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Abstract 

With age, the number of prescribed medications increases and subsequently raises the risk for adverse drug-drug 
interactions. These adverse effects lower quality of life and increase health care costs. Quantifying the potential 
burden of adverse effects before prescribing medications can be a valuable contribution to health care. This study 
evaluated medication lists extracted from a subset of the Vanderbilt de-identified electronic medical record system. 
Reported drugs were cross-referenced with the Kyoto Encyclopedia of Genes and Genomes DRUG database to 
identify known drug-drug interactions. On average, a medication regimen contained 6.58 medications and 2.68 drug-
drug interactions. Here, we quantify the burden of potential adverse events from drug-drug interactions through drug-
drug interaction profiles and include a number of alternative medications as provided by the Anatomical Therapeutic 
Chemical Classification System.  

Introduction 

With improvements in life expectancy and reduction in fertility rates, population ageing is driving and expanding the 
need for pharmaceuticals to treat and prevent chronic ailments such as hypertension, cholesterolemia, depression, and 
diabetes (1). Treatment of patients is crucial to ensuring their wellbeing and quality of life, yet with the addition of 
each new drug there is a subsequent increase in the risk for an adverse drug-drug interaction (DDI) (2). An adverse 
DDI refers to the undesired therapeutic outcome of the main therapeutic effect due to interactions with unintended 
drug targets. Use of contraindicated drugs may increase the risk of a medically adverse event leading to complications 
and a negative prognosis. They may also lead to non-compliance with a treatment regimen due to less severe side-
effects. An increase from 94,000 deaths in 1990 to 142,000 deaths in 2013 globally was reported due to adverse events 
from drug treatments (3). 

Although DDIs only constitute a small portion of these adverse drug reactions, they are fundamentally important in 
improving patient treatment and outcomes as DDIs are often predictable and thus avoidable or manageable. DDIs 
involve the active ingredient of one drug interfering or affecting the activity of another drug when administered to a 
patient at the same time (4). The resulting effect can be potentiation of compound activity or a reduction in drug 
efficacy. DDIs may be the result of various processes. These processes may include alterations in the pharmacokinetics 
of the drug, such as alterations in the absorption, distribution, metabolism, and excretion (ADME) (5). Alternatively, 
DDI may be the result of the pharmacodynamic properties of the drug, e.g. the co-administration of a receptor 
antagonist and an agonist for the same receptor. The importance of these pharmacological interactions is emphasized 
especially when patients are at risk of a life-threatening overdose. A prominent example is the drug warfarin (6), an 
anticoagulant normally used in the prevention of thrombosis and thromboembolism. Despite its therapeutic efficacy, 
many other medications interact with warfarin, e.g. rivaroxaban (7) and apixaban (8). When the efficacy of warfarin 
is increased over a certain therapeutic threshold, the consequence can be bleeding, while lowering warfarin’s activity 
below a certain threshold can lead to an increase in blood clots or bleeding (9). Once administered, its effectiveness 
has to be monitored, through blood testing, to avoid blood clots or internal bleeding. 

Frequency of DDI is correlated with the age of the patient, the number of drugs prescribed, and the number of 
physicians involved in the patient’s care (10). As of 2008, nearly 90% of U.S. adults and 20% of U.S. children had 
reported using a prescription drug within a month of participating in a national epidemiological survey with 31% 
reporting the use of two or more drugs (11).  
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Healthcare technologies, such as electronic medical record (EMR) systems, are advancing rapidly and can better 
enable medical practitioners (e.g., primary care providers, specialists, pharmacists, and nurses) throughout the health 
care system in improving patient treatment regimens and medical outcomes (12). However, achieving quality 
improvement through EMRs is economically burdensome and requires a substantial time commitment. A qualitative 
study of physician practices after implementation of an EMR  found that quality improvement depends heavily on 
physicians’ use of the EMR—and not paper workarounds—for most of their daily tasks (13).  

In an effort to improve precision medicine at the point of patient care, we leverage EAGLE BioVU, a subset of the 
Vanderbilt University Medical Center (VUMC) EMR system, to investigate DDI profiles for drug regimens reported 
at individual patient visits. We evaluated medications reported by patients at visits over a 6-year period and 
incorporated knowledge of validated DDIs from the Kyoto Encyclopedia of Genes and Genomes (KEGG) DRUG 
database (14,15) as well as the Anatomical Therapeutic Chemical (ATC) Classification System (16) to highlight 
potential risk of DDI for individual patients. 

Significance 

With a growing number of available therapeutics on the market, the risk for DDIs increases. It may be difficult for a 
care provider to analyze complex drug regimens for possible DDIs. Here, we propose the concept of a DDI profile 
which provides a tool to increase DDI awareness. These profiles can gauge the number of DDIs early in the health 
care chain, and can serve as a first pass filter for the prescription of therapeutics.  

Methods 

In modern health care systems, electronic copies of patient data are being stored at a rapid pace in EMRs. This study 
strived to highlight the use of external knowledge databases as an enabling source to analyze patient medication data 
in a data-driven capacity. 

Patient data extracted from electronic medical records (EMR) 

Here, we employed the Vanderbilt University Medical Center (VUMC) Synthetic Derivative (SD) as a 
knowledge base for our study. The SD is a de-identified version of Vanderbilt’s EMR system (17,18). De-
identified medical records have been scrubbed of identifying information (e.g., exact dates, names, zip-codes, etc.). The EMR 
system is comprised of inpatient and outpatient medical records that were recorded at VUMC and its affiliated 
clinics. Patient records c ons is t  o f  s tructured (e.g., laboratory tests, billing codes, procedure codes) and 
unstructured (e.g. clinical free text) components. Over 2.2 million records are available with an average time window 
of 6.5 years of medical history per patient. 

The field of health care changes rapidly over time. To reflect the most recent advances and changes, we accessed 
EAGLE BioVU (19), a subset of the VUMC SD of 15,863 patients with at least one clinic visit resulting in a blood 
draw between 2007 and 2012. Actual medical records can represent many more years prior to 2007.  EAGLE BioVU 
includes both pediatric and adult patients, and the majority of patients are female (65.35%) and African American 
(73.06%).  Most of the patients are between the ages of 18 and 64 years (~72%), with ~16% and ~12% representing 
elderly and pediatric patients, respectively. The other race/ethnic groups included in EAGLE BioVU are Hispanics 
(10.87%) and Asians (7.12%).  From among these patients, we assessed current trends in reported medications for 
14,924 patients independent of racial/ethnic groups.  

Ethics statement 

The data in this study were de-identified in accordance with provisions of Title 45, Code of Federal Regulations, part 
46 (45 CFR 46). Therefore, this study was considered non-human subjects research by the Vanderbilt University 
Internal Review Board (IRB). The Vanderbilt University IRB approved this research. 

Drug-Drug interactions database and classification of alternative medication 

The Kyoto Encyclopedia of Genes and Genomes (KEGG) project is an assortment of carefully curated databases 
which was initiated in Japan in 1995 (14,15). One goal of the project is to model the biological system as a computer 
representation. Many KEGG databases are available containing information on biological systems, genetic 
information, chemical reactions and compounds, and health related data. 

Medication regimens can be extracted from individual patient visits with an EMR. To draw the relation between 
individual drugs and their mutual DDIs, we used the KEGG DRUG database. KEGG DRUG is a curated database 
containing information on federally approved drugs in the United States, Europe, and Japan. 
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Chemical structures are associated with biological targets such as signaling proteins, metabolizing enzymes, or 
molecular interaction networks (15). Additionally, we used the Anatomical Therapeutic Chemical (ATC) 

Classification System provided by the World Health Organization (WHO) (16) that allows for classification of the 
active compound of drugs with respect to the physiological system that the drug acts on. It is a hierarchical system 
based on pharmaceutical codes that group medications/drugs with similar activity with those that act on the same 
biological target. Identifying closely related compounds in type and application target allows for an additional layer 
of decision support information.  

As shown in Figure 1, the complete medication regimen for a patient visit can be extracted from the local EMR and 
analyzed for potential DDI. In brief, medications are designated (e.g. med1 to med4) from the EMR system and then 
compared to each other with information curated from KEGG DRUG. Synonymous medication designations were 
taken into account eliminating duplication. Each medication (med1 to med4) is compared to all others. Once a 
validated interaction is identified (e.g. med1 with med4) the DDI profile is updated. Additionally, for each medication, 
a number of potential alternative treatment options according to ATC are provided. Based on the resulting data, a DDI 
profile can be established that quantifies or counts DDI among the medications of a particular regimen.  

Results  

Assessing patient exposure to medication 

Medication data from the EMR and KEGG DRUG had to be synchronized or matched. We extracted 2,411 distinct 
medications from EAGLE BioVU. KEGG DRUG provided information for 10,250 chemicals. A total of 71% 
(1,714/2,411) could be match between the two data sources. We limited our study to the years 2007 to 2012. During 
this time frame, a total of 543,201 patient visits where recorded. On average, a medication regimen contained 6.58 
medications (Table 1). When quantifying the burden of DDIs for patients, it is important to evaluate the frequency of 
its occurrences. The number of reported medications is correlated with increasing age (Figure 2). Subsequently, 
associated DDIs follow a similar upward trend. Figure 2 shows both distributions and visualizes expected trends based 
on age. With increasing age, we see an uptake in the number of medications. The corresponding DDIs follow on a 
similar trajectory. Starting at approximately 85 years of age, we see a declining trend for both distributions. Figure 3 
shows the distribution of DDIs (min, max, and average) and the number of patient visits associated with a number of 
drugs per regimen. The average DDI trajectory resembles a linear trend compared to a quadratic increase when 
considering all possible DDIs in a regimen. This suggests that in most cases only a fraction of drugs are involved in 
DDIs that are currently reported. On the extreme end, Figure 3 shows the maximum DDI (gray line) seen in each 
regimen category. While affecting only a limited number of patient visits, the trend is initially steep and begins to 

Table 1: Summary statistics for medications prescribed to individual patient visits through 2007-2012. 

Total 
#patients 

Total 
#visits 

Average #drugs in 
regimen per visit 

Minimum 
regimen 

Maximum 
regimen 

Average #DDI per 
regimen 

14,924 543,201 6.58 2 43 2.68 

      

  

Figure 1: Flowchart representing the steps involved to construct a patient visit regimen DDI profile. 
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level out when more than 20 drugs are listed. Due to the limited number of patients are on extreme drug regimens, 
there is heavy fluctuation when 34 or more drugs are involved. 

In this study, 46.7% of total patient visits had an average of 5 or fewer drugs with on average 1 DDI. On the extreme 
end, approximately 1% of patients had 20+ drugs listed in their medications lists at any given visit, exhibiting the 
potential for an average of 16 DDIs. 

 

Figure 2: Distribution of average number of drugs in regimen and average drug-drug interactions 
related to age groups. 
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Figure 3: Distribution of drug-drug interaction related to the number of drugs in regimens showing 
minimum, maximum and average. Also includes the number of visits in which a specific number of 
medications was reported. 
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Drug-drug interaction profiles 

In order to quantify DDIs for a medication regimen, we 
introduce DDI profiles. These profiles evaluate each medication 
pair shown as a correlation matrix (Figure 4).  

DDI counts are commutative and are only counted in the upper 
triangular matrix. The example in Figure 4 shows a DDI profile 
of 6 drugs with a total of 7 DDIs. That comprises 46% of all 
possible DDIs considering that there are 15 total possible DDIs. 
Next to the medication name is the number of possible 
alternative medications provided by the ATC. In this example, 
aspirin, furosemide, revatio, and warfarin have alternative 
medications available.  

Next, Figure 5 shows an extreme DDI profile. A 55 year old 
male patient has 26 drugs listed at time of his clinic visit. Given 
a drug regimen of 26 drugs, there is the potential for 84 known 
possible DDIs.  

Discussion 

As the number of medications prescribed to patients increases with age (Figure 2), the risk for adverse events through 
DDI increases as well (Figure 3). When combining multiple drugs, the active molecules may exhibit synergistic or 
antagonistic influences on the intended primary therapeutic effect.  

 

Figure 5: The DDI profile of a 55 year old male patient that consists of 26 drugs with 84 known 
possible DDIs.  

 

 

Figure 4: A DDI profile for a regimen of 6 
prescription drugs. The blue ellipse 
indicates the number of alternative 
medications given by ATC, respectively.  

37



  

Risk of adverse drug interactions can be mitigated at the point of care, when patients visit their care provider. Providing 
a tool to gauge potential DDI risks at this point in the health care chain has the potential to improve quality of life for 
patients.  

Thus, we evaluated medication regimens for patient-visits extracted from EAGLE BioVU, a subset of minority 
patients with de-identified electronic health records from VUMC for known DDIs available in the KEGG DRUG 
database. An analysis was performed to evaluate the frequencies and correlations of DDIs. DDI profiles were created 
to visualize and quantify individual medication regimens. In an effort to advance precision medicine, physicians could 
take advantage of DDI information when prescribing new medications to patients. Though, the concept of DDI profiles 
is not restricted to EAGLE BioVU and can be applied to other electronic health record systems with different patient 
population representations.  

However, a unique aspect of this study is the utilization of underrepresented minority patient populations. The 
population represented in this study is primarily composed of African Americans. It is well known that African 
Americans metabolize drugs differently than populations of European descent due to differences in genetics of drug 
metabolizing genes (20,21). Additionally, we were able to assess DDI profiles for pediatrics. Figure 2 shows a rise of 
DDIs and medications in general among the pediatric patients between the ages of birth and twenty years. Most of the 
pediatric cases were identified as being on 6 to 9 medications. While this number appears high for what should be a 
fairly healthy demographic, a number of factors are likely at work. While outside the scope of this study, given the 
clinical nature of this population, many of the pediatrics are likely being treated for less common childhood conditions, 
such as type-1 diabetes which affects upwards of 200,000 youths under 20 years of age (22), and for more common 
ailments such as asthma with a general pediatric prevalence of 8.3% (23) and allergies (24).  For the extreme elderly 
population (95+ years) (Figure 2), we see a decline of reported drugs and DDIs which may be due to the healthy 
centenarian effect. Individuals who live upwards of nine decades are typically very healthy and tend to suffer from 
fewer chronic diseases, and thus require fewer medications (25). 

This study had a number of limitations. Medications, including over the counter drugs and supplements, utilized for 
this study were self-reported by the patient at the time of clinic visit. Hence, the list of medications may not be 100% 
accurate but these lists likely include medications that were prescribed by a physician(s) outside of the Vanderbilt 
healthcare system. Additionally, it is unclear whether the reported medications were taken simultaneously or during 
separate distinct time frames. Also, dosage of medication was not taken into account and may influence related DDIs. 
Future directions for this study may include extracting dosage information with tools such as MedEx (26) and 
assessing dosage dependent interaction information through external databases such as SIDER (27). Patients may not 
have taken each reported medication as intended. Furthermore, not every drug registered in the EMR was represented 
in the KEGG DRUG database. As a future direction, other DDI databases (e.g. SFNIX (28)) could be used to 
complement and validate the KEGG DRUG database. As reported in the results section, only 71% of medications 
could be matched between the two information systems. Pharmaceutical companies have not exhaustively assessed 
every drug for an interaction with all other drugs on the market. Interactions with the environment (e.g. food) and the 
genetic background of patients was not taken into account. A distinction between gender effects could potentially also 
play a role. Presumably, a future update of respective databases will provide a higher coverage and provide a more 
complete picture of potential DDIs. 

The Anatomical Therapeutic Chemical (ATC) Classification System provided by the WHO allows for classification 
of the active compound of drugs in respect to the physiological system that it acts upon. It is a hierarchical system 
based on pharmaceutical codes that group medications/drugs based on their specific target. Identifying closely related 
compounds in type and application target allows for an extension of the proposed DDI profiles and gives an indication 
of which drugs in the medication regimen could potentially be substituted with the potential for reducing overall drug-
drug interactions. This could allow for customized medication regimens. Although, it is possible that mediations/drugs 
in the same ATC category could contain the same active chemical compound, and thus generate the same DDIs.  

With the growing number of therapeutics available on the market, physicians may not have a complete overview of 
the consequences that specific drug combinations could exhibit. The DDI profiles proposed here offer nascent 
possibilities for the development of applications that could be installed and implemented in an EMR system to increase 
awareness of adverse DDI. In truly leveraging today’s information technology, health care organizations could make 
a big impact by lowering the burden of adverse DDI events and the need for additional health care treatment at point 
of care. 
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