O157:H7. The genome is 240,200 bp long and has 270 predicted cod-
ing sequences, including a tryptophanyl tRNA gene. It belongs to genus Seoulvirus.

Enterohemorrhagic Escherichia coli (EHEC) can cause severe disease, including hemo-
lytic uremic syndrome (1). Phages infecting EHEC strains are of interest due to their

potential utility as biocontrol, therapeutic, and diagnostic agents (2, 3).
Standard approaches to phage isolation are biased toward phages that produce

clearly visible plaques. The diversity of coliphages producing clearly visible plaques has
been probed extensively. We sought to bias our phage isolation toward large genome
size phages by using 0.3% agar instead of the standard 0.4% to 0.7% and selecting pin-
prick plaques. Pinprick plaques on lower agar concentration overlay can indicate larger
phage particles and consequently larger genome sizes (4). Large genome phages
encode a preponderance of hypothetical proteins without biochemically characterized
homologs and therefore merit investigation (5).

EC001 was isolated in 2017 by enriching the unfiltered supernatant of primary sludge
from the Guelph, Ontario, wastewater treatment plant with a cocktail of Shiga toxin-produc-
ing E. coli (STEC) strains (O157, O111, O26, O103, O145, O121, and O45, with respective strain
designations ATCC 700927, HA2018015, HA2018016, HA2018017, HA2018018, HA2018019,
and HA2018020), adding 5� of tryptic soy broth (TSB) to the wastewater sample, and incu-
bating the sample for 24 hours at 25°C. Thereafter, a few milliliters of the enriched sample
were filtered through 0.45-mm cellulose acetate syringe filters and spotted on 0.3% agar
semisolid TSB (ssTSB) containing E. coli O157:H7. A pinprick plaque was passaged three
times and propagated using the soft agar method and incubation at 25°C (6).

The PureLink viral DNA/RNA minikit (Thermo Fisher Scientific) was used to extract phage
genomic DNA from the crude phage lysate according to the supplier’s instructions. DNA elu-
tion was done with molecular biology-grade water. DNA was normalized to 200 ng as quan-
tified by fluorimetry (Qubit, Thermo Fisher Scientific) and mechanically sheared using an
M220 instrument (Covaris). The next-generation sequencing (NGS) library was prepared
using the NxSeq AmpFREE low DNA library kit (Lucigen) sequenced with the MiSeq
sequencer (Illumina) using a 2 � 300-bp MiSeq reagent kit v3 (600 cycles) (Illumina) with an
average coverage depth of 221-fold. All kits were used according to the manufacturer’s pro-
tocols. The genome was de novo assembled using the SeqManNGen15 (DNAStar) using a
base of 200,000 reads (out of ;1.8 million reads) and the approximate genome size
observed from pulsed-field gel electrophoresis (;240 Kbp). The draft genome was realigned
to that of Salmonella phage JN03 (GenBank accession number MT799840) using
progressiveMauve (7). A circular contig of 240,200 bp was obtained. Genome annotation
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was performed using RAST and MetaGeneAnnotator (8, 9) with protein names verified using
Pfam (10). All tools were run with default parameters.

EC001 has icosahedral capsids approximately 120 nm in diameter and tails 190 nm long
(Fig. 1A). It has a 240.2-kbp linear, circularly permuted double-stranded DNA (dsDNA) ge-
nome with a GC content of 48.5%. Of the 269 predicted protein-coding sequences, only 59
have predicted functions. A phylogenetic tree made using phylogeny.fr (11) based on the
amino acid sequence of its terminase large subunit indicates that its closest relative is
Salmonella phage JN03 (GenBank accession number MT799840.1) (Fig. 1B), a member of the
Seoulvirus genus.

Data availability. The complete genome sequence of Escherichia phage EC001 is
accessible at GenBank using the accession number MN445185.1. The raw sequence
reads are available at NCBI SRA database with accession number SRP351973.
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