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The expression of genes with key roles in development is under very tight spatial

and temporal control, mediated by enhancers. A classic example of this is the

sonic hedgehog gene (Shh), which plays a pivotal role in the proliferation, differ-

entiation and survival of neural progenitor cells both in vivo and in vitro. Shh
expression in the brain is tightly controlled by several known enhancers that

have been identified through genetic, genomic and functional assays. Using

chromatin profiling during the differentiation of embryonic stem cells to

neural progenitor cells, here we report the identification of a novel long-range

enhancer for Shh—Shh-brain-enhancer-6 (SBE6)—that is located 100 kb

upstream of Shh and that is required for the proper induction of Shh expression

during this differentiation programme. This element is capable of driving

expression in the vertebrate brain. Our study illustrates how a chromatin-

focused approach, coupled to in vivo testing, can be used to identify new

cell-type specific cis-regulatory elements, and points to yet further complexity

in the control of Shh expression during embryonic brain development.
1. Introduction
Enhancers orchestrate the regulation of gene expression, which is critical for cell

lineage specification and differentiation, and they therefore have a pivotal role

during embryonic development [1]. A well-defined example of such cis-regulatory

control is seen in the case of the sonic hedgehog (Shh) gene. Shh encodes a secreted

signalling protein that imparts patterns of growth and identity to cells during

many stages of embryonic development, including neural progenitors throughout

ventral regions of the developing central nervous system (CNS) [2–4] (figure 1a).

Shh is located at one end of a large (approx. 1 Mb) regulatory domain contain-

ing a number of known enhancers controlling various Shh expression domains

[5–12] (figure 1b). Precise Shh expression is critical for proper spinal cord and

brain development, and this is governed by a subset of floor-plate and brain

enhancers, many of which were identified by reporter assays. Shh floor-plate

enhancer SFPE1, located 8 kb upstream of the Shh transcription start site (TSS),

drives expression in the ventral spinal cord, and SFPE2 and Shh-brain-enhancer

1 (SBE1), positioned in the second intron of Shh, show activity in the floor plate of

the spinal cord, as well as the ventral midbrain (mesencephalon), ventroposterior

region of the diencephalon and the zona limitans intrathalamica (zli) [5,6]. An

enhancer trap assay—using BAC transgenes to screen the Shh regulatory

region—identified SBE2, SBE3 and SBE4 that drive Shh expression in the

diencephalon (SBE2) and in the telencephalon (SBE4) [7]. Most recently, a

combined informatics and experimental study identified SBE5 that drives

expression in the zli [13].

Perturbation of Shh cis-regulation leads to severe neural defects in mammals.

Translocations separating SBE2, 3 and/or 4 from Shh, disrupt the function of
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Figure 1. The sonic hedgehog (Shh) regulatory region. (a) Cartoon shows the sites of Shh enhancer activity in the E11.5 mouse embryo. Sites of Shh expression in
the forebrain (telencephalon, diencephalon), caudal diencephalon, zli and midbrain/mesencephalon, floor plate, epithelial linings of gut and lung, and the distal
limb bud are indicated with different colours. (b) Genomic map of the Shh regulatory region on mouse chromosome 5 indicating the known tissue-specific Shh
enhancers, colour-coded as in (a).
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these enhancers and lead to Shh haploinsufficiency, causing

diverse holoprosecencephaly (HPE) phenotypes [14,15], point

mutation that results in the loss of SBE2 activity in the hypo-

thalamus also leads to HPE [16]. Together, these observations

highlight the importance of reporting and understanding new

cis-regulatory elements that control Shh expression in the CNS.

Using chromatin profiling during the in vitro differen-

tiation of mouse embryonic stem cells (mESCs) to neural

progenitor cells (NPCs), we report a new Shh brain enhancer

(SBE6) that we show is necessary for proper Shh expression in

NPCs and that is active in vertebrate brain and neural tube

development in transgenic assays.
2. Material and methods
2.1. Cell culture and neural differentiation
46c mouse embryonic stem cells (mESCs), derived from

E14tg2A, contain a GFP insertion into the Sox1 locus [17].

mESCs were cultured and differentiated into NPCs for 5 or

7 days with N2B27 medium as described previously [18].

To sort GFPþ cells after transfection or differentiation, cells

were trypsinized and resuspended in PBS þ 10% medium.

Flow cytometric analysis was performed, using the 488 nm

laser of a BD FACSAriaII SORP (Becton Dickinson) with

525/50 nm bandpass filters. BD FACSDIVA software (Becton

Dickinson, v. 6.1.2) was used for instrument control and

data analysis.
2.2. Quantitative analysis of gene expression
RNA was prepared from approximately 1 � 106 46c mESCs or

NPCs, using the RNeasy mini kit (Qiagen) according to the

manufacturer’s protocol, including a DNaseI (Qiagen) treat-

ment for 15 min at room temperature. cDNA was

synthesized from 2 mg purified RNA with superscript II

reverse transcriptase (Invitrogen) primed with random hexam-

ers (Promega). Real-time (q)PCR was carried out on a Roche

LightCycler 480 real-time PCR system, using a LightCycler

480 Sybr Green detection kit (Roche) as described previously

[19]. Primer pairs for qRT-PCR are listed in electronic

supplementary material, table S1.

The real-time thermal cycler was programmed as follows:

15 min Hotstart; 44 PCR cycles (958C for 15 s, 558C for 30 s,

728C for 30 s). The relative mRNA expression for each

primer set in each sample was measured by the LIGHTCYCLER

software and normalized to the mean for Gapdh from at least

two biological replicates and technical triplicates.

2.3. Native chromatin immunoprecipitation and
microarray analysis

Nuclei from 3 � 106 mESCs or sorted Sox1þ NPCs were pre-

pared and resuspended in NB-R (85 mM NaCl, 5.5% sucrose,

10 mM Tris–HCl pH 7.5, 3 mM MgCl2, 1.5 mM CaCl2,

0.2 mM PMSF, 1 mM DTT) as previously described [20]. Micro-

coccal nuclease (MNase) digestion and native chromatin
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immunoprecipitation (ChIP) were performed as previously

described [21,22]. Antibodies used for ChIP were H3K4me1

(Abcam ab8895) and H3K27ac (Millipore 07-360).

Ten nanograms (optimal) of input or ChIP DNA were

amplified, using the WGA2 whole genome amplification kit

(Sigma). Amplified material was labelled with Cy3 or Cy5

by random priming according to the NimbleGen ChIP-chip pro-

tocol (Roche). In total, two or three biological replicates with dye

swaps were hybridized for 20 h and washed according to the

manufacturer’s protocol. A custom 3 � 720 K mouse tiling

array (NimbleGen, Roche) containing 179 493 unique probes

from different genomic regions was used, with each probe

represented by four replicates. Arrays were scanned on a Nimble-

Gen MS 200 Microarray scanner (Roche), using 100% laser power

and 2 mm resolution. Raw signal intensities were quantified from

TIFF images, using MS 200 DATA COLLECTION software.

Microarray data were analysed in R, using the bioconductor

packages BEADARRAY and LIMMA according to the Epigenesys

NimbleGen ChIP-on-chip protocol 43 (www.epigenesys.eu/

en/protocols/bioinformatics). Scale normalization was used

within replicates, to control interarray variability. Each condi-

tion was represented by two biological replicates hybridized

as dye swap experiments and enrichment scores are defined

as log2 ChIP/input signal.

2.4. Computational analysis of the SBE6 region
Evolutionary conservation of the SBE6 region was assessed,

using the ‘Vertebrate Multiz Alignment & Conservation/

Multiz Alignments and Conserved Elements’ tracks in the

UCSC genome browser [23]. This delineated the following

subregions for further analysis:

SBE6.1: Chr5: 28 889 688–28 890 461, SBE6.2: Chr5:

28 893 935–28 895 000 (mm9)

RVISTA [24] was used to align the mouse and human

orthologous sequences, with the default sequence aligner

(LAGAN) and default parameters. Transcription factor bind-

ing sites (TFBS) for known forebrain transcription factors [25]

available on the RVISTA server were selected (Arx, Maf, Dlx5,

Pbx1, ER81, Six3, Vax1).

JASPAR [26] was used independently on the mouse and

human core sequences, searching for potential neural activity

present in the Jaspar Core Vertebrata matrices list (DLX6,

PBX1, ETV1, Six3, SP8 and VAX1) with the default par-

ameters (relative profile score threshold 80%; electronic

supplementary material, table S2). Hits were then highlighted

on the RVISTA alignment.

2.5. Zebrafish enhancer reporter assay
The putative SBE6.1 and SBE6.2 enhancers were cloned by

PCR amplification of the relevant fragment and flanking

sequence from mouse genomic DNA, using Phusion high

fidelity polymerase (NEB) and the following primers:

Sbe6.1 Fw B4 : AGGGGAGAACTTTGTATAGAAAAGTTG

GCGCGCCCACCTGCTTCTCTGAGGAA

Sbe6.1 Rv B1R : AGGGGACTGCTTTTTTGTACAAACTTG

CTTAGGCCATTGTGCCCAC

Sbe6.2 Fw B4 : AGGGGAGAACTTTGTATAGAAAAGTT

GGCGCGCTGAAGTCAAGGGCCTGGTACT

Sbe6.2 Rv B1R : AGGGGACTGCTTTTTTGTACAAACT

TGATCAGCCCTCCAGTTTGACT
Negative controls used were sequences 30 of Shh, which have

no suspected regulatory activity, and which are the same

genomic distance from Shh as SBE6.1 and SBE6.2 are

upstream (50) of Shh.

Negative controls:

Sbe6.1 Fw B4: AGGGGAGAACTTTGTATAGAAAAGTT

GGCGCGCCGAGTGCAGGTGTTTGTGAA

Sbe6.1 Rv B1R: AGGGGACTGCTTTTTTGTACAAACTT

GCCTCAACACAGCATTGCCAA

Sbe6.2 Fw B4: AGGGGAGAACTTTGTATAGAAAAGTT

GGCGCGCAGAGAGTGAAGATTCCCAGCT

Sbe6.2 Rv B1R: AGGGGACTGCTTTTTTGTACAAACTT

GTGAGGCAGTGTCTATCTTTTGAC

attB4 and attB1r sequences (bold) were included in the PCR

primers for use with the Gateway recombination cloning

system (Invitrogen, 12538120). The amplified fragment was

first cloned into the Gateway pP4P1r entry vector and

sequenced using M13 forward and reverse primers for verifica-

tion. The elements in the pP4P1r vector were combined with a

pDONR221 construct containing either a Gata2 promoter-

eGFP- polyA or a Gata2 promoter mCherry-polyA cassette

[27], and recombined into a destination vector with a Gateway

R4-R2 cassette flanked by Tol2 recombination sites.

Reporter plasmids were isolated using Qiagen miniprep

columns and were further purified using a Qiagen PCR purifi-

cation column (Qiagen), and diluted to 50 ng ml21 with

DNAse/RNAse free water. Tol2 transposase RNA was syn-

thesized from a NotI-linearized pCS2-TP plasmid using the

SP6 mMessage mMachine kit (Ambion), and similarly diluted

to 50 ng ml21. Equal volumes of the reporter construct(s) and

the transposase RNA were mixed immediately prior to injec-

tions. 1–2 nl of the solution was microinjected per zebrafish

embryo at the one- to two-cell stage for up to 200 embryos.

Embryos were screened for fluorescence at 1–5 days post-

fertilization (i.e. 24–120 hours post-fertilization, hpf) and

raised to adulthood. Germline transmission was identified by

mating of sexually mature adults to wild-type fish and examin-

ing their progeny for fluorescence. F1 embryos from three to

five F0 lines showing the best representative expression pattern

for each construct were selected for confocal imaging. A few

positive embryos were also raised to adulthood, and F1 lines

were maintained by outcrossing. A summary of the indepen-

dent lines analysed for each construct and their expression

sites is included in electronic supplementary material, table

S3. Imaging of zebrafish reporter transgenic embryos was

carried out as previously described [27].

2.6. Mouse transgenic reporter assays
The same SBE6.1 PCR amplicon, with attB4 and attB1r

sequences included as used for reporter assays in zebrafish

(above), were used to generate enhancer-reporter constructs

for mouse transgene assays. The amplicon was cloned directly

into an hsp68-LacZ vector containing a P4-P1r entry cassette

[28]. Transgenic mice were generated by microinjection into

mouse oocytes, and the analysis of transgenic lines was carried

out as previously described [28]. Two independently derived

E11.5 SBE6.1-LacZ embryos were independently analysed;

one a transient insertion, the second from a stable line. For

analysis, embryos were dissected in PBS and left in LacZ fix

for 1 h (1% formaldehyde; 0.2% glutaraldehyde; 2 mM

http://www.epigenesys.eu/en/protocols/bioinformatics
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MgCl2; 5 mM EGTA; 0.02% NP-40 in PBS). After fixation the

embryos were washed in PBS containing 0.02% NP-40, before

being stained overnight at 378C in the dark in a solution con-

taining 5 mM K3Fe(CN)6; 5 mM K4Fe(CN)6.3H2O; 2 mM

MgCl2; 0.01% sodium deoxycholate; 0.02% NP-40 and

0.1% 5-bromo-4-chloro-3-indolyl-b-D-galactopyranoside (X-

gal). Embryos were then fixed with 4% PFA and photographed

on a Leica MZ FLIII Microscope fitted with a Hamamatsu

Orca-ER digital camera and a CRI microcolour filter.

2.7. mRNA in situ hybridization
RNA in situ hybridization on fish embryos was performed as

previously described [29]. The sequences of primers used for

synthesis of Shh hybridization probes are the following:

Forward primer (50-SP6 promoter-sequence-30) AAGCT

GACACCTCTCGCCTA and reverse primer (50-T7 promoter-

sequence-30) GAGCAATGAATGTGGGCTTT.

Mouse in situ hybridization was performed with DIG-

labelled gene-specific antisense probes as previously described

[30]. The Shh probe was provided by McMahon [31].

2.8. Deletion of SBE6 from the 46c embryonic stem cell
genome

Cell line deletions were produced, using the Crispr/cas9

system. SBE6.1- and SBE6.2-specific gRNA primers (electronic

supplementary material, table S4) were cloned into the cas9

plasmid pX458 following protocols from the Zhang laboratory

[32–34]. 46C mESCs were transfected with the resulting

plasmids using Lipofectamine 2000 reagent (Invitrogen cat.

no. 11668) following the manufacturer’s recommendations as

described in [19]. Single transfected cells were sorted based on

GFP expression from pX458 and cultured further. DNA extrac-

tion and genotyping were performed 7 days after sorting, using

overnight incubation at 558C with lysis buffer (10 mM TrisHCl

pH 7.5, 10 mM EDTA, 10 mM NaCl, 0.5% SDS, 1 mg ml21

ProteinaseK) followed by ethanol precipitation and washes.

Genomic DNA was amplified with the following primers:

SBE6.1 Fw: TTTTGGAAGCTTAAATGCCCAT

SBE6.1 Rv: CCACCACAAGCACATTCAT

SBE6.2 Fw: GCCTCCATGAAGTCCAATGG

SBE6.2 Rv: CCACCCTTGCTACTCAGGAA

Amplification was done using DreamTaq Green PCR master

mix (ThermoFisher K1081) following the manufacturer’s

protocol and PCR products were assessed by agarose gel elec-

trophoresis. Amplified products were later sequenced to

further confirm homozygous deletions.

3. Results
3.1. SBE6.1 and SBE6.2, two new putative

cis-regulatory elements active in neural
progenitor cells

We used the differentiation of 46c mESCs as a model system

to identify putative regulatory elements that may become

activated concomitant with the expression of Shh during

neural differentiation. These cells contain a knockin of GFP

into the Sox1 locus allowing for the monitoring of neural
differentiation and the purification, by fluorescence-activated

cell sorting (FACS), of Sox1þ neuroepithelial progenitor cells

(NPCs; figure 2a) [17,35,36]. Sox1þ cells appear after day 3 of

differentiation, and from day 3 to 7, expression of Shh and

Nestin increase while Oct4 mRNA levels progressively decrease

(figure 2b). Analysis of these NPC cells for expression of mar-

kers from different regions of the developing brain (figure 2c)

suggests that these cells do not have a distinct regional identity,

though there is some evidence for a slight shift towards a more

telencephalic fate (increasing Six3 and Emx2 expression) and

away from the hindbrain (decreasing En2 and Gbx2 expression)

by day 7 (figure 2d).

Genome-wide ChIP has allowed the identification of sev-

eral post-translational histone modification characteristics of

active enhancers including H3K4me1 and H3K27ac [37]. The

use of these two histone marks is widely employed to identify

new active enhancer elements in the genome [38], though they

are not comprehensive [18,39]. Using native ChIP coupled to

hybridization on microarrays (ChIP-chip) that tile the whole

Shh regulatory region, we assessed the sites of enriched

H3K4me1 and H3K27ac in mESCs (where Shh is not expressed)

and in Sox1þ NPC after 5 days of neural differentiation. Sig-

nificant gains of H3K4me1 and H3K27ac were not detected

at the known SBE2, 3, 4 or 5 brain enhancers (figure 3a).

However, a prominent change in the ChIP profile was seen at

a small region approximately 100 kb upstream of the Shh
TSS. This region has no evidence of active enhancer marks in

mESCs but gains both H3K4me1 and H3K27ac upon neural

differentiation (figure 3a).

Analysis of sequence conservation across multiple ver-

tebrate species indicated that this region contains two blocks

of evolutionary conservation in mammals and birds, and we

named these putative NPC enhancers SBE6.1 (mm9 coordi-

nates Chr5: 28 889 688–28 890 461, 96 048 bp upstream of Shh
TSS) and SBE6.2 (Chr5: 28 893 935–28 895 000, 100 295 bp

away from Shh; figure 3b). Interestingly, two other sequences

beyond SBE3 also show a gain of active enhancer marks

(arrowheads in figure 3a), but are not investigated further here.

In silico motif analysis using UCSC comparative geno-

mics of SBE6.1 and SBE6.2 allowed us to identify two core

(approx. 1 kb) regions that are highly conserved. Comp-

lementary RVISTA, JASPAR and RSAT scans of those regions

revealed the presence of predicted binding sites for neural

transcription factors such as ETV1, SP8, VAX1 and DLX6

(electronic supplementary material, table S2).

The SBE6.1 sequence is entirely included in a recently

described 1.7 kb lung and gut epithelium regulatory ele-

ment for Shh expression in mouse embryos called SLGE

(chr5: 28 889 230–28 890 979) [40], raising the possibility

either that this enhancer has multiple regulatory activities or

that SLGE is ectopically activated in NPCs. SBE6.2 has not

previously been identified or studied.
3.2. SBE6.1 drives expression in the brain of developing
zebrafish and mouse embryos

To test the regulatory potential of SBE6.1 and SBE6.2, we used a

zebrafish Tol2 transposon assay in which the test element is jux-

taposed to a minimal promoter driving the expression of either

GFP or mCherry reporter gene expression. This assay has been

shown to recapitulate the correct expression pattern for the

SBE2 enhancer and to detect the loss of this enhancer activity
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associated with mutation of a SIX3 binding site found in the

cases of HPE [16,27]. In situ hybridization for Shh mRNA in

wild-type zebrafish embryos reveals expression in the forebrain

at 48 and 72 hpf [27]. Using this assay, SBE6.1 enhancer activity

was detected in the developing forebrain of the zebrafish

embryos in four independent stable transgenic lines from 30

to 72 hpf (figure 4a,b; electronic supplementary material, table

S3). SBE6.2 however failed to consistently drive reporter gene

expression in the forebrain, with forebrain-specific activity

noted in only one out of the four independent transgenic lines

generated (electronic supplementary material, table S3). There-

fore, SBE6.1 has a consistent enhancer function and is active in

zebrafish forebrain development.

The ability of SLGE to drive expression in the developing

mouse brain is unclear, but it is known to be capable of driving

expression in the brain of transgenic rabbits [40]. We therefore

made mouse transgenics to analyse the regulatory potential of

SBE6.1 in mouse development. LacZ staining of transient and

stable SBE6.1 transgenic embryos revealed activity in the phar-

yngeal endoderm, gut and cloaca of the mouse embryo as

expected owing to the overlap with SLGE (electronic sup-

plementary material, figure S1a,b). X-gal staining could

be also detected in few superficial diencephalon cells where
Shh is not expressed (figure 4c; electronic supplementary

material, figure S1c). However, SBE6.1 also showed activity

in the developing ventral mesencephalon with some cells

expressing SBE6-LacZ near the hindbrain and as well as in

the ventral midline of the mouse embryonic neural tube—all

sites of endogenous Shh expression (figure 4d,e; electronic

supplementary material, figure S1d).

SBE6.1 is only active in a small number of cells in transgenic

embryos, and we cannot at this stage confirm how accurately

this recapitulates a subset of endogeneous Shh expression. How-

ever, the strong similarities between the two mouse embryos do

support our conclusion that the SBE6.1 enhancer is capable of

activity in the developing vertebrate brain, from a forebrain pat-

tern in zebrafish transgenics to a floor plate and ventral

mesencephalon expression in mouse transgenic embryos.
3.3. SBE6.1 enhances Shh expression in neural
progenitor cells

To determine the regulatory activity of SBE6.1 and SBE6.2 in

their native context, we used CRISPR/Cas9 to delete these

elements from the genome in 46c mESCs (SBE6.12/2 and
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(grey) from ESCs and Sox1þ NPCs purified after 5 days of differentiation. Averages of data from two biological replicates are shown. The position of genes (above) and
known neural enhancers for Shh (below) are shown; grey arrow indicates the new candidate neural enhancer SBE6; grey arrowheads indicate two other regions that gain
active enhancer signatures in NPCs. Genome coordinates are from the mm9 assembly of the mouse genome (chr5: 28 782 000 – 29 711 000 bp). (b) Zoom-in of the region
(chr5: 28 887 000 – 28 900 000) of putative NPC enhancer activity shows conservation across multiple vertebrate species. Two smaller core conserved regions named SBE6.1
(¼SLGE) and SBE6.2 are indicated.
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SBE6.22/2; electronic supplementary material, figure S2). We

generated and analysed two SBE6.12/2 and three SBE6.22/2

independent cell lines. Upon NPC differentiation, the pro-

portion of Sox1-GFPþ cells remained the same between

NPCs derived from wild-type and SBE6.12/2 or SBE6.22/2

cells, analysis of Oct4 and Nestin mRNA expression confirmed

that differentiation of mESCs into NPC was not perturbed by

the loss of either SBE6.1 or SBE6.2 (figure 5a). However, in

NPCs derived from SBE6.12/2 but not SBE6.22/2 cells,

levels of Shh expression were significantly reduced compared

with wild-type cells (one-tailed Student’s t-test; p ¼ 0.002).

Average Shh mRNA levels in NPCs differentiated from
SBE6.22/2 ESCs were not significantly different relative to

wild-type (figure 5b).

Together, these data suggest that SBE6.1 is a long-range

enhancer that contributes to driving Shh expression during

the differentiation of ESCs to neural progenitor cells.
4. Discussion
The regulation of Shh is a paradigm for the complex control of

gene expression at different times and places in development.

More than 10 discrete enhancers have been identified in the
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Figure 4. Enhancer reporter assays for SBE6.1 and SBE6.2. (a) Shh mRNA in situ hybridization on zebrafish embryos. A ventral view is shown at 48 h post-fertilization
(hpf ) and a dorsal view at 72 hpf. Shh expression is detected in the rostral hypothalamus (RH) and caudal hypothalamus (CH) of the forebrain (FB). (b) Confocal
microscopy of 48 and 72 hpf zebrafish embryos from stable transgenic lines carrying a Tol2 transposon with SBE6.1 and SBE6.2, driving GFP and mCherry, respect-
ively. Reporter gene expression is detected in the rostral hypothalamus (RH) and caudal hypothalamus (CH) of the forebrain (FB). (c) External view of the LacZ
staining in a stable SBE6.1 transgenic E11.5 embryos shows expression in a portion of diencephalon cells. (d ) (i) Shh mRNA in situ hybridization in an E11.5 mouse
embryo displaying expression in the forebrain (telencephalon, diencephalon; FB), midbrain (caudal diencephalon, zona limitans intrathalamica (zli) and mesen-
cephalon; MB), and hindbrain (HB). (ii) sagittal section of an E11.5 transient SBE6.1-LacZ transgenic embryo with arrowhead indicating staining in a portion
of the ventral mesencephalon, with some cells expressing SBE6.1 near the hindbrain. (e) E11.5 transient SBE6.1-LacZ transgenic embryo with arrowhead indicating
staining in the floor plate of the spinal cord.
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large (approx. 1 Mb) Shh regulatory domain [12] (figure 1b).

Most of these enhancers were identified using transgenic

reporter assays [7]. Others have been identified through gen-

etics in mouse and man when mutations in Shh enhancers

cause phenotypes that result from aberrant control of specific

aspects of Shh expression in development. Most recently,

information on transcription factor motifs in known Shh
brain enhancers has been used to search for other similar

patterns of motifs in the Shh regulatory domain and has

identified a new enhancer that drives Shh expression in a

discrete region of the brain [7,13].

Here, we show that analysis of histone modifications

(H3K4me1 and H3K27ac), typically associated with active

enhancers, in an in vitro neural differentiation system can
be used to identify a new enhancer that is important for the

activation of Shh in neural progenitor cells. This enhancer,

which we have named SBE6, is located 100 kb 50 of Shh and

is activated during the differentiation of mESCs to Sox1þ
NPCs. Analysis of transcription factor motifs suggests that

SBE6 contains consensus binding sites for a number of tran-

scription factors expressed in the brain. Using an enhancer

reporter assay in zebrafish and mouse, we show that in vivo
the SBE6.1 region of SBE6, but not SBE6.2, can drive

expression in the developing brain. Consistent with this, gen-

etic ablation of SBE6.1 in mESCs, but not SBE6.2, abrogates

the induction of Shh expression during in vitro NPC differen-

tiation. Therefore, despite the presence of strong active

enhancer histone modifications in NPCs, we find no
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Figure 5. Shh expression levels in neural precursor cells (NPC) derived from ESC lines with SBE6.1 or SBE6.2 deletions. (a) qRT-PCR shows mean (+s.e.m.) log2 mRNA
levels of Oct4 and Nestin in wild-type 46c ESC, and NPCs, and in NPCs derived from SBE6.12/2 (left) or SBE6.22/2 (right) 46c cells. Levels are relative to Gapdh and
normalized to levels in wild-type ESCs. (b) As in (a) qRT-PCR shows mean (+ s.e.m.) log2 Shh mRNA levels in wild-type NPCs, and in NPCs derived from 46c cell lines
deleted for SBE6.1 (left) or SBE6.2 (right). mRNA levels are shown relative to Gapdh and normalized to those in wild-type ESCs. Shh mRNA levels are significantly reduced
in NPCs derived from SBE6.12/2 cell lines after 7 days of differentiation (one-tailed Student’s t-test; p-value ¼ 0.002). ESC data consist of three biological replicates,
SBE6.12/2 dataset are six biological replicates from two independent deletion cell lines compared with six biological replicates of wild-type (WT) NPC. SBE6.22/2 data
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functional evidence that SBE6.2 is a neural enhancer, high-

lighting that precise annotation and understanding of

regulatory regions of the genome requires confirmation via

functional enhancer assays.

Our analyses presented here add to the growing number of

functionally validated enhancers directing Shh expression in

different developmental contexts. Given the large size of the

gene desert upstream of Shh, where many of these enhancers

are located, there is the potential for this region to harbour

many more cis-regulatory elements and, given the complexity

of brain development, many of these may be enhancers active

in the brain. Indeed, regulatory segmentation built from

ChromHMM or Segway using ENCODE data from various

mouse primary tissues indicates the presence of several regions

with chromatin signatures indicative of enhancer activity in

mouse brain at E14.5—a period of mouse development when

neurogenesis is ongoing (figure 6a). This includes the genomic

regions containing the known neural enhancers SBE2–4, but

also a region that corresponds to SBE6. The many other regions

called as likely active enhancers using the analysis from just

four tissues (brain, liver, spleen and kidney) at one embryonic

stage (figure 6a) suggests that the Shh regulatory region may

harbour many tens of as yet unannotated enhancers. We note

that the new sites detected by these high-throughput methods

(marked with arrowheads as #1 and #2 in figure 6a) correspond
to peaks of H3K4me1/H3K27ac that are induced during the

differentiation of 46c mESCs to NPCs (figures 3 and 6a; elec-

tronic supplementary material, figure S3). A similar analysis

of chromatin profiling data from the Roadmap project also indi-

cates the signature of an active neural enhancer at the position of

SBE6 in material from different regions of the human brain and

particularly in ganglionic eminence derived neurospheres

(figure 6b). This analysis also indicates many other potential

regulatory elements active in different brain regions.

It is interesting that the genome coordinates of SBE6.1 are

completely contained within those reported for the Shh lung

and gut epithelium regulatory element SLGE [40]. Transgenic

analysis in the rabbit had shown that the mouse SLGE frag-

ment can drive expression in the rabbit brain [40]. Here, we

have shown that SBE6.1 can drive expression in the brain of

zebrafish and mouse. Although we cannot completely exclude

that our observations of SBE6.1 transgenic reporter expression

in the vertebrate brain and neural tube represents ectopic

activity of SLGE in these assays, our chromatin profiling

indicates that this region does harbour active regulatory poten-

tial in Sox1þ NPCs. Consistent with this, ENCODE and

Roadmap data also indicate that this region of the mammalian

genome has active enhancer chromatin marks in neural tissue,

as well as in the liver (figure 6a; electronic supplementary

material, figure S3) and gastric tissue (figure 6b). Important
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sequences required for enhancer function work as assemblies

of transcription factor motifs [13]. SBE6.1 and SLGE motifs

may be intermingled but still specific to a precise tissue and

stage of development, or may be overlapping to various

extents. There are several other examples of regulatory

elements capable of driving expression at multiple sites

during development—for example, the global control region

50 of HoxD contains regulatory information capable of driving

expression in the CNS and in the limb [41]. Moreover, for SOX9
and PAX6, there are cis-regulatory elements driving expression

in multiple developmental sites, and in which disease-

associated variants have been identified that ablate enhancer

function in one tissue but leave the other sites of expres-

sion unaltered [27,42]. Further analysis will be necessary to

determine the critical transcription factor binding sites in

SBE6.1/SLGE needed to drive enhancer function in different

developmental settings.
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