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Abstract

Background: Disturbed peripheral negative regulation might contribute to evolution of autoimmune insulitis in type 1
diabetes. This study evaluates the sensitivity of naı̈ve/effector (Teff) and regulatory T cells (Treg) to activation-induced cell
death mediated by Fas cross-linking in NOD and wild-type mice.

Principal Findings: Both effector (CD252, FoxP32) and suppressor (CD25+, FoxP3+) CD4+ T cells are negatively regulated by
Fas cross-linking in mixed splenocyte populations of NOD, wild type mice and FoxP3-GFP tranegenes. Proliferation rates and
sensitivity to Fas cross-linking are dissociated in Treg cells: fast cycling induced by IL-2 and CD3/CD28 stimulation improve
Treg resistance to Fas-ligand (FasL) in both strains. The effector and suppressor CD4+ subsets display balanced sensitivity to
negative regulation under baseline conditions, IL-2 and CD3/CD28 stimulation, indicating that stimulation does not perturb
immune homeostasis in NOD mice. Effective autocrine apoptosis of diabetogenic cells was evident from delayed onset and
reduced incidence of adoptive disease transfer into NOD.SCID by CD4+CD252 T cells decorated with FasL protein. Treg
resistant to Fas-mediated apoptosis retain suppressive activity in vitro. The only detectable differential response was
reduced Teff proliferation and upregulation of CD25 following CD3-activation in NOD mice.

Conclusion: These data document negative regulation of effector and suppressor cells by Fas cross-linking and dissociation
between sensitivity to apoptosis and proliferation in stimulated Treg. There is no evidence that perturbed AICD in NOD mice
initiates or promotes autoimmune insulitis.
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Introduction

Eruption of autoimmune insulitis in NOD mice has been

attributed to multiple aberrations of immune homeostasis [1,2],

including suboptimal control of effector cells (Teff) [3–5], deficient

activity of regulatory T cells (Treg) [6–10] and dysfunctional

interaction between these subsets [10–13]. Within the multiple

physiological mechanisms of immune homeostasis, negative

regulation of expanding clones is a dominant factor in determi-

nation of the cellular composition of inflammatory infiltrates. This

homeostatic mechanism relies on activation induced cell death

(AICD) mediated primarily by the Fas/Fas-ligand (FasL) interac-

tion as the common executioner of apoptosis within the tumor

necrosis factor (TNF) superfamily [14]. The relative sensitivity of

naı̈ve/effector and suppressor T cells to AICD-type negative

regulation has been evaluated as a possible cause of immune

dysfunction in type 1 diabetes. T cells isolated from NOD mice are

generally more resilient to AICD, including both CD4+ [15] and

CD8+ T subsets [16], a characteristic that becomes more

accentuated with age [17]. Similar insensitivity to spontaneous

and Fas-mediated apoptosis has been observed in thymocytes of

the NOD mice [18], suggesting an inherent deficit in negative

regulation of effector T cells. These data led to the concept that

decreased susceptibility of pathogenic cells to AICD-type regula-

tion predisposes NOD mice to autoimmune insulitis and affects

disease progression.

Addressing the question how differential sensitivities of

diabetogenic and regulatory cells to apoptosis affects the evolution

of autoimmunity, conflicting evidence has been reported in NOD

mice and humans, ranging from resistance [19–21] to excessive

susceptibility [22–24] of Treg to AICD. Most studies have used

isolated cell populations disregarding the significant impact of

reciprocal interactions between effector and suppressor T cells on

sensitivity to apoptosis [19,25]. For example, IL-2 supplied by
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effector cells is essential to sustain the suppressive activity of Treg

[26] and TCR-associated stimulation protects putative Treg from

apoptosis [19,24]. Consistent wit the observation that CD25+ cells

are sensitized to FasL in mixed cultures of isolated subsets [19], we

have recently demonstrated that the isolation process dominates

the sensitivity to spontaneous apoptosis, which deviates substan-

tially from the behavior in mixed cultures [27]. In this study we

address two questions: a) whether NOD mice display intrinsic

variations in susceptibility to AICD that might contribute to

evolution of the autoimmune reaction, and b) what are the relative

responses of effector and suppressor CD4+ T cells to AICD under

stimulation, considering that the patterns of cell death are

modulated under continuously changing inflammatory environ-

ments [28]. We found no significant differences in Fas-mediated

apoptosis between wild type and NOD mice that suggest

participation of aberrant negative regulation in evolution of

autoimmune insulitis. Although IL-2, TCR-associated activation

and costimulation modulate the sensitivity of both effector and

suppressor subsets to apoptosis, there is no evidence of perturbed

AICD homeostasis in mice with ongoing autoimmune insulitis.

Results

Sensitivity of naı̈ve/effector CD4+ subsets to Fas cross-
linking

Similar to high rates of spontaneous apoptosis in cultures of

isolated CD25+ T cells from wild type mice [19], we have recently

documented excessive susceptibility to spontaneous apoptosis of

CD25+ T cells isolated from diabetic NOD mice, which is reversed

by cytokines and cell-to-cell interactions in mixed splenocyte

cultures [27]. In variance from comparable levels of spontaneous

apoptosis, the composition of the culture affects the sensitivity of

various CD4+ T cell subsets to FasL: apoptosis measured by

differential gating in mixed splenocyte cultures exceeds by far the

sensitivity to FasL recorded in isolated subsets (p,0.005,

Figure 1A). Although such arbitrary culture conditions are far

from simulating the microenvironment in which Treg operate at

the site of inflammation [28], mixed cultures appear to better

reflect the sensitivity to negative regulation than purified cell

subsets.

It has been suggested that relative resistance of naı̈ve/effector T

cells to Fas cross-linking affects the evolution of the autoimmune

reaction in NOD mice [15–17]. Comparative analysis of apoptosis

in gated subsets within mixed populations of splenocytes and

lymph node cells shows similar sensitivity of CD252 T cells from

NOD mice to spontaneous and Fas-mediated apoptosis as the

CD252 and FoxP32 subsets in wild type mice (Figure 1B),

suggesting that evolution of inflammatory insulitis is not caused by

intrinsic deficits in AICD. Likewise, CD25+ and FoxP3+ T cells in

wild type mice display similar high sensitivities to Fas cross-linking

(Figure 1C), indicating that regulatory subsets are submitted to

AICD-type negative regulation. The similar levels of apoptosis of

CD25+ T cells from NOD mice indicate that, like effector cells,

there is no apparent difference in negative regulation. Taken

together, these data show that both effector and suppressor T cells

are equally submitted to AICD-type negative regulation in wild

type and NOD mice.

Treg sensitivity to apoptosis under IL-2 stimulation
IL-2 is a significant cytokine involved in amplification of

cytotoxic T cell activity and is pivotal to the development and

function of Treg, which modulates the sensitivity of lymphocytes to

Fas-dependent and Fas-independent apoptosis [28]. The signifi-

cance of Treg in sustaining self-tolerance and their dependence on

IL-2 has been demonstrated by eruption of inflammatory insulitis

upon IL-2 neutralization [29] and consistently, a beneficial effect

of IL-2 administration over disease progression [30]. In general,

naı̈ve/effector T cells supply this cytokine and Treg consume it

avidly, creating a cycle of reciprocal dependence on IL-2: Treg

inhibit cytokine production limiting the activity of cytotoxic T

cells, and in turn IL-2 deficiency downsizes the activity of Treg

[26]. Whereas exogenous IL-2 does not affect significantly Fas-

mediated apoptosis of CD252 and FoxP32 T cells, exposure of

mixed cultures to 2000 U/ml IL-2 decreases Treg apoptosis in

NOD and wild type CD25+ T cells (Figure 2A). Notably,

spontaneous and Fas-mediated apoptosis under the influence of

IL-2 is comparable in wild type and NOD mice. IL-2 stimulates

faster cycling rates in CD25+ T cells from NOD mice (Figure 2B),

possibly because the relative IL-2 insufficiency in these mice in vivo

[30]. The correlation between proliferation and increased

susceptibility to Fas-mediated apoptosis is basic feature of AICD

in naı̈ve/effector CD252 T cells [31–33]. In variance, mitogenic

stimulation with ConA shows dissociation between proliferation

and sensitivity to Fas-mediated apoptosis in CD25+ Treg

(Figure 2C), indicating that decreased apoptosis under IL-2

stimulation was partially caused by robust expansion of viable

cells.

Fas cross-linking does not abolish the suppressive
activity of CD25+ T cells

We have recently reported that adoptive transfer of CD25+ T

cells overexpressing FasL protein delays onset and reduces

incidence of overt hyperglycemia in prediabetic NOD mice [34].

The current data indicate high sensitivity of these cells to Fas cross-

linking during extended in vitro culture, questioning the impact of

Fas cross linking on the suppressive activity of this subset. To

determine how AICD affects the suppressor activity, isolated

CD25+ T cells were exposed to FasL for 48 hours prior to

conincubation with strain-matched CFSE-labeled CD252 T cells

under CD/CD28 stimulation. Notably, CD252 T cells display

similar responses to CD3/CD28 stimulation in NOD and wild

type mice (vide infra). Viable CD25+ T cells from wild type and

NOD mice had similar suppressive effects on the proliferation of

stimulated responders from the respective strains (Figure 3A),

emphasizing sustained regulatory activity of CD25+ T cells that

survive the FasL challenge.

Autocrine apoptosis reduces the diabetogenic activity of
effector T cells in vivo

To assess the physiological significance of effector T cell

sensitivity to apoptosis, FasL chimeric protein was adsorbed on the

surface of CD252 T cells adoptively transferred into NOD.SCID

mice. Infusion of FasL-coated CD4+CD252 T cells decreased the

efficacy of disease transfer and delayed the mean onset time

(MOT) to 1261.9 weeks as compared to 9.563.6 weeks in

recipients of naı̈ve CD252 cells (p,0.05, Figure 3B). Reduced

disease incidence was accompanied by a corresponding decrease

in inflammatory islet score, indicating that the diabetogenic

potential is reduced by Fas cross linking in vivo as previously

demonstrated for exposure to FasL ex vivo [21,35]. These data also

demonstrate limited toxicity of ectopic FasL protein to the islets

[34], an apoptotic pathway that is largely dispensable in the

process of destructive autoimmune insulitis [36]. Despite the

marked variations in disease onset and incidence, the similar CD4+

profiles of mesenteric/pancreatic lymph nodes of NOD.SCID

recipients of naı̈ve and FasL-coated CD252 T cells (Figure 3C)

suggests that the apoptotic pathways affects primarily the islet
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reactive cells. Similar delay and reduced incidence of the disease

has been observed when CD252 T cells were co-adoptively

transferred with FasL-coated CD25+ Treg into NOD.SCID mice

[34]. Altogether these data underlie the flexibility of CD252 T

cells in repopulating NOD.SCID mice to reinstate immune

homeostasis in NOD.SCID mice through generation of regulatory

subsets.

Sensitivity to apoptosis under TCR-associated stimulation
and costimulation

In next stage we considered that differential susceptibility of

effector T cells in NOD mice might be restricted to conditions of

stimulation under inflammatory environments. To assess the

sensitivity to Fas-mediated apoptosis, CD4+CD252 and

CD4+FoxP32 effector T cells were further characterized under

CD3 and CD28 stimulation, which induces robust proliferation

and upregulates CD25 expression (Figure 4A). In order to measure

apoptosis in mixed cultures, we considered that upregulation of

CD25 in the majority of CD252 T cells (CD252RCD25+)

dominates the insignificant minor fraction (,10%) of naturally

occurring CD25+ T cells. Comparative analysis reveals reduced

responsiveness of NOD lymphocytes to CD3 stimulation,

including both upregulation of CD25 (p,0.01, Figure 4A) and

proliferation (p,0.05, Figure 4B), which is compensated by

additional CD28 costimulation. Reduced proliferation rates of

NOD lymphocytes under CD3 activation suggest lesser respon-

siveness to TCR-associated stimulation due to a higher intrinsic

state of activation associated with autoimmune inflammation. Fast

cycling rates of CD252 T cells that upregulate CD25 expression

under CD3 and CD3/CD28 stimulation reduce fractional

apoptosis, whereas cells with sustained CD252 phenotype display

high levels of FasL-induced apoptosis (Figure 4C). Reduced levels

of apoptosis caused by fast cycling of viable cells was confirmed by

inhibition of cell proliferation with Mitomycin C, which increased

Figure 1. Sensitivity of naı̈ve/effector CD4+ T to Fas-mediated apoptosis. A. Apoptosis of splenocytes from prediabetic NOD females (14
weeks) during 48 hours of incubation in control medium and induced by 50 mg/ml FasL. Isolated CD4+CD252 and CD4+CD25+ T cell subsets (n = 5)
are compared to measurements performed by gating in mixed splenocyte cultures (n = 7). Representative measurements of apoptosis and death
assessed by incorporation of Annexin-V and 7-AAD respectively, in isolated and gated CD4+ T cell subsets. B–C. Apoptosis of gated naı̈ve/effector
CD252 and FoxP32 subsets (B) and CD25+ and FoxP3+ Treg (C) in mixed cultures of splenocytes from prediabetic NOD females (n = 5), wild type mice
(C57/BL, n = 7) and Foxp3-GFP transgenes (n = 5) during 48 hours of incubation in control medium and with 50 mg/ml FasL. The plots of present
apoptosis in gated CD4+CD25+ and CD4+FoxP3-GFP+ cells.
doi:10.1371/journal.pone.0021630.g001
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the fractions of apoptotic cells. Importantly, the similar sensitivities

to Fas cross-linking demonstrate that TCR-associated activation

and costimulation do not perturb a balanced negative regulation of

the naı̈ve/effector lymphocytes in NOD mice.

In variance from CD25 upregulation, FoxP3 is not induced by

CD3 and CD28 stimulation, allowing measurements of apoptosis

of CD4+FoxP32 and CD4+FoxP3+ T cells in mixed cultures of

splencoytes from FoxP3-GFP transgenes (Figure 5A). Both

FoxP32 effector (Figure 5B) and FoxP3+ Treg subsets (Figure 5C)

display reduced susceptibility to spontaneous apoptosis and

sensitivity to Fas cross-linking under CD3 and CD3/CD28

stimulation, indicating sustained viability by TCR-associated

activation and costimulation. Under such conditions the Treg

subset appears to benefit of superior viability (p,0.01), consistent

with activation of suppressor mechanisms in early stages of

immune activation by reduced sensitivity to AICD-type negative

regulation.

Discussion

Among multiple pathways of immune deregulation, anomalies

of T cell sensitivity to apoptosis are considered to contribute to

eruption of diabetes in NOD mice [15–17]. The proposed

scenario of perturbed immune homeostasis in diabetes-prone mice

Figure 2. Impact of IL-2 on CD25+ T cell sensitivity to apoptosis and proliferation. A. Apoptosis of gated CD4+CD25+ subsets in NOD (n = 5)
and wild type mice (n = 7) and CD4+FoxP3+ T cells in wild type mice (n = 6) during 48 hours of incubation with supplementation of 2000 U/ml IL-2 (IL-
2) and with 50 mg/ml FasL (IL-2 FasL) as compared to apoptosis in response to FasL in control medium (FasL). Demonstrative measurements of
apoptosis and death assessed by incorporation of Annexin-V and 7-AAD respectively. B. Fas-mediated apoptosis of CD4+CD25+ T cells from NOD and
wild type mice as a function of proliferation rates measured from CFSE dilution, with (n = 4–5) and without (n = 5–7) exogenous supplementation of
IL-2 (n = 4–5). C. Apoptosis of gated CD4+CD252 and CD4+CD25+ subsets induced by Fas cross-linking under mitogenic stimulation with ConA in NOD
(n = 4) and wild type mice (n = 5).
doi:10.1371/journal.pone.0021630.g002
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and humans includes resistance of effector cells to apoptosis [3–5],

in part due to deficient expression of the Fas receptor [37], and

increased susceptibility of suppressor cells to apoptotic death

[38–40]. In this study we provide evidence that Treg are submitted

to clonal deletion by Fas cross-linking, and peripheral AICD

negative regulation of T cells is largely intact in NOD mice in

advanced stages of inflammatory insulitis. Therefore, neither

resistance of effector cells nor sensitivity of regulatory cells to

AICD-type negative regulation predispose to evolution of

autoimmune insulitis.

Treg are extremely sensitive to their environment. These cells

operate primarily at the site of inflammation within a dynamic

environment influenced by cytotoxic T cells as well as tissue injury

[28], including a series of feedback mechanisms that modulate their

activity [41–44]. Therefore, assessment of sensitivities to spontane-

ous and Fas-mediated apoptosis in suspensions of purified T cell

subsets is unlikely to reflect a true behavior [19,27]. For example,

proliferative anergy characteristic of purified Treg in vitro is in sharp

contrast from the faster proliferation rates of these cells in vivo

[24,25,43,44]. Likewise, purified CD25+ cells display excessive

sensitivity to spontaneous apoptosis in culture [20,22–24], which is

common to wild type, prediabetic and diabetic NOD females [27].

Considering mixed cultures as a better model to assess AICD

[19,25,27], it is evident that both anti- and pro-apoptotic signals

originate from adjacent cells. On the one hand, increased

spontaneous apoptosis of CD25+ T cells is reversed in mixed

cultures [27], underlining the provision of anti-apoptotic factors and

signals by other cell subsets. On the other hand, apoptosis triggered

by Fas cross-linking is amplified in mixed cultures, disclosing the

presence of proapoptotic factors that augment AICD-type negative

regulation in both subsets. Here we emphasize that Fas cross-linking

is a homeostatic mechanism of negative regulation of naturally

occurring Treg.

Cytokine deprivation has profound effects on the sensitivities to

apoptosis of both effector [45] and suppressor subsets [46]. IL-2 is

a major cytokine associated with cell viability, as demonstrated by

the reduced intrinsic sensitivity to apoptosis of lymphocytes

deficient in IL-2 and its cognate receptors [31–33,47,48].

Naturally occurring Treg are avid consumers of IL-2 but do not

produce this cytokine [49], which modulates both effector and

Figure 3. Impact of FasL on effector and regulatory T cell activity. A. Inhibition of proliferation of CFSE-labeled CD252 T cell responders
activated with CD3/CD28 (control) by CD25+ T cells isolated from NOD and wild type mice after incubation with FasL at a Teff:Treg ratio of 3:1. Data
are representative of four experiments in which CD25+ suppressor cells were co-incubated with CFSE-labeled CD252 responders from the same
strain. B. NOD.SCID mice were adoptively transferred with 2.56107 naı̈ve (n = 36) and FasL-coated CD252 T cells (n = 12) from prediabetic NOD
females. Blood glucose was monitored to determine onset of diabetes at levels .200 mg/dl. C. Fractional expression of CD25 and FoxP3 in CD4+ T
cells from mesenteric/pancreatic lymph nodes of NOD.SCID mice reconstituted with naı̈ve (n = 6) and FasL-coated (n = 5) CD252 T cells from
prediabetic NOD females.
doi:10.1371/journal.pone.0021630.g003
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suppressor activities [50]. In variance from correlated cycling and

sensitization to apoptosis of CD252 naı̈ve/effector T cells by IL-2

[31–33], proliferation and sensitivity to FasL are dissociated in

CD25+ Treg: IL-2 causes dilution of dead cells due to robust

expansion of viable cells. Uncoupling between proliferation and

Fas-dependent negative regulation evolves as a particular Treg

characteristic, which maintains viability of this subset with intrinsic

state of activated suppressor activity under steady state conditions

[28,44]. Furthermore, TCR-associated stimulation independently

protects Treg from apoptosis, exceeding its effect on naı̈ve/effector

cells. Considering that TCR engagement is essential to initiate

Treg cycling under IL-2 stimulation [26,51], both stimulatory

pathways are shown to support the function and viability of

regulatory T cells.

Naı̈ve/effector cells from wild type and NOD mice display

similar sensitivities to Fas cross-linking under TCR-associated

activation and CD28 costimulation in mixed cultures, including

the subset induced into fast proliferation that upregulates CD25

expression. Our data corroborate the observation that sensitivity

to apoptosis under CD28 costimulation is not entirely dependent

on Fas cross-linking [19,52] and demonstrates the reciprocal

condition where this apoptotic pathway operates independent of

costimulation. Whereas CD28 costimulation superposed on CD3

activation increases the susceptibility of naı̈ve/effector T cells to

spontaneous apoptosis [27], it does not sensitize these cells to Fas

cross-linking. Thus, exacerbation of diabetes by CD28 deficiency

in NOD mice [52] and the reciprocal protection by CD28

costimulation in neonatal NOD [53] and T cell depletion with

Figure 4. Sensitivity to apoptosis under CD3 and CD3/CD28 stimulation. A. Representative plots of CD25 upregulation under CD3
stimulation in splenocytes from NOD and wild type mice. Quantitative conversion to express CD25 in splenocyte cultures from NOD (n = 4) and wild
type females (n = 6) under CD3 and CD3/CD28 stimulation as compared to unstimulated cultures (naı̈ve). Other delineates all CD42 cells. B.
Proliferation rates of CD4+ T cells that upregulated CD25 expression (CD252RCD25+) as determined from CFSE dilution in mixed cultures of
splenocytes from NOD (n-4) and wild type mice (n = 5) under CD3 and CD3/CD28 stimulation. C. FasL-induced apoptosis in reference to CD25
expression in gated CD4+ T cells within mixed splenocyte cultures from NOD and wild type mice (n = 4) under CD3/CD28 stimulation. Apoptosis was
also measured under inhibition of proliferation with Mitomycin C (n = 3).
doi:10.1371/journal.pone.0021630.g004
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anti-CD3 antibodies [54] point to Treg as the primary mechanism

responsible for immunomodulation.

Among multiple mechanisms of immune deregulation in NOD

mice, there is no evidence of defective peripheral negative

regulation and dysfunctional AICD as predisposing factors in

evolution of inflammatory insulitis. Inasmuch as immune dereg-

ulation is attributed to aberrant sensitivity to Treg-mediated

suppression of effector cells in NOD mice [3–5] and humans [55],

our data present evidence of protracted negative regulation of

naı̈ve/effector CD4+ T cells under stimulatory conditions.

Balanced AICD-type negative regulation of effector and suppres-

sor cells in wild type and NOD mice is consistent with similar

distribution of CD4+ subsets under steady state conditions as well

as in reconstituted NOD.SCID mice. The diabetogenic potential is

impaired by overexpression of FasL on CD252 cells, similar to the

inhibitory activity of this apoptotic pathway in lymphocytes of

diabetic NOD mice in vitro [35]. Whereas the Fas receptor is

evenly expressed by effector and suppressor subsets, exclusive

expression of the cognate ligand in CD252 cells suggests auocrine

and paracrine (fratricide) negative regulation of diabetogenic and

suppressor clones within the inflammatory infiltrates and regional

lymphatics [21]. Notably, FasL is dispensable in the process of

destructive inflammatory insulitis [36] and does not impose severe

threat to naı̈ve islets from NOD and wild type mice [34,56] unless

expressed as a transgene in b cells [57], therefore it can be used for

immunomodulation in both transplant and autoimmune settings

[14,34,58].

A significant difference in the naı̈ve/effector subset of T cells is

the slower proliferation in response to mitogenic CD3 ligation in

NOD mice, which is restored by CD28 costimulation. Effector

cells in NOD mice are also less sensitive to radiation [59], resulting

in disease recurrence upon recovery from immunosuppression

[60], enhanced bone marrow allograft rejection [61] and persistent

autoimmune insulitis even in the absence of alloreactivity [59,62].

In the transplant setting, perturbed homeostasis during recovery

from conditioning-induced lymphopenia contributes to disease

recurrence [63] unless negative regulation is restored by mixed

allogeneic chimerism [64]. In addition, the effect of IL-2 on Treg

in NOD mice appears to be more pronounced, consistent with an

intrinsic state of activation concurrent with the ongoing inflam-

matory state [28] that is characterized by relative IL-2

insufficiency [30]. Although IL-2 is a significant factor in

sustaining Treg resistance to apoptosis, as also demonstrated in

isolated CD25+ T cell suspensions [27], this cytokine and its

relative deficiency do not cause aberrant clonal deletion in NOD

mice. On the contrary, support of Treg viability is an apparent

mechanism that participates in amelioration of inflammatory

insulitis by IL-2 administration [30,65].

In summary, we demonstrate: a) Treg are submitted to AICD-

type regulation mediated by Fas cross-linking, b) proliferation and

sensitivity to Fas-mediated AICD are dissociated in Treg, c)

effective clonal deletion of both subsets under stimulatory

conditions, d) balanced sensitivity to negative regulation of effector

and suppressor CD4+ T cells, and e) insignificant differences in

AICD-type negative regulation between wild type and NOD mice.

Altogether these data indicate that negative regulation though

apoptosis is not a major factor that predisposes to immune

deregulation and evolution of autoimmune insulitis in NOD mice.

Materials and Methods

Animals
Mice used in this study were C57BL/6 (wild type), non-obese

diabetic (NOD) and B6.Cg-Foxp3tm2Tch transgenic mice (express-

ing GFP under control of the FoxP3 promoter). Animals

purchased from Jackson Laboratories (Bar Harbor, ME) were

inbred and housed in a barrier facility. The Institutional Animal

Care Committee of the Schneider Medical Center has approved

all procedures #022B6229 dated 4.1.2009. Blood glucose was

monitored between 9–11 AM in tail blood samples at weekly

intervals using a glucometer (Accu-Chek Sensor, Roche Diagnos-

tics, USA). Diabetes was defined as two consecutive blood glucose

measurements above 200 mg/dl [59].

Figure 5. Sensitivity to apoptosis under stimulation in reference to FoxP3 expression. A. CD4+ T cells do not upregulated FoxP3
expression under CD3/CD28 stimulation in mixed splenocyte cultures from FoxP3-GFP transgenes. Apoptosis was determined in control medium and
with FasL under CD3 and CD3/CD28 stimulation in (B) gated FoxP32 T cells (n = 5) and (C) gated FoxP3+ T cells (n = 6) in mixed cultures of splenocytes
from transgenic FoxP3-GFP mice.
doi:10.1371/journal.pone.0021630.g005
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Isolation of cells according to CD25 expression
Cell suspensions from spleens and lymph nodes were prepared as

previously reported [5,59]. CD252 and CD25+ subsets of CD4+ T

cells are isolated from the spleens and mesenteric lymph nodes using

the CD4+CD25+ Regulatory T cell isolation kit (Miltenyi Biotec,

Bergisch-Gladbach, Germany) [5]. Briefly, CD4+ T cells are

negatively selected and positive CD25+ selection was performed

using PE-labeled monoclonal antibodies conjugated to anti-PE

magnetic microbeads, which were retained during passage through

a magnetic field. Immunomagnetic isolation of cells from NOD

females yields a CD4+CD252 subset contaminated with 0.760.4%

and 3.661.3% CD25+ and FoxP3+ cells respectively, and a

CD4+CD25+ subset of which 7564% expressed FoxP3, and are

contaminated with 1768% CD252/low cells.

Flow cytometry
Cells composition was determined using antibodies conjugated

to fluorescein isothyocyanite (FITC), phycoerythrin (PE), allophy-

cocyanin (APC) and peridinin chlorophyll a-protein (PerCP, BD

Pharmingen, San Diego, CA): CD4 (clone RM 4-5), CD8 (clone

53-6.7), CD25 (clone PC61.5) [5,27]. FoxP3 was determined

following permeabilization and intracellular staining with a PE-

labeled antibody (Foxp3 staining buffer set NRRF-30, eBioscience,

San Diego, CA). Antibodies were purchased from BD Pharmingen

and eBioscience. Cell death and apoptosis were determined in cells

incubated with 5 mg/ml 7-aminoactinomycin-D (7-AAD, Sigma,

St. Lois, MO) and Annexin-V (IQ products, Groningen, The

Netherlands), respectively. Measurements were performed with a

Vantage SE flow cytometer (Becton Dickinson, Franklin Lakes,

NJ). Positive staining was determined on a log scale, normalized

with control cells stained with isotype control antibodies.

In vitro apoptosis
26106 cells/ml were incubated in DMEM supplemented with

2 mM L-glutamine, 1 mM sodium pyruvate, 13.6 mM folic acid,

270 mM L-asparagine, 548 mM L-arginine HCL, 10 mM HEPES,

50 mM 2b-Mercaptoethanol, 100 mg/ml streptomycin, 100 U/ml

penicillin and 5% heat-inactivated fetal bovine serum (FBS) (MLR

medium) [60]. All ingredients were purchased from Beit Haemek

and Sigma (St. Lois, MO). Apoptotic challenge was applied by

addition of 50 mg/ml FasL chimeric protein. Cells were stimulated

by exogenous supplementation of 2000 U/ml IL-2 (Peprotech,

London, UK), anti-CD3 (R&D Systems, Minneapolis, MN) and

beads conjugated to anti-CD3 and anti-CD28 (Invitrogen, Oslo,

Norway) at a bead:cell ratio of 1:1. For determination of apoptosis

in reference to FoxP3 expression, cells were first exposed to

Annexin-V and subsequently were stained for FoxP3 expression.

Proliferation assay
Splenocytes and lymphocytes were incubated at room temper-

ature for 7 minutes with 10 mM 5-(and 6-)-carboxyfluorescein

diacetate succinimidyl ester (CFSE, Molecular Probes, Carlsbad,

CA) [27]. The labeled responders were cultured at 37uC in a

humidified 5% CO2 atmosphere for 2 days in MLR medium

containing 5% heat-inactivated mouse serum and 20 U/ml IL-2.

All proliferation assays were performed in triplicates. Suppression

of proliferation of CFSE-labeled responders stimulated with CD3/

CD28 was performed by co-culture with isolated CD25+ T cells at

various Teff:Treg ratios for 48 hours. CFSE dilution was analyzed

in flow cytometry by gating on the live lymphocytes and

proliferation was quantified with ModFit software (Verity Software

House, Topsham, ME).

Adsorption of FasL protein on cell surface
Splenocytes harvested under aseptic conditions were suspended

in 5 mM freshly prepared EZ-Link Sulfo-NHS-LC-Biotin (Pierce)

in PBS for 30 minutes at room temperature [66]. Washed cells

were incubated with streptavidin-FasL chimeric protein (100 ng

protein/16106 cells in PBS). After two additional washes the

efficiency of adsorption was evaluated by flow cytometry using

anti-streptavidin and anti-FasL antibodies.

Histology
Pancreata were excised from mice euthanized by CO2

asphyxiation, and were fixed in ice-cold PBS containing 1.5%

fresh paraformaldehyde for 2 hours at 0–4uC before overnight

immersion in 30% sucrose [59]. Tissues were embedded in OCT

(Sakura Finetek, Torrance, CA), frozen in isopentane suspended in

liquid nitrogen, sectioned (3–6 mm) with a Cryotome (Thermo

Shandon, Cheshire, UK) and stained with hematoxylin and eosin.

Islet inflammation was scored according to: 0-no inflammation, 1-

peri-insulitis, 2-inflammatory infiltration ,50% of islet area, 3-

inflammation .50% of islet area and 4- disruption of islet

structure.

Statistical analysis
Data are presented as means 6 standard deviations for each

experimental protocol. Results in each experimental group were

evaluated for reproducibility by linear regression of duplicate

measurements. Differences between the experimental protocols

were estimated with a post hoc Scheffe t-test and significance was

considered at p,0.05.
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