
1

Briefings in Bioinformatics, 00(0), 2021, 1–18

doi: 10.1093/bib/bbaa420

Method Review

Data science in unveiling COVID-19 pathogenesis and

diagnosis: evolutionary origin to drug repurposing

Jayanta Kumar Das, Giuseppe Tradigo, Pierangelo Veltri and Pietro H Guzzi
and Swarup Roy

Corresponding authors: Pietro H Guzzi, Department of Surgical and Medical Sciences, Magna Graecia University, Catanzaro, 88100, Italy. E-mail:

hguzzi@unicz.it; Swarup Roy, Network Reconstruction & Analysis (NetRA) Lab, Department of Computer Applications, Sikkim University, Gangtok, India

Abstract

Motivation: The outbreak of novel severe acute respiratory syndrome coronavirus (SARS-CoV-2, also known as COVID-19) in

Wuhan has attracted worldwide attention. SARS-CoV-2 causes severe inflammation, which can be fatal. Consequently, there

has been a massive and rapid growth in research aimed at throwing light on the mechanisms of infection and the

progression of the disease. With regard to this data science is playing a pivotal role in in silico analysis to gain insights into

SARS-CoV-2 and the outbreak of COVID-19 in order to forecast, diagnose and come up with a drug to tackle the virus. The

availability of large multiomics, radiological, bio-molecular and medical datasets requires the development of novel

exploratory and predictive models, or the customisation of existing ones in order to fit the current problem. The high

number of approaches generates the need for surveys to guide data scientists and medical practitioners in selecting the

right tools to manage their clinical data.

Results: Focusing on data science methodologies, we conduct a detailed study on the state-of-the-art of works tackling the

current pandemic scenario. We consider various current COVID-19 data analytic domains such as phylogenetic analysis,

SARS-CoV-2 genome identification, protein structure prediction, host–viral protein interactomics, clinical imaging,

epidemiological research and drug discovery. We highlight data types and instances, their generation pipelines and the data

science models currently in use. The current study should give a detailed sketch of the road map towards handling

COVID-19 like situations by leveraging data science experts in choosing the right tools. We also summarise our review

focusing on prime challenges and possible future research directions.
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Introduction

The massive outbreak of SARS-CoV-2 viral infections in the

world has led to a life-threatening pathogenic disease, which

has been named COVID-19 (COronaVIrus Disease 2019) by the

World Health Organization (WHO) [1]. The surprisingly rapid

human-to-human transmission has created an alert due to

the exponential increase in the number of cases in relatively

short time [2] (https://www.who.int/emergencies/diseases/no

vel-coronavirus-2019/situation-reports). Since December 2019,
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trics), 67 753+ papers on COVID-19 have been published so far

(see also [3]).

A large proportion of the scientific community, comprising

almost all disciplines, is working on developing vaccines, ther-

apies, as well as the management of patients and resources in

order to combat the virus. As a consequence, we observe an

increasing availability of freely available COVID-19 related omics

and clinical data. For instance, the GISAID database (https://

www.gisaid.org/) has collected more than 67 000 viral genomic

sequences in a very short time. The Johns Hopkins dashboard

https://academic.oup.com/
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports
https://www.natureindex.com/news-blog/the-top-coronavirus-research-articles-by-metrics
https://www.gisaid.org/
https://www.gisaid.org/
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Figure 1. The trends of COVID-19 related research publications from two sources:

Dimensions [4] and Google Scholar [5] as of 28 September 2020. We searched

by using the following keywords: COVID-19, COVID-19 and Machine Learning

and COVID-19 and Data Science. The search filter includes published articles,

preprints, edited books, monographs, proceedings and chapters.

(https://coronavirus.jhu.edu/map.html) has become one of the

primary data sources for disease monitoring from an epidemi-

ological perspective. The rapid accumulation of data and the

need to support wet-lab investigations has implied an increasing

effort in exploiting computational-based approaches (e.g. deep

learning, artificial intelligence, network medicine) on COVID-19

related datasets [6]. These methods help to understand the

pathogenesis of the disease and hopefully will lead to the devel-

opment of a vaccine or new drugs. This, however, has resulted

in an accumulation of data, algorithms, software and tools that

need to be categorised and organised. A complete and exhaus-

tive categorisation of all the approaches is undoubtedly a tough

task due to the high publication rate.

We aim therefore to present the main characteristics of

the current landscape, as depicted in Figure 2: (i) data sources,

(ii) repositories, (iii) data science models, (iv) decision-making

and (v) interpretation. Figure 2 also illustrates data analysis

processes. Some processes return data and/or models that can

be used as input (feedback) for the data analysis workflow.

The integration and analysis step uses data science models

to infer knowledge from the results of the previous steps

(see Decision row in Figure 2). For instance, the drug–disease

association needs a network biology approach to determine

the relationship between drug molecules and their impact

on patients. Many laboratories are producing a massive

amount of heterogeneous data, considering both format and

content. Viral sequences are represented as strings. Usually,

raw clinical data (i.e. clinical records, biological analyses) are

highly unstructured and heterogeneous, while medical images

are more standardised data. Such data are accumulated into

public databases or websites,which can be integrated with other

existing databases (e.g. virus–host interaction databases, clinical

and epidemiological databases) to enrich knowledge or correlate

information. Such an approach can be useful in the drug–disease

association, screening possible candidate vaccines or supporting

healthcare decisions (e.g. management of resources such as

intensive care units [ICUs]).

Contributions of the current paper can be summarised as

follows:

• we present a comprehensive review of the in silico

approaches adopted so far to handle COVID-19 in genomics,

proteomics, interactomics, epidemics, clinical imaging and

drug design;

• we present data analytics tasks related to COVID-19;

• we present an overall landscape suggesting strategies to

integrate heterogeneous COVID-19 data sources;

• we report data sources,models and tools,which can be used

to study SARS-CoV-2 and COVID-19;

• we take a look at computational biology and bioinformatics

approaches available in the literature.

In conclusion, we aim to offer to data scientists,medical doc-

tors,healthcare advisers and drug/vaccine designers a landscape

on data and tools that are useful for their activities on COVID-19.

COVID-19 virology and data science:
background

The recent pandemic has promoted the collaboration across

different research communities (e.g. virologists, computational

biologists,medicine specialists, data scientists, etc.) to shed light

on the pathogenesis and contrast strategies for the COVID-19

disease. A large number of recent research efforts has generated

bulk experimental data. In order to unveil the basic molecular

mechanism of the disease, there is the need to use data science-

related technologies to improve knowledge on virus. Thus, it is

crucial to have the right tools and data for understanding the

biology behind SARS-CoV-2. Here, we try to briefly introduce

the SARS-CoV-2 virus genetically related to COVID-19 and how

omics, bioimages and epidemiological data related to COVID-19

are generated and stored in publicly available data repositories.

We introduce the concept of data science as a useful set of

tools and methodology to gain new insights from the available

COVID-19 related datasets.

COVID-19: a novel coronavirus disease

COVID-19, a highly infectious viral disease caused by SARS-CoV-

2, was discovered at the end of 2019. The symptomatic COVID-

19 patients usually experience mild to moderate respiratory

problems together with fever, dry cough and tiredness. A few

non-severe patients also experience aches, pains, sore throat,

diarrhoea, skin rashes, conjunctivitis, headaches, discolouration

of fingers or toes and most significantly loss of taste or smell.

Infection is transmitted through close proximity of an infected

person, droplets generated by infected persons through coughs,

sneezes or exhaling or touching contaminated surface. It enters

through eyes, nose or mouth. Trend shows [7] that patients

on and above 65 years of age with comorbidities are more

vulnerable and may need ICU admission.

Virus biology of SARS-CoV-2

Viruses are small microorganisms that use living cells to repli-

cate. Viruses cause many infectious diseases responsible for

millions of deaths every year [8]. They exist in the form of small

independent particles named virions. Each virion consists of

two main components: (i) the genetic information, encoded as

DNA or RNA, and (ii) a protein coat, named capsid, which wraps

the genetic material. Sometimes the capsid is surrounded by an

envelope of lipids. Virions have different shapes that are used

in their classification [9]. As viruses are not able to replicate

by themselves, they need to use the cell metabolism of a host

organism. The virus replication cycle may be summarised in the

following six steps [10]:

https://coronavirus.jhu.edu/map.html
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Figure 2. A data science landscape for SARS-CoV-2 and COVID-19 studies. Many different technologies produce a large quantity of data related to patients at different

scales (e.g. molecular data, medical images and clinical data and epidemiological data). The accumulation of this data is the pre-requisite for a substantial rise of data

science approaches (e.g. deep-learning and classical data mining) that often integrate existing data stored in databases or a priori knowledge (e.g. domain experts

or ontologies). Such approaches produce new information about molecular interactions, phylogenetic analysis, in silico design of drugs or healthcare management

decisions. The output may guide the execution of novel experiments closing the loop of the whole process.

1. Attachment. Viruses bind the surface of host cells.

2. Penetration. Viruses enter the host cell through receptor-

mediated endocytosis or membrane fusion.

3. Uncoating. The viral capsid is removed, and virus genomic

materials are released.

4. Replication. Viruses use the host cells to replicate their

genomic information. During this step, viral proteins are

synthesized and possibly assembled. Viral proteins may

interact with each other and with the host proteins to

perform their function (e.g. regulate the protein expression).

5. Assembly. Virus particles may self-assembly with host pro-

teins, causing the modification of some proteins.

6. Release. Viruses can be released from the host cell by lysis,

a process that kills the cell.

Viruses are classified into major classes using phenotypic

characteristics, such as morphology, nucleic acid type (e.g.

RNA or DNA), etc. The International Committee on Taxon-

omy of Viruses (ICTV) is in charge of updating the viral

taxonomy. The Baltimore classification system is also used
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where viruses are grouped into seven groups based on mRNA

synthesis.

SARS-CoV-2 belongs to β-coronaviruses that are a subgroup

of the coronavirus family. These are giant enveloped positive-

stranded RNA viruses that are usually able to infect a wide

variety of mammals and avian species. All the members of the

family cause respiratory or digestive and enteric diseases [11].

The infectionmechanism is based on the action of surface spikes

constituted by glycoproteins (named S or spike proteins), respon-

sible for binding to host cell receptors. The literature reports

seven β-coronaviruses that are responsible for causing diseases

in humans. Four strains cause mild respiratory apparatus infec-

tion, which can be usually treated without lethal consequences

(HCoV-229E, HKU1, NL63 and OC43). More recently, three strains

of betacoronaviruses have severe and potentially fatal conse-

quences: SARS-CoV, MERS-CoV and SARS-CoV-2 [12]. SARS-CoV

caused an outbreak in China in 2002 characterised by a severe

respiratory syndrome. MERS-CoV caused an outbreak in the

Middle East in 2012. Both viruses caused similar disease symp-

toms, which led to pneumonia. MERS-CoV infected patients also

presented gastrointestinal complications and kidney failure. The

third member of the family, SARS-CoV-2, appeared in December

2019 inWuhan,Hubei Province, China [13]. From the initial steps,

it presented a surprisingly rapid diffusion rate.Until now,COVID-

19 has killed more people than SARS and MERS combined,

despite a lower fatality rate [14]. By the end of April 2020, the

COVID-19 virus had already caused over 1500 000 confirmed

cases around the world, of which around 350 000 hospitalised,

and over 94 000 deaths. In China there has been more than 80

000 confirmed cases, with more than 3000 deaths.

The sequence and structural analysis revealed amarked sim-

ilarity between SARS-CoV and SARS-CoV-2, as confirmed by the

evidence that the new coronavirus binds with the ACE2 receptor.

Unfortunately, it presents a closer affinity than the previous

virus [14]. Moreover, the expression pattern of ACE2 in human

respiratory epithelia and oral mucosa may represent the cause

of human-to-human transmission. Clinical manifestations of

COVID-19 may be severe since they seem to impact all of the tis-

sues and organs that express theACE2 receptor. Some of the clin-

ical conditions are severe pneumonia, kidney failure, anaemia,

neurological problems, cardiovascular complications and also a

severe inflammation known as cytokine storm, occurring in the

most serious cases [15–17].

COVID-19 data generation and sources

COVID-19 pandemic has contributed to massive, unprecedented

and rapid growth in data generation and research publications

across the world. Figure 1 illustrates publication trend consid-

ering keywords related to COVID-19, whereas Figure 3 depicts a

snapshot of the distribution of publications considering biolog-

ical related issues. As reported in the academic search engine

named Dimension (https://app.dimensions.ai/discover/publica

tion), a total of 730 datasets related to COVID-19 are publicly

available. Published data can be primary (e.g. sequences, clinical

images, medical reports) or secondary data (e.g. protein struc-

tures, interactomes, epidemiological).We consider data to be pri-

mary when it is directly generated from the virus or the patient.

From the primary data, more refined, summarised and inferred

outputs are elaborated and then stored as secondary data. Dur-

ing COVID-19 data analysis and inference play a significant role

as a reference set to extract or infer new knowledge. Next, we

briefly discuss primary and secondary data types, the ways

they are generated and published in available repositories for

COVID-19-related datamining processes for further information.

Figure 3. The trends of COVID-19-related research articles on five major topics

(OMICS, interactome, chest imaging, epidemiology and drug repurposing) based

on the search hits from the Google Scholar as of 28 September 2020. The

search filter includes published articles, preprints, edited books, monographs,

proceedings and chapters.

Omics data

High-throughput omics technologies (http://omics.org) use bio-

chemical assays (i.e. analytical procedure to detect and quantify

cellular processes) to discover molecules in the biological

samples. Omics data fall (but are not limited to) into the

following classes: genomics, transcriptomics, proteomics and

metabolomics. Both omics technologies and data are used for

insights into new unknown viruses. Thus, a preliminary activity

to study COVID-19 disease has been the sequencing of the

genome of the SARS-CoV-2 to elucidate how the virus grows,

mutates and replicates [18]. Blood or throat swab specimens

are collected both from population and patients showing

compatible symptoms or suspected to have been infected. The

extracted RNA material is then further sequenced, for instance,

by using next generation sequencing (i.e. NGS). The output of

NGS is the SARS-CoV-2 genome, which is usually stored in

public repositories (see available SARS-CoV-2 nucleotide and

protein sequence repositories in Table 1). NGS enables the

retrieval of complete RNA information, including transcription

and expression levels, functions, locations, trafficking and

degradation. In a recent study, the architecture of SARS-CoV-2

transcriptome [19, 20] is reported. Transcriptomic data are highly

effective in furthering understanding of the processes of cellular

differentiation, carcinogenesis, transcription regulation and

SARS-CoV-2, followed by the discovery of important biomarkers.

The two main sources of SARS-CoV-2 RNA expression can

be found in NCBI (http://www.ncbi.nlm.nih.gov/geo/) and

OmicsDI (https://www.omicsdi.org/). Finally, metabolomic data

analysis may be used to help in identifying potential chemical

biomarkers for COVID-19. Metabolomics is used for the analysis

of phenotypes and to gain insights into the metabolic state of

biological systems. However, there are very few works in the

literature providing metabolic data from COVID-19 samples.

For instance, Shen et al. [21] reported proteomic metabolomic

profiling of sera from 46 COVID-19 and 53 control patients data

extracted from ProteomeXchange Consortium dataset (https://

www.iprox.org/).

Interactome data

Interactomics is the study of biochemical interactions among

biological molecules (e.g. proteins, transcription factors, small

molecules). Since these interactions are the elementary building

https://app.dimensions.ai/discover/publication
https://app.dimensions.ai/discover/publication
http://omics.org
http://www.ncbi.nlm.nih.gov/geo/
https://www.omicsdi.org/
https://www.iprox.org/
https://www.iprox.org/
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Table 1. Popularly used omics, interactomics, chest image, epidemic and repurposed drug molecules data repositories for COVID-19 data science research

Data type Repositories Description Source

Omics

Nucleotide/protein GISAID More than 75 000 viral genomic sequences of SARS-CoV-2

(updating)

https://www.gisaid.org/

Nucleotide/protein NCBI More than 25 000 nucleotide, 250 401 protein (updating) https://www.ncbi.nlm.nih.gov/labs/virus/vssi/#/

Structure RCSB PDB SARS-CoV-2 proteins (updating) https://www.rcsb.org/covid19

Structure SWISS-MODEL SARS-CoV-2 proteins (updating) https://swissmodel.expasy.org/repository/specie

s/2697049

Heterogeneous COVID-19 hg https://www.covid19hg.org

Metabolomics iProX Integrated proteome resources center https://www.iprox.org/

Transcriptomics NCBI RNA expression data http://www.ncbi.nlm.nih.gov/geo/

Transcriptomics OmicsDI RNA expression data https://www.omicsdi.org/

Interactomics

Interactions,

network

BioGRID More than 800 interacting proteins (updating) https://thebiogrid.org/

Interaction, graph IntAct 4479 binary interactions (updating) https://www.ebi.ac.uk/intact/

Interacting protein HPA More than 200 interacting human proteinswith SARS-CoV-

2 (updating)

https://www.proteinatlas.org/humanproteome/

SARS-CoV-2~

Chest Imaging

X-Ray github More than 800 images (updating) https://github.com/ieee8023/covid-chestxray-da

taset

CT github 349 images from 216 patients https://github.com/UCSD-AI4H/COVID-CT

github 63 849 images from 377 patients https://github.com/mr7495/COVID-CTset

github 104 009 CT images from 1489 patients https://github.com/lindawangg/COVID-Net/

MosMED Chest CT scans with COVID-19 related findings https://mosmed.ai/en/

Both BIMCV-COVID19+ X-ray images CXR (CR, DX), 1380 CX, 885 DX and 163 CT https://osf.io/nh7g8/

Epidemiological

Information CIDRAP Cases of coronavirus disease, situation report, epidemiol-

ogy, virology, clinical features

https://www.cidrap.umn.edu/COVID-19~/epide

miology

WHO Information regarding COVID-19 https://covid19.who.int/

Italian Civil Protection https://github.com/pcm-dpc/COVID-19~

SCIENTIFIC DATA [42] Curated individual-level data fromnational, provincial and

municipal health reports and online reports

https://doi.org/10.6084/m9.figshare.11974344

Drug repurposing

Molecule Drugbank Contains around 13 606 drug entries https://www.drugbank.ca/COVID-19~

PubChem World largest database: more than 350 million Com-

pounds, Substances, BioAssay

https://pubchem.ncbi.nlm.nih.gov/

ChEMBL SARS-CoV-2-related bioactive molecules with drug-like

properties

https://www.ebi.ac.uk/chembl/

Excelra COVID-19-related drugs that are ‘clinical, pre-clinical and

experimental’ stage.

https://www.excelra.com/COVID-19~-drug-repu

rposing-database/

CAS Anti-viral drugs and related chemical compounds for

COVID-19 disease

https://www.cas.org/

Pharmaceutical Drugs in all stages of preclinical and clinical development

for COVID-19 indication

https://www.pharmaceutical-technology.com/co

ronavirus-drug-trials-studies/

https://www.gisaid.org/
https://www.ncbi.nlm.nih.gov/labs/virus/vssi/#/
https://www.rcsb.org/covid19
https://swissmodel.expasy.org/repository/species/2697049
https://swissmodel.expasy.org/repository/species/2697049
https://www.covid19hg.org
https://www.iprox.org/
http://www.ncbi.nlm.nih.gov/geo/
https://www.omicsdi.org/
https://thebiogrid.org/
https://www.ebi.ac.uk/intact/
https://www.proteinatlas.org/humanproteome/SARS-CoV-2~
https://www.proteinatlas.org/humanproteome/SARS-CoV-2~
https://github.com/ieee8023/covid-chestxray-dataset
https://github.com/ieee8023/covid-chestxray-dataset
https://github.com/UCSD-AI4H/COVID-CT
https://github.com/mr7495/COVID-CTset
https://github.com/lindawangg/COVID-Net/
https://mosmed.ai/en/
https://osf.io/nh7g8/
https://www.cidrap.umn.edu/COVID-19~/epidemiology
https://www.cidrap.umn.edu/COVID-19~/epidemiology
https://covid19.who.int/
https://github.com/pcm-dpc/COVID-19~
https://doi.org/10.6084/m9.figshare.11974344
https://www.drugbank.ca/COVID-19~
https://pubchem.ncbi.nlm.nih.gov/
https://www.ebi.ac.uk/chembl/
https://www.excelra.com/COVID-19~-drug-repurposing-database/
https://www.excelra.com/COVID-19~-drug-repurposing-database/
https://www.cas.org/
https://www.pharmaceutical-technology.com/coronavirus-drug-trials-studies/
https://www.pharmaceutical-technology.com/coronavirus-drug-trials-studies/
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blocks of almost all cellular processes, their elucidation appears

as an essential step in describing SARS-CoV-2 mechanisms of

infection and replication [22]. There are many experimental

platforms for deriving physical interactions among proteins [23],

such as affinity purification mass-spectrometry (AP-MS) and

yeast-two-hybrid (Y2H). Gordon et al. [24] have expressed 26

out of 29 SARS-CoV-2 proteins and used an AP-MS to identify

332 human proteins to which the viral proteins bind. There are

several bioinformatics tools enabling the prediction of interac-

tions using biological information coupled with network science

(see for instance [25] for a more detailed comparison). Different

proteomic technologies can be used to study the complete set

of interactions for several viruses [26–28]. For instance, research

projects have elucidated quite a large map of interactions for

SARS-CoV-2. Such interactions are usually modelled by using

graphs and stored in a growing number of databases, such as

Virus Mint [29], String Viruses [30], HpiDB [31], Virus Mentha [32]

and VirHostNet [33].

Despite the existence of such platforms, the rapid diffusion

of the SARS-CoV-2 virus makes the extraction of reliable

information (e.g. correlations, interactions) from these databases

particularly difficult. Consequently, the first studies mainly

used interaction predictions performed by using bioinformatic

tools. For instance, in [34], the homology among SARS-CoV-

2 and other coronaviruses has been used to infer putative

interactions among viral proteins and host–viral proteins.

Differently, a wet-lab approach [24] has been used where SARS-

CoV-2 proteome is cloned and AP-MS is used to identify 332

protein interactions between SARS-CoV-2 and human cells.

Finally, in [35], a preliminary tool consisting of a curated SARS-

CoV-2 interactions dataset extracted by the IMEx consortium is

presented.

Chest images data

X-ray and computer tomography (CT) technologies can be used

to detect lungs and respiratory tracks infected by COVID-19.

Ground-glass (GGO) pattern is the most common finding in a

chest CT image of a COVID-19 infected patient. Patterns are usu-

ally multifocal, peripheral and bilateral. However, during COVID-

19,GGOmay appear as a unifocal lesion,most commonly located

in the inferior lobe of the right lung [36]. Chest X-ray images have

been observed to be insensitive in the early phase of the disease.

However, they become useful in tracking the progression of the

disease.

The urgent need for an automatic diagnostic tool for the rapid

detection of COVID-19 patients encourages the data science

community to develop novel machine learning-based diagnos-

tic frameworks. TrainingData.io (https://www.trainingdata.io/) is

a platform offering a free collaborative tool that allows data

scientists and radiologists to share training data annotations

that can be used for developing machine learning models. We

report a non-exhaustive list of repositories containing annotated

COVID-19 infected chest images in Table 1.

Epidemiological data

Epidemiological data are a collection of non-experimental obser-

vations obtained by gathering any health-related data source

by domain experts, where such data include environmental,

clinical and laboratory data, geographic spread and so on. Thus

these data can be associated with the geographic spread as well

as the risk associated with co-morbidities. Consequently, many

independent groups have started to collect epidemiological data

produced and made available by healthcare providers. Dong

et al. [37] have designed and developed the first dashboard

hosted at the Johns Hopkins University, providing free access

to health data collected from almost all nations. Data are related

to COVID-19 reported cases, i.e. infected, dead and recovered

patients. For instance, the Italian government has provided a

similar dashboard together with raw data related to COVID-19

[38]. Similarly, Xu et al. [39] have realised an open-access

database for storing patient information produced in laborato-

ries. Stored data are related to movements (for retrieving travel

history), symptoms and demographics. All of these projects

share some common characteristics: (i) the use of simple

formats (e.g. tabular formats), (ii) the possibility of export in

standard data sharing format (e.g. comma-separated values), (iii)

simple query interfaces, (iv) the integration of geographic data

and (v) demographic information [39], as reported in Table 1.

Drug-target databases

A drug is a small organic molecule [40] that can activate or

inhibit the function of a therapeutically relevant protein during

the onset of a disease. The discovery of a new novel drug and

the subsequent approval by the Food and Drug Administration

(FDA) is a complex, expensive and time-consuming process.

Drug discovery involves two main steps: (i) drug–target identi-

fication and (ii) development of small molecules able to interact

with the target [41]. The approved drug molecules and targets

are often stored in publicly available databases, usually in the

simplified molecular input line entry system (SMILE) format,

for drug repurposing or commercial development. We report

some drug databases that are useful for drug-discovery process.

For example, DrugBank is a repository containing both drug and

drug target information. The latest release contains 13 596 drug

entries, including 2640 approved small molecule drugs, 1389

approved biological molecules (i.e. proteins, peptides, vaccines

and allergenic), 131 nutraceuticals and over 6377 experimental

drugs still in discoveryphase. Additionally, 5225 non-redundant

protein sequences (i.e. drug target/enzyme/transporter/carrier)

are linked to these drug entries. PubChem is a collection of freely

accessible chemical information that stores chemical and phys-

ical properties, biological activities, safety and toxicity infor-

mation, patents and literature citations. It contains 111 million

compounds, 287 million substance descriptions and details, 273

million of bioactivities conducted on compounds and over 32

million of pieces information relating to drugs with published

papers and 25 million patent descriptions. Excelra is an open-

source COVID-19 Drug Repurposing Database that stores a list

of approved small molecules being at an early stage of experi-

mentation. Pharmaceutical Technology (https://www.pharmaceuti

cal-technology.com/coronavirus-drug-trials-studies/) is a coro-

navirus drug tracker that lists drugs at all stages of pre-clinical

and clinical development (from discovery through to preregis-

tration) for COVID-19. This list is updated dynamically, based

on the Global Data Pharma Intelligence Center Drugs database

(https://www.globaldata.com/). CAS (https://www.cas.org/) con-

tains a connection of nearly 50 000 chemical substances, stored

in the SD file (.sdf) format, along with related metadata such

as CAS Registry Number and physical properties for each ele-

ment. Other relevant non-exhaustive drug database instances

are listed in Table 1.

The data science pipeline

Data science is a novel interdisciplinary research field that

leverages methods, processes and algorithms supporting the

extraction of relevant knowledge from (big)-data. The term data

https://www.trainingdata.io/
https://www.pharmaceutical-technology.com/coronavirus-drug-trials-studies/
https://www.pharmaceutical-technology.com/coronavirus-drug-trials-studies/
https://www.globaldata.com/
https://www.cas.org/
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Figure 4. Major phases of data science pipeline towards decision making and analysis. Data initially collected and integrated frommany sources. Then they need to be

pre-processed to filter uninformative or possibly misleading values (e.g. outliers or noise). Then existing models are used to explain data or extract relevant patterns

describing data or predicting associations. Finally, results need to be interpreted and explained by domain experts. Each step of analysis may generate corrections or

refinements that are applied to precedent steps.

science was introduced for the first time in 2008 by DJ Patil

and Jeff Hammerbacher [43]. Data science pipelines are made of

four major phases: (i) raw data collection, (ii) preprocessing, (iii)

descriptive or predictive modelling and (iv) interpretation. An

illustrative representation of a typical data science workflow for

COVID-19 management is reported in Figure 4.

The integration of heterogeneous data is a crucial step in data

science. The success of any data science model depends on the

quality of data. Due to flaws, noise or errors in data generation,

the outcome of a data science workflow can lead to incorrect

results and/or interpretations. It is crucial therefore to apply

different scrubbing and cleaning processeses on the data. Data

standardisation and transformation are required if data have

been generated by multiple and varying sources. Collectively, all

of the above steps are called preprocessing [44]. Data exploration,

which consists in feeding data to the computingmodel, can then

be performed. Any data science process should include the sta-

tistical description (e.g. type, distribution, significant features,

relationship among the data variables) of the input dataset,

which leads to a better understanding of the data itself and of

the preprocessing and analysis phases. Feature selection helps

in identifying relevant attributes in the dataset. Visualisation

aims to explore the possible relationship between features in the

dataset or among different datasets. Dimensionality and data

reduction help tomake the data scienceworkflowmore efficient

and resistant to noise.

Data can be analysed through the use of both descriptive

(unsupervised) and predictive (supervised) models that often

may be merged together by ensembling [45]. It is worth men-

tioning a few deep learning frameworks that could be helpful

for COVID-19 predictive data analysis. Convolutional neural net-

works (CNNs) [46] are extensively used to analyse radiological

chest images of COVID-19 patients. A different kind of CNN

model, specifically designed for graph or network data, is a graph

convolution network (GCN) [47]. Due to the lack of adequate

training samples during COVID-19 to train deep models, the

synthetic data play a significant role [48, 49]. A recent break-

through in deep model architecture is given by the generative

adversarial networks (GANs) [50] for generating synthetic data

akin to real data. A GAN is made of two simultaneously trained

neural networks: generator and discriminator. A discriminator

recognises training samples, whereas a generator creates fake

instances to challenge the discriminator, which enhances both

modules in learning crucial discriminating features in the orig-

inal dataset. Regression analysis is a supervised model that can

also be used to predict pandemic trends [51]. Clustering [52] is

a well-known unsupervised learning model that describes and

summarises the hidden pattern inside data based on certain

proximity metrics. Results of the previous methods have to

be validated by domain experts. Expert feedbacks can also be

iteratively suggested to refine the phases of the data science

pipeline (see Figure 2).

SARS-CoV-2 omics data analysis

Themain objective of the omics study is to discover the proximal

origin of SARS-CoV-2, its mutational variants, and develop a

predictive model for identifying SARS-CoV-2 from an isolated

strain or sequence or effective chemical biomarker identification

through transcriptomics and metabolomics studies. In addi-

tion to that, nucleotide sequences are used to determine the

SARS-CoV-2 viral genome and 3D protein structure prediction as

depicted in Figure 5.

Phylogeny and mutant variation analysis

Discovering the evolutionary origin of SARS-CoV-2 is currently

the most urgent research topic. It aims to generate an evolu-

tionary tree by using its nearest species [53]. Clustering is one of

the most popular techniques to create a phylogeny among the

coronavirus family-like SARS-COV and MERS-COV [54–56]. The

evolution of viruses is mapped onto in silico algorithms using

phylogenetic analysis. In general, the creation of a phylogenetic

tree primarily relies on the analysis of sequence through

alignment. Several algorithms have been developed to produce

high-quality sequence alignments for both global alignments

(focusing on thewhole sequence) and local alignments (focusing

on local regions of the sequence). Few common established

methods and software have been used for SARS-CoV-2 genome

alignment, such as DNAMAN (https://www.lynnon.com/dnama

n.html), ClustalW [57], MUSCLE [58], Jalview [59] and MAFFT [60].

From alignment data, the evolutionary history is inferred by

using the neighbour-joining (or maximum likelihood) method

[57, 61]. Alignment approaches are also frequently used for

the identification of single nucleotide polymorphisms (SNPs) of

rapidly evolving viruses like SARS-CoV-2 [12, 12, 62]. On the other

hand, alignment-free methods use feature-based approaches

https://www.lynnon.com/dnaman.html
https://www.lynnon.com/dnaman.html
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Figure 5. Omics data generation and data analysis workflow. Fragments of nucleic acid sequences of the virus, extracted form the host organism, are used as input for

data processing algorithms.Many goals of these analyses are (i) analysis of genetic variants, (ii) analysis of genomes of viruses infecting different species, (iii) prediction

of protein interactions and interactome and (iv) gather structure and dynamics of viral proteins.

and compare the sequences by using the derived features. Due

to the low mutation rate and a high degree of similarity among

SARS-CoV-2 genomes, very few studies have been performed

using alignment-free methods [63, 64]. Studies reveal that SARS-

CoV-2 genome is similar to SARS-related coronaviruses (https://

www.ecohealthalliance.org/2020/01/) found in the Pangolin [65]

or Bat [66, 67]. Scientists are studying the new strains variants

of coronavirus to understand its mutant variants. Despite the

close similarity of the different SARS-CoV-2 genomes [68, 69],

significant variations are also reported in the literature [70].

These studies, important for an understanding of the spread of

the disease, can be useful for antiviral drug design [71].

Genome detection

For the elucidation of the infectionmechanism it is important to

individuate the complete sequence of virus genome and its cir-

culating variants by means of machine learning models coupled

with comparative genomics. Both the alignment and alignment-

free methods are applied to generate features. In order to train

machine learning models, some of the most used features are

k-mers (i.e. subsequences of length k) and N-grams (i.e. a

contiguous sequence of N items from a given sample), amino

acid chemical properties andmutation information extracted by

alignment methods.

In [63] an integrated approach is used to identify key genomic

features that differentiate SARS-CoV-2 from SARS-COV and

MERS-COV [72] coupled with decision trees that are also applied

for sequence classification based on over 5000 unique viral

genomic sequences, totaling 61.8 million bp (base pairs) that

include 29 COVID-19 virus sequences. Recent works have sought

to combine five well-known classification models in selecting

features derived from a set of genomes belonging to a large set of

coronavirus families and genomes of SARS-CoV-2 for detecting

novel SARS-CoV-2. For instance, Fang et al. use a bi-path CNN

(BiPathCNN) [73].

Protein structure prediction

Mutations of the genome may alter the encoded amino acid

sequence, and the so-called non-synonymous mutations can

influence the structure and function of the resulting protein

[71]. Understanding the protein structures is required for iden-

tifying functional motifs and elucidating the possible binding

mechanisms with the host proteins and for discovering antiviral

drugs [74, 75]. The elucidation of protein structures by wet lab

experiments requires a considerable amount of time. Structure

prediction therefore is performed by using computational

methods. Recently, SARS-CoV-2 proteins have been predicted

(https://deepmind.com/) by the AlphaFold and the structures

are deposited in the Protein Data Bank (https://www.rcsb.org/).

AlphaFold [76] is a deep two-dimensional dilated convolutional

residual network that predicts the inter-residue distances

between pairs of amino acids and the angles between chemical

bonds that connect those amino acids. trRosetta [77] is also used

to predict SARS-CoV-2 protein structures. In addition to this,

other existing protein structure and homology, modelling tools

like COMPOSER [78], SWISS-MODEL [79], PyMOL c [80] and I-

Tasser [81] are used for rapid prediction and comparison of Spike

(S) protein [82, 83], Envelope (E) protein [2] and ab initio homology

modelling [81].

Transcriptomics and metabolomics data analysis

Alongside sequence data and structural analysis, several

researchers have focused on transcriptomics and metabolomics

data analysis to design better therapeutic strategies for COVID-

19. The aims of the transcriptomic data analysis are to

investigate the activity of the set of genes in different organs and

functional pathways and their possible role in causing infections

and the regulation of various immunological factors inside the

cell of SARS-CoV-2 patients during COVID-19 disease.

A study of transcriptomic data analysis of COVID-19 lungs

and bronchoalveolar lavage fluid samples revealing predomi-

nant B-cell activation responses to infection is presented in [84].

The authors have usedMetascape [85] for functional enrichment

analysis of experimental data to determine the transcriptomic

signature of lung tissues from COVID-19 patients. Further, xCell

software [86] is used for computational deconvolution analysis

to evaluate the relative proportions of immune cell subsets

inCOVID-19 and healthy control samples.

For a better understanding of the pathophysiology of COVID-

19, Gardinassi et al. [87] analysed public transcriptome datasets.

They have considered the transcriptional signature of COVID-19

infected with SARS-CoV-1 and Influenza A (IAV) viruses. A core

transcriptional signature induced by the respiratory viruses in

peripheral leukocytes has been identified and the absence of sig-

nificant type I interferon/antiviral responses has also been noted

for SARS-CoV-2 infected. They also have identified the higher

expression of genes involved in metabolic pathways including

https://www.ecohealthalliance.org/2020/01/
https://www.ecohealthalliance.org/2020/01/
https://deepmind.com/
https://www.rcsb.org/
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heme biosynthesis, oxidative phosphorylation and tryptophan

metabolism.

Based on the publicly available high throughput gene expres-

sion data of several respiratory infection viruses, including

SARS-CoV-2, a host transcriptome-based drug repurposing

strategy has also been proposed [88]. The two main areas are

interaction network construction using functional enrichment

analysis and drug repurposing. STRING data repository is

used for interaction network construction and functional

enrichment analysis. For drug repurposing, the authors have

used DrugBank and Connectivity Map (CMap) provided by the

CLUE (https://clue.io/cmap) web tool. Finally, they suggested six

approved PTGS2 inhibitor drugs for the treatment of COVID-19.

Similar studies [89] were conducted, where analysis of major

histocompatibility complexes and innate immune system gene

expression from SARS-CoV-2 infected RNA-seq data of human

cell line and virus transcriptome data is utilised to predict T-and

B-cell epitopes.

To the best of our knowledge, few studies involvemetabolomic

data on COVID-19 patients. A metabolomic data analysis

coupled with proteomics data is conducted for metabolomic

characterization of SARS-CoV-2 patient sera in [21]. A random

forest based learning model is applied on proteomic and

metabolomic data derived from 18 non-severe and 13 severe

patients. Finally, the authors find 29 important variables

including 22 proteins and 7 metabolites. In another attempt,

metabolomic and lipidomic data [90] are used revealing that

metabolite and lipid alterations are correlated during COVID-19

disease.

Discussion

The majority of the COVID-19 related research relies on

genomics and proteomics data of SARS-CoV-2 and other

coronaviruses more than transcriptomic and metabolomic data.

Existing tools have been extensively used to analyse SARS-

CoV-2 omics data, and very few innovative approaches have

been developed. Of course, the omics data generation and

free distribution have made the major contribution to omics

research. With the availability of high throughput and high

resolution omics data it is now possible to perform a micro-

level investigation of COVID-19 pathogenesis. Multi-omics

data integration [91] together with effective data science and

machine learning models [92, 93] is one possible way to improve

understanding of the pathogenesis of COVID-19 or other viral

diseases.

Interactomics

Interactomics research related to SARS-CoV-2 has two main

goals: (i) development of possible therapies for helping affected

people, and (ii) introduction of a novel vaccine for blocking the

spread. Despite the existence of many different laboratories that

have sequenced the whole genome and the availability of such

data, the above-described issue may be successfully addressed

only by looking at a molecular scale through the elucidation

of interactions of viral and host proteins. As aforementioned,

during the replication step, the virus proteins use the host envi-

ronment, interact with each other and the host proteins, causing

loss of function or even the death of the cells. The complete

elucidation of the whole set of such interactions is therefore a

crucial step for combatting the viruses. Understanding the inter-

play between host and virus proteins is crucial to identify virus-

related diseases and potential targets for therapeutic strategies.

Such informationmay clarify the viralmolecularmachinery dur-

ing the viral infection, survival within the host and replication.

This knowledge can also help to discern the protein interactions

that are crucial for transmission and replication [34].

The literature contains many examples of the use of mass

spectrometry for determining SARS-CoV-2 protein interactions

[24, 94]. For instance, AP-MS based SARS-CoV-2 -host interac-

tomes reported for 26 SARS-CoV-2 proteins with 332 host pro-

teins [24]. The study aimed to identify possible drug targets.

Therefore they isolate 66 possible drug targets in human pro-

teins suggesting potential 69 compounds (of which, 29 drugs

are approved by the US Food and Drug Administration, 12 are

in clinical trials and 28 are pre-clinical compounds). As it is a

time-consuming and expensive task to elucidate experimentally

validated complete host protein interactions with viral protein.

The in silico prediction is the only viable alternative. Some studies

presented the investigation of virus–host interactomes using

tools andmethodologies from graph theory [27, 95], demonstrat-

ing the importance of studying virus–host interplay at network

level [96–100]. Data related to the interactions (or functional

associations) among biologically relevant macromolecules (e.g.

proteins, genes, etc.) are usually modelled by means of graph

theory and its related formalism [101, 102]. Consequently, biolog-

ical entities are represented as nodes, while edges model their

associations [103]. Such networks may contain a single kind of

molecule, such as protein–protein Interactions (PPI), or gene–

gene interactions [23, 104]. More recently, it has been shown that

biological processes are formed by the synergistic interplay of

different molecules (i.e. genes, non-coding RNA, proteins, mi-

RNA, etc.) [105]. Consequently, novel models that integrate such

diverse aspects and describe the interplay of the heterogeneous

actor have been introduced. The use of more complex network

models comprising different nodes and the various interactions

is growing [106, 107]. The SARS-CoV-2 scenario, as we describe in

the following, also contains such models (e.g. [10]). In Figure 6

we report a summarised view of in silico interactome graph

inference workflow, involving different interactome and omics

data sources.

From a bioinformatics perspective, a few key questions need

to be addressed [9]:

• Are the infected proteins central or peripheral?

• Do all of the viruses attach to similar proteins from a

network point of view?

• What happens in an infected host interactome?

These considerations guided the first attempts to produce

an interactome-wide map of SARS-CoV-2 proteins and their

interactions with human proteins enabling scientists to answer

the above questions. Thus, the interactions may be categorised

in two main classes: (i) intra-viral interactions, i.e. interactions

that occur among viral proteins that are in general limited and

easy to determine; (ii) host–virus interactions, i.e. interactions that

occur among viral and host proteins, which may potentially be

numerous.One of themain challenges in this area is represented

by the different speeds between the spread of SARS-CoV-2 and

the time needed for wet-lab experiments. Therefore, all of the

approaches we discuss below integrate both in silico and wet-lab

experiments.

One of the first approaches of building a SARS-CoV-2 interac-

tome is described in [34]. The authors have derived the first map

of both intra-viral and host–viral proteins using a bioinformat-

ics approach based on the homology between SARS-CoV-2 and

the previous 2002 SARS-CoV virus. The hypothesis underlying

https://clue.io/cmap
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Figure 6. Data integration process to build a host–SARS-CoV-2 Interactome graph. The building of the integrated host–viral interactome starts with the analysis of the

viral genome. Then viral proteins and the interactions with host protein are determined. The determination of such interactions is often performed by integrating

experimental data with knowledge extracted from literature. Furthermore, protein structures are also predicted. All of this information (structures, virus–host

interactions and viral interactions) is integrated by using heterogeneous networks. The final product of the process is an interactome.

the work is that the similarity between two viruses is also

preserved at the interactome level. Thus many interactions of

2002 SARS-CoV may be preserved in SARS-CoV-2. Consequently,

they derived a whole SARS-CoV-2 interactome containing both

intra-viral and virus–host interactions. The authors derived a

2002 SARS-CoV interactome by analysing the available literature.

Such data are integrated with a genome-wide analysis through

Y2H on SARS-CoV ORFeome, obtaining a resulting intra-viral

interaction network consisting of 31 proteins and 86 unique

interactions. Then, the authors used both Y2H interaction data

and literature mining to derive the viral–host interactions. The

final virus–host interaction network consisting of 118 proteins,

93 host proteins and 114 unique virus–host interactions.

Multiple interactome analysis is another method used to

integrate data obtained from heterogeneous protein or gene

networks. In a similar attempt the authors in [108] proposed

the integration of PPIs and gene expression data that are

both obtained from available databases. Authors started with

data related to three existing viruses (SARS-CoV, MERS-CoV,

HCoV-229E) to infer the interactome of SARS-CoV-2. They also

integrated an additional PPI database in order to reconstruct the

action of SARS-CoV-2 at the proteome level, obtaining a network

consisting in 13 020 nodes and 71 496 interactions. In parallel, the

authors inferred a gene co-expression network using random

walk with restart (RWR) algorithm and S-glycoproteins of

SARS-CoV, MERS-CoV and HCoV-229E as seeds. Similarly, the

HCoV–host interactome networkwas built by assembling known

networks (e.g. SARS-CoV, MERS-CoV, HCoV-229E, HCoV-NL63,

mouseMHV, avian IBV) obtaining a SARS-CoV-2 phylogenetically

close interactome. As a novel attempt [109], the codon pattern
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is used to infer possible interactions between 26 SARS-CoV-2

proteins and selective host proteins involved in 17 major cell

signalling pathways.

Discussion

For the described reasons above, and those connected with

the previous studies into the SARS-CoV-2 virus, the number of

known protein interactions is constantly growing. Discovering

these interactions constitutes the first step in determining tar-

geted therapies. Despite the large number of investigations in

the literature, virus–host interactomes are far from exhaustive

and the impact of mutations in both virus and humans has

not yet been completed unravelled. Therefore, research in this

field benefits from any increase in the discovery of novel protein

interactions.Nonetheless the development of targeted therapies

suffer from certain limitations. Finally, it should be noted that

the integration of data collected from different omics sources

[110] and medical images may contribute to understanding the

evolution of the disease.

Chest image analysis for diagnosis and
monitoring of COVID-19

Image analysis transforms digital images into measurements

providing meaningful information of the images themselves.

Automated chest image analysis may help in the early diagnosis

of COVID-19 thereby assisting physicians in case of emergency.

Two kinds of chest radiography images, obtained through X-

ray and CT scanners, are recognised as useful for diagnosing

pneumonia in COVID-19 patients.Datamanipulation techniques

can be used for the automatic (or semi-automatic) analysis

of large amounts of images requiring substantial quantitative

assessment and computation. Chest images can be used in

many COVID-19-related scenarios, e.g. predicting the need for

ICU resources, predicting survival rates, studying the patient’s

trajectories during treatment [1]. Imaging is a fast, non-invasive,

relatively cheap and already a widely adopted clinical prac-

tice that can be used to monitor the evolution of the disease.

The ultimate goals are improving patient healthcare, biomarker

design for the COVID-19 and, most importantly, early COVID-19

detection in patients.

Machine learning methods or CNN-based methods have also

been used for this aim. For instance, COVID-Net [111] is the

first open source CNN-based framework designed using deep

learning techniques for COVID-19 detection. It has been used

to analyse X-ray chest images; authors developed COVIDx, an

open-access benchmark dataset composed of 13 975 CXR images

from 13 870 patients. Model performance has been evaluated

with other deep neural network architectures for comparative

purposes. The model predicts three possible outcomes for each

input image: (a) healthy, (b) non-COVID-19 (e.g. viral, bacterial,

etc.) infection and (c) viral COVID-19 infection.

A transfer learning-based CNN has also been applied in [1]

for detecting various anomalies in smallmedical image datasets.

The authors collected 1427 X-ray images (224 COVID-19, 700

commonpneumonia and 504 normal cases) from several sources

such as Cohen (https://github.com/ieee8023/covid-chestxray-da

taset), Radiological Society of North America (RSNA), Radiopae-

dia and the Italian Society of Medical and Interventional Radiol-

ogy (SIRM) (https://www.kaggle.com/andrewmvd/convid19-xra

ys).

In [112], a deep-learning based method has been applied to

pulmonary CT images to distinguish patients affected pneu-

monia related COVID-19 from healthy cases. At first, candidate

infection regions have been isolated from the pulmonary CT

image set by using Residual CNN (ResNet-23), a pre-trained neu-

ral network to identify image features. A combined CNN- long

short term memory (LSTM) architecture is also used to detect

infected patients X-ray images in [49]. CNN is used for extract-

ing features from images, while LSTM is used for analysing

these features. Similarly, in Inf-Net [113], a CNN has been used

to perform the segmentation of lung CT images of COVID-19

patients. Moreover, in the absence of training images, synthetic

Chest X-Ray (CXR) images can be generated by using the GAN

model proposed in [48] or by using the statistical techniques

described in [114, 115]. A binary classifier, using manta-ray for-

aging optimization (MRFO) for features extraction and KNN for

classification, has been used to classify COVID-19 affected chest

X-ray images in [116].

Discussion

Deep learning is one of the most commonly adopted choices

by the data science community. Due to the availability of deep

models and easy-to-use frameworks, researchers are able to use

them to set up and develop methods for helping in COVID-

19 diagnosis. The integration of both X-ray and CT scans may

improve the quality of detection. Due to the similar lung damage

and symptoms between COVID-19 and common pneumonia or

influenza, the chances of false positives are quite high. One

option for more accurate COVID-19 diagnosis, which is yet to be

fully explored, is to integrate information extracted from chest

images with transcriptomic andmetabolomic data [110]. Despite

the increasing demand of rapid COVID-19 diagnostic systems,

most of the data science approaches described above suffer

from low data availability. The larger the sample data volume,

the more reliable the diagnostic system should be. In order

to compensate for the data scarcity, both GAN and statistical

models can be successfully used the hand the issue.

Epidemiological data analysis

From the beginning of the outbreak, a significant source of infor-

mation has come from observation of novel COVID-19 cases and

has been used to predict the evolution of the disease diffusion.

Such data have been used with both existing and ad hoc mathe-

matical models [39, 117]. The main aims of these approaches are

(i) controlling the diffusion of COVID-19; (ii) supporting health-

care providers in allocating resources (e.g. planning ICUs); and

(iii) evaluating the impact of containment measures.

From a data science perspective view, almost all of these

efforts use real data to build and fit both predictive and obser-

vatory models. Most of them use deterministic models based

on classical epidemiological studies. Consequently, real data are

used to calculate model parameters based on ordinary differen-

tial equations (ODE) [118–120]. The diffusion of such works has

been very rapid; for instance, simple queries on Google Scholar

or on preprint servers returnedmore than two thousands papers

on average.

In [121] authors integrated information of existing data

sources provided by the Johns Hopkins University,WHO,Chinese

Center for Disease Control and Prevention, National Health

Commission and Dingxiangyuan (DXY, a Chinese epidemiolog-

ical database). The proposed tool allows scientists to perform

exploratory data analyses, using visualisation techniques to

highlight differences in the reported cases (e.g. infected, dead

and recovered people), in different countries.

Moreover, more sophisticated models have tried to integrate

epidemiological data with other data to study the impact of

https://github.com/ieee8023/covid-chestxray-dataset
https://github.com/ieee8023/covid-chestxray-dataset
https://www.kaggle.com/andrewmvd/convid19-xrays
https://www.kaggle.com/andrewmvd/convid19-xrays
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Figure 7. Drug repurposing process. The process is based on the integration of molecular data and drug-disease associations. The analysis is often performed by

deep-learning or network embedding. The output list of candidate drugs is then confirmed via wet-lab experiments and clinical trials.

other information (e.g. environmental, geographical, clinical)

[122, 123]. A COVID-19 outbreak forecasting model has been

developed using LSTM networks [124]. The John Hopkins Uni-

versity and Canadian health datasets have been used to extract

significant features able to predict trends and possible duration

of the current global COVID-19 pandemic.

Discussion

The COVID-19 outbreak has been characterised by a notable

accumulation of epidemiological data publicly available on the

web. The data are mainly related to infected patients as well as

to the number of deaths. However, it should be noted that such

datasets present some main drawbacks: (i) there is in general

little attention paid to their reliability and (ii) there has been

little effort in data format standardisation and semantics. For

instance, there is no standardised way to determine the exact

number of infected; moreover, variations in diagnosis the causes

of death at country level may skew mortality figures at differ-

ent countries. The vast majority of the described approaches

integrating epidemiological and environmental data shows the

above-mentioned limitations. From a computer science point of

view, as far as principled data integration is concerned, the use of

technologies and methodologies from the data-warehouse and

on-line analytical processing (OLAP) communities may consti-

tute a valid and stable choice, sincemost of the data are available

in text format and could be stored on a relational or NoSQL

database.

Drug repurposing and target prediction

Drug discovery aims to identify small molecules that potentially

modulate the functions of target proteins. The development of a

new drugmolecule for COVID-19 is a time-consuming and costly

task. In the COVID-19 era, the long process for the determination

of a novel drug is not feasible, due to the rapid spread of the

virus. It is of utmost importance to identify candidate anti-viral

drugs more rapidly; these may control the adverse effects of

COVID-19, thereby hopefully reducing the mortality rate. The

best alternative is to look for already FDA-approved drugs that

may bind with the therapeutic target (viral or host) proteins.

Data analysis for discovering possible candidates from the

existing drugs is a well-known process referred to as ‘drug repur-

posing’. It involves the identification of new uses for approved

(or experimental) drugs as a possible cure for novel pathologies.

The process, as depicted in Figure 7, is based on the integration

of molecular data (e.g. interactomes, co-expression networks),

concerning the existing drug–disease association.

The availability of high-resolution proteomics, interactomics

and drug–target association data makes it now feasible to

quickly find a suitably small molecule in silico with the help

of advanced (deep) neural network models. A good number of

deep learning-based drug–target associations and repurposing

tools are available for other viral diseases and thus can also be

used for COVID-19 data analysis (see Table 2).

Recent trends have adopted network-embedding techniques

[125] and DNN to produce lists of possible candidate drugs that

will be confirmed through wet-lab experiments and clinical

trials. It should be noted that, after the in silico identification,

the drug repurposing process requires time and funds for the

subsequent clinical trials, but the overall time required is shorter

than developing a new molecule from scratch [126].

The authors in [24] have used an experimentally validated

host–viral network to test 69 existing drug compounds con-

stituting potential drug targets to treat COVID-19. Multiple

network-based strategies coupledwithGCNshave been explored
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Table 2. Data science tools and techniques for SARS-CoV-2 data analysis

Task Data type Data science models Available tools

Phylogeny/ alignment Nucleotide/protein

sequence

UPGMA, WPGMA, neighbour-joining, maximum like-

lihood, Fitch–Margoliash method, maximum parsi-

mony, Bayesian inference

ClustalW, Clustalω, MAFFT, MUSCLE, T-Coffee https://

www.ebi.ac.uk/Tools/ https://www.genome.jp/tools-

bin/clustalw DNAMAN https://www.lynnon.com/dna

man.html

Structure prediction Protein sequence Deep neural network (NeBcon, ResPRE, ResTriplet and

TripletRes), QSQE, supervisedmachine learning (SVM),

multiple regression

SWISS-MODEL [79], PyMOL [80], I-Tasser [81], COM-

POSER [78]

SARS-CoV-2 predictor Nucleotide sequence Conventional models (Naïve Bayes, K-nearest neigh-

bors, artificial neural networks, decision tree and sup-

port vector machine), deep models CNN, Bi-path CNN

(BiPathCNN)

COVID-Predictor [132]

Protein interactions Protein sequence, PPI

networks, protein

structure

Graph analysis Cytoscape https://apps.cytoscape.org/

Chest imaging analysis Chest x-ray or CT image Deep learning models (VGG19), Mobile Net, Inception,

Xception and Inception ResNet (v2,18,23,50), GAN,Dice

similarity coefficient (DSC)

TrainingData.io https://www.trainingdata.io/

Epidemic trend analysis Experimental and obser-

vational

LSTM statistical models (SIR, Bayesian imputation,

linear and polynomial regression)

Worldometers-coronavirus https://www.worldome

ters.info/coronavirus/ WHO-COVID19-report https://

www.who.int/emergencies/diseases/novel-coronavi

rus-2019 COVID-19 Projections https://covid19-proje

ctions.com/

Drug interaction and

repurposing

Protein sequence, drug

molecules, protein struc-

ture

Graph analysis, graphical convolution network DeepDR [133], kGCN [134], DeepChem [135], D3Targets-

2019-nCoV [136], CoVex [137]

https://www.ebi.ac.uk/Tools/
https://www.ebi.ac.uk/Tools/
https://www.genome.jp/tools-bin/clustalw
https://www.genome.jp/tools-bin/clustalw
https://www.lynnon.com/dnaman.html
https://www.lynnon.com/dnaman.html
https://apps.cytoscape.org/
https://www.trainingdata.io/
https://www.worldometers.info/coronavirus/
https://www.worldometers.info/coronavirus/
https://www.who.int/emergencies/diseases/novel-coronavirus-2019
https://www.who.int/emergencies/diseases/novel-coronavirus-2019
https://www.who.int/emergencies/diseases/novel-coronavirus-2019
https://covid19-projections.com/
https://covid19-projections.com/
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to rank drug repurposing candidates. At first, COVID-19

interactome modules have been identified, considering 56

different human tissues. Existing drugmolecules have then been

ranked by means of a proximity measure based on their ability

to interact with their protein targets. In [125] network proximity

analyses have been performed on drug targets and HCoV–host

interactions and 16 potential anti-HCoV repurposable drugs

have been selected. They have used host proteins from four

known HCoVs (SARS-CoV, MERS-CoV, HCoV-229E and HCoV-

NL63) based on phylogeny analysis and performed functional

enrichment followed by drug association analysis. Another

network-based approach for deriving possible drug targets

has been attempted in [10], where both protein interaction

and gene co-expression networks have been used to identify

master regulators [127] involved during SARS-CoV-2 infection.

Physical interactions of proteins were extracted from [34]. The

co-expression network has been generated by using SARS-

CoV-2-human interactome proteins, derived from [128] and

the largest human lung RNA-Seq dataset available from the

GTEX consortium (www.gtexportal.org). The authors identified

a number of key proteins involved during an infection such as

ACE2,TMPRSS andMOCK.They hypothesised that these proteins

may be potential therapeutics targets, evidencing that COVID-19

is characterised by a large inflammation process, not limited to

the respiratory apparatus.

Discussion

As discussed in Section 6, drug repurposing is a crucial

methodology for COVID-19-related therapies, since the adoption

of the classical and very time-consuming drug-discovery

approach [129] is unfeasible. Data science and computational

intelligence are the two most useful building blocks of all

the other drug repurposing approaches. Unfortunately, drug

repurposing process needs, to the best of our knowledge, the

introduction of up-to-date medical guidelines to become widely

adopted. Despite the fact that data science will clearly help in

accelerating drug repurposing, some challenges remain.

For instance, in silico drug repurposing, being based on simpli-

fied models for both humans and viruses,may not reproduce all

of the possible side effects. Moreover, the vast majority of drug

repurposing approaches do not consider the impact of dosage

or the responses on different tissues (the original drugs could

be optimised for other scenarios). Therefore, clinical tests,which

aremandatory for candidate molecules,may well lead to a slow-

down in the process, since short term trials may not have suffi-

cient statistical power (e.g. due to the small number of patients).

Moreover, existing drug repurposing approaches do not often

consider, among other factors: (i) heterogeneous populations

with different genetic backgrounds, (ii) the existence of different

phenotypes (e.g. patients with a different level of illness), (iii)

as well as genetic differences on the SARS-CoV-2 circulating

variants. Nevertheless, some examples have produced positive

results such as [130, 131].

Summary and challenges

As evidenced before, the potential applications for data science,

deep-learning and artificial intelligence are countless in this

field.However, due to the speed of the spread of the virus and the

number of novel approaches proposed worldwide, it could seem

that data science may fail to slow down the pandemic, hence

the urgent need for a comprehensive vademecum for practition-

ers, industry experts, as well as researchers. In this work, we

provided an in-depth overview of the data sources and methods

that are currently used to elucidate the primary mechanism of

pathogenesis and development of COVID-19. We included data

types from the molecular scale to patient (medical imaging) and

population-scale (epidemiological data) and discussed the main

approaches for modelling COVID-19 infection, drug repurposing,

population surveillance, disease and treatment. Table 2 provides

an overall summary of data science models, types of tasks and

data and various software tools.We also discussed some relevant

challenges for data science applications in healthcare, including

the need to introduce more standards and the need for more

straightforward data integration. Finally, we firmly believe that

data science can be valuable support in fighting COVID-19.

Current challenges

• Ontology-based federation of data: The current scenario

is characterised by many data formats that differ both in

schemas and content; there is, therefore, the need to intro-

duce a novel data federation mechanism that is able to

integrate data both horizontally and vertically.

• Development of graph-based models: The integration of

data into a unified model (ideally including patients molec-

ular and clinical information) could be a key feature in

gaining more precise and effective modelling the diffusion

of the virus [91, 110] and the definition of more ‘models’;

• Leveraging the use of efficient and high-throughput anal-

ysis workflows: The rapid spread of the virus and the

unprecedented production of data require the introduc-

tion of novel efficient and high-throughput data analysis

environments, possibly structured as virtual laboratories

federated by means of cloud infrastructures [138].

• Analysis of circulating variants and their impact: Due to

the rapid mutation rate of the virus, a large number of

mutations are constantly appearing for SARS-CoV-2 which

may alter its protein structures. Structure-based drug devel-

opment depends on the structural coherence between drug

molecules and target proteins; hence the study of viral

structure variations is essential for stable anti-viral drug

development. By predicting strain variations with machine

learning methods, domain experts will be able to design

anti-viral drugs or reuse those known to be effective in

similar contexts.

• Low data deep models for drug discovery: The accuracy of

deep-learning models depends on the availability of well-

sized training datasets. Unfortunately, these large datasets

are often unavailable, or unbalanced (e.g. far more positive

examples than negative ones). Therefore, there is a need

for generating reliable and statistically sound synthetic

datasets. For instance, synthetic sample data (X-ray) is gen-

erated by using generative adversarial networks during the

training phase of the model. In a recent attempt, a one-shot

LSTM framework [139] has been proposed [140] for repur-

posed drug discovery in cases of low data availability [141].A

similar method has yet to be designed and implemented for

COVID-19.

• Explainable artificial intelligence for a more reliable diag-

nostic systems: Diagnosis and drug discovery are two of the

most sensitive tasks requiring very high predictive accu-

racy. Due to the phenotype similarity between COVID-19

infection andpneumonia,differentiating early symptoms of

COVID-19 chest infection can be a challenging task. Explain-

able artificial intelligence [142] is an innovative concept

enabling both researchers and domain experts to trace back

www.gtexportal.org
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the results obtained from the AImodel from output features

to the input features, thus allowing for a clearer interpreta-

tion of data and information. Explainable AI models may be

implemented in COVID-19 image-based clinical diagnostic

systems for earlier and more reliable prediction.
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