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Containing the recent West African outbreak of Ebola virus (EBOV) required

the deployment of substantial global resources. Despite recent progress in ana-

lysing and modelling EBOV epidemiological data, a complete characterization

of the spatiotemporal spread of Ebola cases remains a challenge. In this work,

we offer a novel perspective on the EBOV epidemic in Sierra Leone that uses

individual virus genome sequences to inform population-level, spatial

models. Calibrated to phylogenetic linkages of virus genomes, these spatial

models provide unique insight into the disease mobility of EBOV in Sierra

Leone without the need for human mobility data. Consistent with other inves-

tigations, our results show that the spread of EBOV during the beginning and

middle portions of the epidemic strongly depended on the size of and distance

between populations. Our phylodynamic analysis also revealed a change in

model preference towards a spatial model with power-law characteristics in

the latter portion of the epidemic, correlated with the timing of major interven-

tion campaigns. More generally, we believe this framework, pairing molecular

diagnostics with a dynamic model selection procedure, has the potential to be a

powerful forecasting tool along with offering operationally relevant guidance

for surveillance and sampling strategies during an epidemic.
1. Introduction
Arresting the West African Ebola virus (EBOV) epidemic of 2013–2016 required

a significant international intervention and exposed a global vulnerability to

emerging epidemics. Advances in genetic-sequencing technologies have

enabled the near real-time analysis of infectious pathogen genomes [1–3],

thereby improving forecasts for emerging epidemics [4,5], enhancing surveil-

lance of endemic diseases [6] and identifying strategies for eradication [7,8].

During the West African EBOV crisis, publicly available data facilitated a

series of prominent analyses aimed at identifying basic epidemiological

parameters, i.e. the reproductive number [9,10]. Further, the release of EBOV

genome data, coupled with phylogenetic methods, provided fundamental

insight into the origin and spatial properties of the epidemic [11,12]. Despite

the prominent role mathematical and statistical modelling played during the

epidemic, there has been a significant delay in characterizing the spatio-

temporal spread of EBOV. For future epidemics, the design of operationally

relevant, spatially distributed interventions requires the identification of predic-

tive models that are able to assimilate case and genetic data. In this article, we

describe how EBOV molecular data, specifically virus genomes, can be used to

directly model the spatiotemporal dynamics of the Sierra Leone epidemic.

Recent investigations of disease propagation on modern transportation net-

works have pointed to the importance of characterizing the spatial behaviour of

vectors and pathogens due to human movements [13,14]. An influential devel-

opment in the study of human mobility and disease spread is the adoption of

the gravity model from the field of economics [15]. Analogous to the attracting

force between physical masses, the gravity model describes human movements

as dependent on the size of and distance between human populations [16,17].
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Other spatial models, such as the well-known, scale-free Lévy

flights, depend solely on travelling distance and have been

used to describe a wide-ranging set of phenomena from

epidemiology [18], ecology [19] and plasma physics [20].

Mathematically, the gravity and Lévy flight models are

closely related. However, when the model parameters are fit

to country-specific data, their dynamic behaviour can be

qualitatively different. The gravity model parameters are

often fit using proxy data such as cell phone, transportation

and individual survey records [21]. This spatial model can

then be coupled to a disease transmission model [22]. Alter-

natively, molecular data offer direct insight into disease

mobility [4,23]. Genomic data have been used to construct

distance-dependent spatial models for West Nile virus in

North America [2] as well as dengue virus in Thailand [24]

and Vietnam [25]. Other phylodynamic approaches, focused

on mapping transmission trees [26], have been widely applied

to infectious disease data including outbreaks of foot-and-

mouth disease [27], severe acute respiratory syndrome

(SARS) [28] and tuberculosis [29].

Previous spatial analyses and modelling efforts for the

EBOV epidemic have identified population as an influential

factor using a generalized gravity model parametrized to

case-reporting data [30–32]. A comprehensive phylodynamic

analysis of all available West African EBOV genomes also

concluded that population distribution and distance between

cases are important explanatory factors [33]. Other phylo-

dynamic analyses of EBOV incorporated multiple countries

and revealed the importance of social clustering to trans-

mission risk [34,35]. Despite these recent investigations,

which identify potential drivers of the EBOV epidemic, a

fully characterized understanding of the spread of the West

African epidemic remains a challenge.

We present a novel investigation of the EBOV genome

data, allowing for a more resolved characterization of the

spatiotemporal dynamics during the epidemic. Transmission

of EBOV within Sierra Leone was almost completely within

its borders [36], which provided a constrained and repre-

sentative dataset to investigate the utility of virus genomes

to construct population-level spatial models. Paired with

advances in phylogenetics that identify linkages between

cases [8], EBOV genome data offer powerful insight into

spatiotemporal, transmission events. These genomic linkages,

in combination with geographical and demographical charac-

teristics included in our framework, help infer the parameters

of gravity and Lévy flight models. We focus on identifying

data-driven, spatial models that are interpretable and consist-

ent with established patterns of human population movement.

Adaptive model selection during the course of the epidemic

reveals a significant change in virus mobility in Sierra

Leone: dependence on population size decreases towards the

end of the epidemic. For future epidemics, we believe that

this framework could be implemented to improve forecasting

efforts and help design efficient intervention campaigns that

adapt to real-time phylodynamics.
2. Study data and methods
2.1. Genomic data
Genetic sequences from 1031 human infections of EBOV in Sierra

Leone were obtained from a openly accessible compilation [33] of

previously published sequencing data [36–39]. In figure 1a and
electronic supplementary material, figure S4, we show the time

course of all confirmed EBOV cases (black trace) in Sierra

Leone [40] compared with the number of sequenced virus gen-

omes [33] (red trace). The FASTA file with the genomes and

metadata was downloaded from http://github.com/ebov/

space-time/tree/master/Data/Makona_1610_genomes_2016-06-

23.fasta on 9 August 2016. We then used BEAUTI 1.8.3 [41] with

default options to generate an XML file with the metadata of

spatial and temporal coordinates for each sequence.

2.2. Partially observed transmission network
We used a recently developed phylogenetic method [8], known

as the partially observed transmission network (POTN) algor-

ithm, to determine genetic linkages between EBOV infections

in Sierra Leone. The POTN algorithm computes a likelihood

ratio based on a Poisson model of the mutation rate to identify

genomes that are most likely to be direct relatives. This con-

trasts with widely used phylogenetic analyses that infer

common ancestors, such as Bayesian Evolutionary Analysis

Sampling Trees (BEAST) [41]. The POTN algorithm produces a

pairwise, time-directed network of ancestor and descendant gen-

omes, linked by the relative change in their sequences between

collection dates. For EBOV, we used an average nucleotide sub-

stitution rate of 2 � 1023 bp/site/yr, a value measured during

the 2013–2016 epidemic; see Fig. 4F of [11]. A false discovery

rate for each linkage is computed with a single degree-of-

freedom x2 test, with a cut-off at p ¼ 0.05. Figure 1b shows a

visualization of the EBOV POTN for Sierra Leone pruned to

the shortest generation time for each ancestor. The blue arrow

highlights a single linkage between virus genomes collected in

the districts of Western Urban and Kenema.

2.3. Population distribution and driving distances
Population distribution maps from the 2010 and 2014 Worldpop

models were downloaded from http://worldpop.org.uk/data/

in June 2016. These maps were segmented into 153 Admin-3

units (chiefdoms) using the Sierra Leone shapefiles from Global

Administrative Areas http://gadm.org/download, illustrated in

figure 1c. Driving distances were used as the distance measure

between chiefdoms. The shortest time driving distances between

all chiefdom pairs were collected from the Google Maps API.

Figure 1c shows the major roads in Sierra Leone. The blue

arrow indicates the path along the roads between chiefdoms of

median population in the districts of Western Urban and Kenema.

2.4. Distance statistics for genetic linkages
We examined the statistics of EBOV transmissions using the dis-

tribution of driving distances between POTN-linked cases. These

are denoted as transmission distances, dij. We plot in figure 1d the

probability of observing a dij above a certain magnitude, which is

defined as a complementary cumulative distribution function

(cCDF), and is useful for identifying a power-law distribution

from empirical data [42]. We computed dij for each genetic link-

age by assigning each sequence to a chiefdom, either known

from the metadata or approximated by population size in its

annotated district. We omitted 119 genomes without a district

(Admin-2) localization from the analysis. For the first part of

the epidemic, chiefdom localizations are available for 187 gen-

omes [36]. When the chiefdom localization is unknown for a

virus genome, we selected a chiefdom based on assumptions of

population size within the known district, such as maximum,

mean, median or minimum.

2.5. Probabilistic spatial models
Previous analyses have pointed to the importance of size and dis-

tance between populations as factors that influenced the spread
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Figure 1. Virus genome data from EBOV cases in Sierra Leone characterizes the spatial spread of the epidemic. (a) The time course is shown for the number of
confirmed cases [40] and sequenced EBOV genomes [33]. Three stages of the epidemic are highlighted. (b) Genetic linkages are illustrated with ancestors (open
circles) and descendants (closed dots), both coloured by the origin district shown in the map key. The blue arrow highlights a linkage from the Western Urban to
Kenema districts. (c) Chiefdom populations (greyscale) and major roads (yellow traces) are illustrated on the map of Sierra Leone. The blue arrow highlights the
fastest driving route between the Western Urban to Kenema district. (d) All transmission distances are shown in a cCDF. The distribution of transmission distances are
fit by a power law with r ¼ 1.66. The blue arrow follows the linkage from (b) and (c). (e) Two spatial models are plotted as maps representing the probability of
observing a new case linked to the Western Urban district, using (rw ¼ 1, tw

2 ¼ 1) for the gravity model and r ¼ 1.66 for the power law. ( f ) The log-likelihood
ratio, R, comparing the gravity and power-law models, is plotted for 50-day windows. The dashed black line represents (r ¼ 1.66, t2 ¼ 1) fixed in time; the
solid black line of R uses the MLE (rw(t), tw

2 (t)), computed for each window. The solid red trace describes the number of linkages.
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of EBOV in West Africa [31,33]. Here, we specify a gravity model

for a discrete spatial network of populations that describes the

probability of a virus being transmitted from chiefdom i to chief-

dom j: pG
ij ¼ CG

i Pt1
iP

t2
j/dr

ij, where the origin population is Pi, the

destination population is Pj and CG
i normalizes the probability

distribution for each origin. The exponents t1, t2 and r are par-

ameters that determine the influence of population and

distance for the gravity model. The normalization for each

origin is computed by the following: CG
i ¼ 1=(

P
j Pt1

i Pt2

j =drij).
Note that the normalization depends solely on the destination

population and distance. This formulation of the gravity model

predicts where a future linked case will appear.

A closely related probabilistic model is the Lévy flight model,

which has a rich mathematical basis in the framework of frac-

tional diffusion equations and scale-free non-diffusive random

processes [43]. We write the discrete space power-law model as

pL
ij ¼ CL

i /dr
ij, where CL

i normalizes the probability for each

origin. Again, we are interested in characterizing the probability

of viral transmission to chiefdom j. The resting probability

for both models is uniformly approximated to pii ¼ 0.5; see

electronic supplementary material, figure S1 for a district-level

analysis of stationary linkages. This approach can be extended to

include a wide variety of spatial models with context-appropriate

parameters for the underlying stochastic process.
2.6. Maximum-likelihood estimates for gravity model
parameters

For the gravity model, the parameters r and t2 that best fit the data

can be determined through a maximum-likelihood estimate (MLE).
The joint likelihood for the parametric gravity model, LG, is defined

as the product of model evaluations over the set of virus genome

linkages S: LG ¼
Q

S pG
ij (r,t2). We define (rw, tw

2 ) as the MLE of

the parameters for the gravity model determined by evaluating

the likelihood for a range of (r, t2) values. We establish a 95% CI

for (rw, tw
2 ) via the well-known Fisher information criterion [44].

2.7. Adaptive model selection
We computed a time-dependent likelihood ratio that quantifies

the relative preference between models over the course of the epi-

demic. Note that the power-law model is considered nested

within the gravity model if t2! 0. The likelihood ratio, R, is

computed for a set of virus genome linkages S. The normalized

log-likelihood ratio of a gravity model to a Lévy flight model is

R(r,t2) ¼
P

S [ ln (pG
ij )� ln (pL

ij )]=
ffiffiffiffi
N
p

, where N is the number of

linkages in S. If R.0, the gravity model is preferred, but if

R,0, the power-law model is preferred. The significance of

this preference is computed by a x2 test according to Wilks’ the-

orem [45]. We made R time-dependent by partitioning S into

subsets of linkages, St. In figure 1f , each subset includes all

linkages with the descendant genomes collected in each 50 day

interval centred around t. This model selection approach can be

extended to include non-nested models by using an information

criterion such as the Akaike information criterion [46].

3. Results
3.1. A transmission network links most virus genomes
We constructed a POTN using 880 virus genomes from Sierra

Leone that revealed 798 transmission events. Of these, 355
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Figure 2. The empirical power law for the transmission distances. (a) The
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t , 200 days), is plotted along with the power-law model using the MLE
value of r* ¼ 1.8+ 0.1 for N ¼ 54 linkages. (b) The cCDF for Stage II,
(200 � t , 350 days), is plotted with the power-law model using the
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have a unique descendant and 670 have fewer than three

likely descendants. The POTN algorithm is designed to

return several possible descendants associated with the

same ancestor when these are supported by the data. See

electronic supplementary material, figure S2A for the empiri-

cal distribution of all linkage durations. For illustrative

purposes, figure 1b shows the POTN pruned to include

only the shortest linkage duration from each ancestor. The

median linkage time from the POTN is 31 days. Based on

an EBOV serial interval of 15 days [47], this implies approxi-

mately one unobserved transmission event per linkage. The

median linkage duration is reduced to 11 days if the POTN

is pruned to the shortest generation times, illustrated in elec-

tronic supplementary material, figure S2B.

The likelihood ratio and MLE calculations include all likely

descendants associated with a single ancestor. However, for

the adaptive model selection procedure, descendants outside

of each time interval are excluded. For example, figure 1f illus-

trates the likelihood ratio for 50 day intervals. Despite the

challenges associated with partially observed transmission

chains, we find that our subsequent analyses of spatial

model calibration and model selection are robust to a wide

variety of linkage exclusion criteria, such as restricting the

maximum allowable linkage duration. See electronic sup-

plementary material, figure S3 for more details. Our results

are also robust when considering longer time intervals. We

define three sequential stages for the epidemic: Stage I (0–

150 days), Stage II (150–300 days) and Stage III (300–550

days). The geographical distribution of linked cases across dis-

tricts for the three stages shows that the number of genomes

sequenced is proportional to the number of confirmed cases

[40], except when the number of confirmed cases is larger

than 1000 (electronic supplementary material, figure S4).
3.2. Transmission distances follow a power-law model
Several analytic techniques were used to test for a power law

in the distribution of dij for all linkages. Cumulatively, for 656

linkages with dij . 0 km, we computed a power-law scaling

exponent of r ¼ 1.66+0.02 for the discrete distribution of

dij, as shown in figure 1d. We also found that r is consistent

across different stages of the epidemic, as shown in figure 2

and electronic supplementary material, figure S5. This esti-

mate for r was computed using a well-known maximum-

likelihood method for power-law distributions [42]. As a

note of caution, the methodology in [42] provides a lower

bound on the distance to define a power-law tail, whereas

we have explicitly included all transmission distances here

to remain unbiased. We verified that the power law is pre-

ferred by the likelihood ratio over a Weibull or exponential

probability distribution.

As a separate investigation, a two-sample Kolmogorov–

Smirnov test showed that the distribution of dij is not likely

drawn from the same distribution as all the possible driving

distances between chiefdoms. Therefore, the transmission

events do not match a uniform random process on the driv-

ing network. We also examined the sensitivity of the model

fit by sampling from the inferred model and driving distance

distribution. By randomly drawing a similar number of

samples from the inferred model and driving network, we

found that the model fit is robust to the number of samples

collected during the epidemic; see electronic supplementary

material, figure S6 and accompanying text for more details.
The observed distribution of dij is closely related to a power

law for a significant portion of the data, shown in electronic

supplementary material, figure S6.

However, there are clear differences between the simu-

lation of the idealized power-law model and the distribution

of dij that suggest the influence of other factors. For example,

the geographical structure of Sierra Leone constrains the

number of possible trips over 300 km. This is consistent with

the observed drop-off in transmission distances, indicating a

limitation of the standard power-law model for the complex

effects of national borders and local administrative divisions.

Further, including other factors, such as the chiefdom-level

population distribution, will allow for more flexibility in char-

acterizing the observed distribution of transmission distances.
3.3. Gravity model at epidemic peak was driven
by Freetown

Inferring the parameters of the gravity model with the gen-

etic linkage data, population was found to be an important

variable in characterizing spatial transmission events,

especially in Stage II of the epidemic when the Western

Area is involved in 244 of the 363 genetic linkages. In

Stage II, the MLE of the gravity model parameters found

tw
2 ¼ 1.2+0.3 and rw ¼ 0.9+ 0.5 with a 95% CI; see elec-

tronic supplementary material, figure S7 for more details on

the MLE calculation. The likelihood landscapes, with varying

(r, t2), are shown in figure 3d for Stages I–III. Values of the

log-likelihood for each stage and both models are shown in

electronic supplementary material, figure S9. The likelihood

ratio, comparing the gravity and power-law models during

Stage II, indicated a strong preference for gravity shown in

figure 1f. Further, figure 3b illustrates that the POTN for

Stage II contains a significant number of transmission

events in the Western Area of Sierra Leone supporting the

population-dependent model. When setting the population

parameter t2 to the canonical value of 1, the gravity model

was still preferred over the power law for this portion of

the epidemic. Figure 1e illustrates gravity and power-law
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models as chiefdom-level maps of Sierra Leone with Free-

town as the origin of a virus genome. The Stage II virus

sequence data were consistent with a destination-population

gravity model dominated by Freetown linkages.

3.4. Adaptive model selection identifies a change
in dynamics

The likelihood ratio helped identify a changing preference of

the gravity model over the course of the epidemic. Figure 1f
illustrates this preference change with 50-day windows.
Stage I exhibited a weaker preference for the gravity model

than Stage II. The 119 sequences of Stage I came from the

work of a single team [36] and included chiefdom localization

linking 70% of cases in Stage I to either Jawie chiefdom in

Kailahun district or Nongowa chiefdom in Kenema district,

shown in figure 3a. Most of the linkages occurred in these

larger population chiefdoms in the eastern province of

Sierra Leone, illustrated on the map of figure 3a. The MLE

estimate for the population parameter of the gravity model

in Stage I found tw
2 ¼ 1.5+0.5; see electronic supplementary

material, figure S7 for each stage. The likelihood landscape
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also shows a distinct shift to a stronger population depen-

dence and smaller expected transmission distances than

found in Stage II, shown in figure 3d.

The preference for the gravity model decreased substan-

tially after 300 days. In Stage III, for 261 linkages with

descendants in the final 250 days of recorded genomes, the

MLE for the gravity model parameters found tw
2 ¼ 0.8+ 0.3

and rw ¼ 0.5+0.5. However, the likelihood ratio revealed

that the Stage III gravity model was not significantly pre-

ferred over the power law whether using the MLE of (rw,

tw
2 ) or the canonical gravity model. Further, a power law

model was weakly preferred after February 2015 when consid-

ering shorter 50-day windows and setting the population

parameter t2 ¼ 1, as shown in figure 1f . From the Stage III

map in figure 3c, we note that a more diverse scattering of lin-

kages across Sierra Leone supports a qualitative change in the

dynamic behaviour of the epidemic.
 4:20170583
3.5. Sensitivity analysis of missing chiefdom data
The results in this article are largely consistent regardless of

the chiefdoms assigned to genomes with only district-level

localization. For sequences with unknown chiefdoms, we

selected the median population chiefdom from the known

district. Electronic supplementary material, figure S8 illus-

trates how the likelihood ratio trajectory over the course of

the epidemic depended on this assumption. A similar quali-

tative trend is identified whether choosing the maximum,

minimum, median or mean population chiefdom. However,

the identified statistical change in model preference from

gravity to power law after February 2015 was sensitive to

this assumption, especially when using the maximum

population chiefdom for each district. In Fang et al. [40], a

majority of confirmed cases have chiefdom annotations

except in the Western Area. Both the confirmed cases and

virus genomes recorded during Stage I indicate that most

cases in the Kenema district are from highly populated

chiefdoms. However, in Stage III, most confirmed cases are

in chiefdoms closer to the median population; see electronic

supplementary material, table S2 for more details.
4. Discussion
Understanding the changing spatiotemporal dynamics of an

emerging epidemic is fundamental to designing real-time dis-

ease interventions. Data, gathered from case-contact tracing

and molecular diagnostics, can identify individual transmission

events that inform population-level models of disease spread.

For example, analyses of recent epidemics, including EBOV out-

break in West Africa [31,33,48], the SARS outbreak in 2003

[49] and Middle East Respiratory Syndrome (MERS) outbreaks

in 2012 [50], each used detailed individual-level data to

infer epidemic parameters and factors influencing large-scale

dynamics. Despite the encouraging progress of mathematical

modelling and statistical analyses for the 2013–2016 EBOV epi-

demic [10,33,51,52], the characterization and spatial modelling

of the outbreak is incomplete. The ability to rapidly quantify

spatiotemporal spread during an epidemic would allow for

near real-time forecasts and the design of operationally relevant,

spatially targeted interventions. The primary contribution of

this work is the development of an adaptive framework for

analysing epidemics that incorporates detailed transmission
information from linked virus genomes to characterize

interpretable, population-level spatial models.

Recent advances in phylogenetic reconstruction of trans-

mission networks promise accurate and actionable models

of epidemic dynamics [4,27–29,53,54]. Here, we chose the

POTN method [8] as an efficient and direct likelihood-

based tool to link EBOV cases in space and time. These

high-fidelity, space–time couplings between individual

cases allowed the parametrization of spatial models describ-

ing disease mobility, without the need for proxy human

mobility data. This framework offers a principled and exten-

sible methodology for investigating the relevant factors for

disease mobility.

Our results are largely consistent with other investigations

of the spatiotemporal spread of the EBOV epidemic. Previous

spatial modelling, with or without virus genome sequences,

has concluded that distance, population density and inter-

national border closures are covariates that help predict

the probability of transmission [31,33]. Other modelling

studies have indicated that large population centres, such as

Kenema and Port Loko in Sierra Leone, are responsible for

initiating self-sustaining local outbreaks [55]. In our investi-

gation, we confirmed that a population-dependent model is

preferred when aggregating all transmission events during

the epidemic [33].

We have broadened the scope of previous analyses by

identifying how the influences of population and distance

on the spread of EBOV change over the course of an epidemic.

A wide variety of probabilistic models can be proposed to

describe the stochastic spatial process underlying disease

transmission during an epidemic. For this study, we posited

two parsimonious models, well known in the epidemiology

and ecology literature, to investigate the influence of popu-

lation and distance on the spatial spread of cases. We

discovered that the stochastic propagation of cases is best

described by a probabilistic gravity model where dependence

on the population and distance varies over the course of the

epidemic. The gravity model was preferred in the early part

of the epidemic when EBOV was circulating near cities in

the east of Sierra Leone. Once the virus migrated to more

densely populated areas of the capital area, such as Freetown,

Kenema and Port Loko, the gravity model preference became

much stronger. During this portion of the epidemic, the trans-

mission events were highly local with a large proportion of

linkages staying between large population centres. This

observation is also consistent with recent studies of the

superspreader phenomenon in the Western Area [52,56].

The probabilistic gravity model can be considered a

generalization of a random walk process, weighted by

country-specific population distributions. This population

influence changed over the course of the EBOV epidemic. In

fact, after March 2015, the population dependence diminished

significantly. This suggests that EBOV mobility in the last stage

of the epidemic can be accurately modelled as a spatial process

dependent solely on distance. The MLE of the parameters for

the gravity model showed a large uncertainty in the popu-

lation exponent t2. Further, the distance exponent was r , 1,

indicating a higher probability of larger distances between

linked cases. In the pure power-law model, the disease mobi-

lity during this period has a Lévy flight exponent of order a ¼

r 2 1 ¼ 0.6, suggesting a space-fractional diffusion process.

This result is consistent with the observation that confirmed

EBOV cases decreased in the large cities of the Western Area
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and appeared sporadically in less populated areas far from the

Western Area after March 2015. Further, this shift away from a

strong preference for a gravity model coincided with an inter-

vention campaign by the government of Sierra Leone called

Operation Western Area Surge (OWAS) that occurred on 17

December 2014 [57]. Sociological observations, after the

OWAS, described an increase in health centre avoidance,

return trips to home villages and transmission away from

population centres [58]. These results highlight the importance

of continual collection of genomic data for characterizing

the change in dynamic behaviour along with evaluating the

effectiveness of interventions.

Surveillance difficulties during an epidemic pose con-

straints on our framework being used as a forecasting tool.

Despite the EBOV data spanning the entire country and

nearly the full time course of the epidemic, the collection of

virus genomes was not part of a unified programme. More-

over, the metadata for each sequence, i.e. the global

positioning system location and demographical information,

are not completely resolved. Uncertainty in reporting due

to collection and laboratory processing introduces delays

that could impact the utility of predictive spatial models.

Our model selection also currently consists of two classes of

spatial models: gravity and Lévy flight. We expect to

expand our framework to a wider variety of models, but

are aware of the challenge in finding parsimonious descrip-

tions of human mobility [59]. As a retrospective study, we

have analysed the robustness of our methodology to uncer-

tainties, but inherent difficulties in data collection and

modelling will challenge real-time deployment of this tool.
Notwithstanding these limitations, our study can provide

operational guidance into the number of collected virus gen-

omes and acceptable time frames required to inform spatial

models for prediction. Our model selection technique

showed that virus genomes can potentially help characterize

the impact of intervention campaigns during an epidemic.

Looking towards the next emergence of a dangerous pathogen,

molecular diagnostics paired with dynamic models are poised

to become a new benchmark for uncovering epidemiological

patterns [6], forecasting disease propagation [5] and informing

interventions [60] for a wide variety of infectious diseases.
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