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Background: Glioma-related epilepsy (GRE) is a common symptom in patients with
prefrontal glioma. Epilepsy onset is associated with functional network alterations. This
study investigated alterations of functional networks in patients with prefrontal glioma
and GRE.

Methods: Sixty-five patients with prefrontal lobe gliomas were retrospectively assessed and
classified into GRE and non-GRE groups. Additionally, 25 healthy participants were enrolled
after matching for general information. Imaging data were acquired within 72 h in pre-operation.
The sensorimotor network was used to delineate alterations in functional connectivity (FC) and
topological properties. One-way analysis of variance and post-hoc analysis with Bonferroni
correction were used to calculate differences of FC and topological properties.

Results: All significant alterations were solely found in the sensorimotor network.
Irrespective of gliomas located in the left or right prefrontal lobes, the edge between
medial Brodmann area 6 and caudal ventrolateral Brodmann area 6 decreased FC in the
GRE group compared with the non-GRE group [p < 0.0001 (left glioma), p = 0.0002 (right
glioma)]. Moreover, the shortest path length decrease was found in the GRE group
compared with the non-GRE group [p = 0.0292 (left glioma) and p = 0.0129 (right glioma)].

Conclusions: The reduction of FC between the medial BA 6 (supplementary motor area)
and caudal ventrolateral BA 6 in the ipsilateral hemisphere and the shortening of the path
length of the sensorimotor network were characteristics alterations in patients with GRE
onset. These findings fill in the gap which is the relationship between GRE onset and the
alterations of functional networks in patients with prefrontal glioma.

Significance Statement: Glioma related epilepsy is the most common symptom of
prefrontal glioma. It is important to identify characteristic alterations in functional networks in
patients with GRE. We found that all significant alterations occurred in the sensorimotor
network. Moreover, a decreased FC in the supplementary motor area and a shortening of the
path’s length are additional characteristics of glioma-related epilepsy. We believe that our
findings indicate new directions of research that will contribute to future investigations of
glioma-related epilepsy onset.
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INTRODUCTION

Tumor locations and low-grade glioma are susceptible factors for
patients with glioma-related epilepsy (GRE) (1, 2). However, why
prefrontal glioma is frequently induced GRE was still unknown.
Extensive disruption of functional connectivity (FC) was thought
to be related to patients with idiopathic epilepsy (3–5). Based on
those studies, the investigation of epilepsy by analyzing the
alterations in brain functional networks was proposed, which
gives a new insight into the inspection of epilepsy.

The FC (6) and topological properties (7) are valuable to
revealing the structure and conveying the ability of function
networks based on resting-state functional magnetic resonance
images (rs-fMRIs). Previous studies demonstrated that decreased
inter-cortical FC in the different functional networks, such as
sensorimotor (4), default mode (8), and visual networks (9), and
decreased global efficiency were related to idiopathic epilepsy (4,
10, 11). However, different from idiopathic epilepsy only
impairing functional networks, glioma not only was disrupted
but also was able to reorganize functional networks (12, 13).
Hence the previous conclusions that alterations of functional
networks in patients with idiopathic epilepsy were not suitable
for patients with glioma.

The decreasing shortest path lengths of the visual network
(14) and language network (15) were markers to indicate that
patients with left and right temporal lobe glioma suffered from
GRE, respectively. However, it was still unknown what
alterations of functional networks in patients with prefrontal
glioma were related to GRE. Hence, in this study, we aimed to
1) explore how FC and topological properties alter in patients
with prefrontal glioma and 2) find characteristic alterations in
FC and topological properties of patients with GRE.
MATERIALS AND METHODS

The study protocol was approved by the local institutional
review board.

Participants
Between January 2016 and July 2018, 70 patients from Tiantan
Hospital with a primary diagnosis of prefrontal lobe glioma were
retrospectively enrolled in the study. Inclusion criteria were as
follows: (a) aged older than 18 years; (b) more than 6 years of
school education; (c) no history of antiepileptic drug use; and
(d) no history of biopsy, radiotherapy, or chemotherapy. The
exclusion criteria were as follows: (a) contraindications for MRI;
(b) head motion greater than 3 mm in translation or 3° in
rotation; and (c) gliomas involving bilateral prefrontal lobes or
leading midline shift.

Finally, 65 patients with prefrontal gliomas were enrolled in
the study (29 male and 36 female, left hemisphere n = 35, right
hemisphere n= 30). All patients were divided into the GRE and
non-GRE groups. Preoperative electroencephalograms (4 hours)
were performed in the patients who did not have a clear history
of seizures (patients in non-GRE group, n = 36). Moreover, 25
right-handed healthy participants matched to the patients for
Frontiers in Oncology | www.frontiersin.org 2
age, sex, and education level which comprised the control group
(12 men and 13 female).

Collection of Patient Clinical
Characteristics
We retrospectively collected patient characteristics from
inpatient records including age, sex, education level, Karnofsky
performance status, histopathology, isocitrate dehydrogenase
mutation status, the extent of tumor resection, information
regarding preoperative seizures, type of seizure onset, and
history of taking antiepileptic drugs. Follow-up information
about epileptic control was obtained via telephone interviews
at 1 year postoperatively.

MRI Acquisition
All MR images were acquired using a MAGNETOM Prisma 3T
MRI scanner (Siemens, Erlangen, Germany). T1-magnetization
prepared rapid acquisition gradient echo was applied to collect
anatomical images [flip angle: 8°; repetition time (TR): 2,300 ms;
echo time (TE): 2.3 ms; field of view (FOV): 240 × 240 mm2;
voxel size: 1.0 × 1.0 × 1.0 mm3; slice number: 192]. T2-weighted
sequences were used to acquire glioma images (flip angle: 150°;
TR: 5,000 ms; TE: 105 ms; FOV: 240 × 240 mm2; voxel size: 0.5 ×
0.5 × 3 mm3; slice number: 33). Finally, an echo-planar imaging
sequence was applied for rs-fMRI (flip angle: 75°; TR: 2,000 ms;
TE: 30 ms; FOV: 220 × 220 mm2; voxel size: 3.0 × 3.0 × 5.0 mm3;
slice number: 30; acquisition duration: 8 min, closed eyes during
scanning). We acquired all MRI data within 72 h before
tumor resection.

Functional MRI Preprocessing
The Graph Theoretical Network Analysis software (https://www.
nitrc.org/projects/gretna) (16) was applied for rs-fMRI
preprocessing. For each participant, the steps of preprocessing
were as follows: a) data transformation (from Digital Imaging
and Communications in Medicine to Neuroimaging Informatics
Technology Initiative); b) removal of the first five images; c) slice
time correction; d) realignment; e) spatial normalization
(normalized to echo-planar imaging template) (17); f) spatial
smoothing (full width half maximum = 4 mm); g) temporal
detrending (linear detrending); h) regressing out covariance
(white matter signal: with WMMask_3 mm; cerebrospinal fluid
signal: with CSFMask_3 mm; head motion: Friston—24
parameters); i) temporal filtering (0.01–0.1 Hz); and j)
scrubbing (using default parameters and the interpolation
strategy: linear interpolation, FD threshold = 0.5, previous time
point number = 1, subsequent time point number = 2).

Regions of Tumor Invasion
The extent of low-grade glioma invasion was manually drawn
based on the region of high signals on T2 fluid-attenuated
inversion. All tumor masks were then normalized to the
Montreal Neurological Institute standard space using the
clinical toolbox package in SPM8 (http://www.fil.ion.ucl.ac.uk/
spm/software/spm8/), which are shown in Figure 1. The tumor
volume was calculated with the volumetric method based on the
individual tumor mask.
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Regions of Interest
To calculate FC within cerebral functional networks, regions of
interest (ROIs) were extracted from an open-access brain atlas,
“brainnetome atlas” (http://www.brainnetome.org/) (18), which
comprises 246 brain regions. To avoid the possibility that tumor
invasion may affect the results of FC, the subnetworks that were
invaded by gliomas and glioma-related edema were not analyzed.
Therefore, in the current study, sub-templates were extracted,
including the sensorimotor, visual, auditory, and left/right
executive networks (based on tumor location). Details of ROIs
are provided in Tables S1–S5.

Network Construction
Pearson’s correlation coefficients were used to compare regional
mean time series for all possible pairs of nodes that constructed
the FC matrix. Consequently, four different FC matrices were
generated from the four sub-templates of the sensorimotor,
visual, auditory, and left/right executive networks.

Graph Theoretical Measures
Global and nodal topological properties, including cluster
coefficient, global efficiency, the shortest path length, local
efficiency, nodal efficiency, nodal local efficiency, and small-
worldness properties, were calculated for the GRE, non-GRE,
and healthy groups using the graph theory analysis (19). All
matrices were transformed into absolute value matrices before
calculating topological properties. A total of 10,000 random
networks were used to calculate the topological properties.

Small-worldness properties, including gamma, lambda, and
sigma, represent the efficiency of information delivery: gamma
(g) = Creal/Crandom >> 1 (C represented cluster coefficient),
lambda (l) = Lreal/Lrandom ~ 1 (L represented shortest path
Frontiers in Oncology | www.frontiersin.org 3
length), and sigma (s) = g/l > 1 (20). A high value of sigma
represents a high efficiency of information delivery.

Statistical Analyses
We compared the GRE, non-GRE, and healthy groups to identify
which alterations were caused by each factor using SPSS (19.0
version, IBM) and GraphPad Prism 7 (GraphPad Software Inc.,
San Diego, USA). According to the type of data, clinical
characteristics were compared between the GRE and non-GRE
groups using a two-sample t-test, chi-square test, and one-way
analysis of variance (ANOVA) which were used to compare
among the GRE, non-GRE, and healthy groups.

Whencomparing the differences ofFCs among the three groups,
we used one-way ANOVA and post-hoc test with Bonferroni
correction. Moreover, an eta-squared correlation was applied to
explore the relationship between GRE onset and FC value.

Additionally, a series of sparsity thresholds (from 0.17 to 0.34,
interval 0.01) was used to explore group differences in network
topological properties, which was consistent with relevant studies
(14, 15). For each property, one-way ANOVA was first applied.
Subsequently, a post-hoc analysis with the Bonferroni correction
was used if the results of ANOVA showed a significant difference
(significant p-value was lower than 0.05). Clinical information
(age, sex, and education level) was regressed out during statistical
comparison in FC and topological properties.
RESULTS

Demographic Characteristics
Based on whether patients had preoperative GRE, 29 patients
were included in the GRE group (15 and 14 patients with
FIGURE 1 | The overlapping results of prefrontal lobe gliomas. The overlapping meant that we overlapped all the tumor masks of the left hemisphere into one
template to show the quantitative distribution of the left hemispheric gliomas. The value of the color bar represents the number of patients with tumor located in the
same region. (A) Tumor was in the left hemisphere. (B) Tumor was in the right hemisphere.
February 2022 | Volume 12 | Article 840871
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prefrontal gliomas in the left and right hemisphere, respectively).
Additionally, 36 patients comprised the non-GRE group (20 and
16 patients with prefrontal gliomas in the left and right
hemispheres, respectively) (Tables 1, 2). No significant
differences were observed regarding age, sex, years of
education, and Karnofsky performance status between the
three groups. Moreover, no statistical difference in tumor
volume and isocitrate dehydrogenase mutation status was
found between the GRE and non-GRE groups. Furthermore,
our postoperative follow-up data showed that no patient with
preoperative GRE experienced epilepsy at 1 year after tumor
resection. All patients achieved Engel class I.

Functional Connectivity Differences
The FC was compared among the GRE, non-GRE, and healthy
groups in the matrices of sensorimotor, visual, auditory, and left/
right executive networks (based on tumor location). Except for
FC in the sensorimotor network, no significant differences in FC
in the other three networks were noticed after Bonferroni
correction. In total, 231 functional edges belonged to the
sensorimotor network.
Frontiers in Oncology | www.frontiersin.org 4
When gliomas were located in the left prefrontal lobe, all
these six edges were significantly different among the three
groups in post-hoc analysis with Bonferroni correction
(Figure 2 and Table S6).

Compared with the non-GRE group [0.357 ± 0.055 (mean ±
mean standard error)], only one edge had lower FC in the GRE
group (0.025 ± 0.057) after post-hoc analysis with Bonferroni
correction (p < 0.0001), which connected A6m_L [medial
Brodmann area (BA) 6 in the left hemisphere] and Acvl_L
(caudal ventrolateral BA 6 in the left hemisphere). Moreover,
compared with the healthy group, six edges were identified with
significantly lower FC in the GRE group after post-hoc analysis
with Bonferroni correction, which connected 1) A6m_L and
Acvl_L (Healthy, 0.399 ± 0.037, p < 0.0001); 2) Acvl_R (caudal
ventrolateral BA 6 in the right hemisphere) and A6m_L (GRE,
0.108 ± 0.050; Healthy, 0.418 ± 0.047, p = 0.0027); 3) A6m_R
(medial BA 6 in the right hemisphere) and Acvl_L (GRE, 0.074 ±
0.064; Healthy, 0.428 ± 0.043, p = 0.0003); 4) A4tl_R (tongue and
larynx region in the right hemisphere) and Acvl_L (GRE, 0.131 ±
0.047; Healthy, 0.436 ± 0.040, p = 0.0069); 5) A1/2/3tonla_R
(tongue and larynx region of BA 1/2/3 in the right hemisphere)
TABLE 1 | Demographic and clinical characteristics of patients with left prefrontal gliomas.

Demographic and Clinical Characteristics GRE (n = 15) Non-GRE (n = 20) Health (n = 25) p value

Gender
Male 8 6 12 0.32
Female 7 14 13

Age (y)a 39.9 ± 2.7 43.9 ± 1.7 37.9 ± 2.0 0.10
Handness
Right 15 20 25 -
Left 0 0 0 -

Preoperative KPS
100 14 20 25 0.14
90~100 1 0 0

Education level (y)a 13.0 ± 0.8 13.2 ± 0.6 12.6 ± 0.7 0.81
Histopathology
Astrocytoma 5 7 – 0.92
Oligodendroglioma 10 13 –

Tumor volume (mL)a 28.62 ± 3.85 26.67 ± 3.32 - 0.70
IDH status
Mutation 13 16 - 0.68
Wild-type 2 4 -

MGMT promoter methylation
Methylation 11 13 - 0.72
Non-methylation 4 7 -

TERT promoter mutation
Mutation 10 11 - 0.73
Wild-type 5 9 -

Type of seizure
Secondary generalized 15 - -

Period from epilepsy first onset to rs-fMRI scan (days) 11.8 ± 1.5 - - -
Frequency before diagnosis
Low (only once) 11 - -
Medium (2~3 times) 4 - -

Postoperative epileptic control
Engel Class I 15 - - -
February
 2022 | Volume 12 | Article
aValues are means ± standard error of mean.
KPS, Karnofsky performance status; MGMT, O6-methylguanine DNA methyltransferase; TERT, telomerase reverse transcriptase gene; GRE, the group of patients with glioma-related
epilepsy; non-GRE, the group of patients without glioma-related epilepsy.
The two-sample t-test was used to compare tumor volume between GRE and non-GRE groups. One-way ANOVA was used to compare age, education level, and Karnofsky performance
status between GRE and non-GRE groups. Chi-square tests were used to compare gender, histopathology, and IDH status between GRE and non-GRE groups.
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and Acvl_L (GRE, 0.063 ± 0.061; Healthy, 0.329 ± 0.050, p =
0.0091); and 6) A4ul_L (upper limb region of BA 4 in the left
hemisphere) and A4ul_R (upper limb region of BA 4 in the right
hemisphere) (GRE, 0.431 ± 0.077; Healthy, 0.812 ± 0.057, p =
0.0009). Moreover, no edge of FC was significantly different
between the non-GRE and healthy groups.

When gliomas were located in the right prefrontal lobe, three
edges of FC were significant different among the three groups in
post-hoc analysis with Bonferroni test (Figure 3 and Table S7).

Compared with the non-GRE group, two edges that were
from A6m_R to Acvl_R (GRE, 0.118 ± 0.048; non-GRE,
0.437 ± 0.033, p = 0.0002) and A6m_R to A4hf_L (head and
face regions of BA 4 in the left hemisphere; GRE, 0.252 ± 0.042;
non-GRE, 0.657 ± 0.083, p = 0.0007) were identified with
significantly lower FC in the GRE group. Moreover, compared
with the healthy group, three edges were identified with
significantly lower FC in the GRE group, which connected
1) A6m_R and Acvl_R (Healthy, 0.429 ± 0.048, p < 0.0001);
2) A4hf_L and A6m_R (Healthy, 0.575 ± 0.050, p = 0.0014); and
3) A1/2/3ulhf_R (upper limb, head, and face regions of BA 1/2/3 in
the right hemisphere) and A4ul_L (GRE, 0.359 ± 0.089; Healthy,
Frontiers in Oncology | www.frontiersin.org 5
0.691 ± 0.051, p = 0.0042). Additionally, no edge of FC was
significantly different between the non-GRE and healthy groups.

The Relationship Between Functional
Connectivity and Occurring GRE
Our results showed a negative correlation between FC of the
functional edge connected A6m_L to Acvl_L when the glioma
was located in the left hemisphere (r = -0.590, p < 0.0001, eta-
squared correlation). A similar result was found when the glioma
was located in the right hemisphere (functional edge: connected
A6m_R and Acvl_R, r = -0.541, p < 0.0001).

Differences in Global Topological
Properties
When gliomas were located in the left prefrontal hemisphere,
there were some differences in global efficiency (p = 0.0118) and
shortest path length (p = 0.0306) among the three groups in the
sensorimotor network in one-way ANOVA (Table S8 and
Figure 4). After post-hoc analysis with Bonferroni correction,
the non-GRE group (0.391 ± 0.009) showed weaker global
efficiency than the GRE group (0.430 ± 0.012, p = 0.0113).
TABLE 2 | Demographic and clinical characteristics of patient with right prefrontal gliomas.

Demographic and Clinical Characteristics GRE (n = 14) Non-GRE (n = 16) Health (n = 25) p value

Gender
Male 7 8 12 0.99
Female 7 8 13

Age (y)a 37.2 ± 2.0 38.7 ± 2.2 37.9 ± 2.0 0.84
Handness
Right 14 16 25 -
Left 0 0 0 -

Preoperative KPS
100 12 16 25 0.07
90~100 2 0 0

Education level (y)a 12.4 ± 1.0 13.6 ± 0.8 12.6 ± 0.7 0.64
Histopathology
Astrocytoma 6 5 – 0.70
Oligodendroglioma 8 11

Tumor volume (mL)a 35.84 ± 4.53 27.62 ± 3.52 - 0.16
IDH status
Mutation 12 13 - > 0.99
Wild-type 2 3 -

MGMT promoter methylation
Methylation 9 11 - > 0.99
Non-methylation 5 5 -

TERT promoter mutation
Mutation 7 10 - 0.71
Wild-type 7 6 -

Type of seizure
Secondary generalized 14 - -

Period from epilepsy first onset to rs-fMRI scan (days) 14.2 ± 1.2 - - -
Frequency before diagnosis
Low (only once) 13 - -
Medium (2~3 times) 1 - -

Postoperative epileptic control
Engel Class I 14 - - -
February
 2022 | Volume 12 | Article
aValues are means ± standard error of mean.
KPS, Karnofsky performance status; MGMT, O6-methylguanine DNA methyltransferase; TERT, telomerase reverse transcriptase gene; GRE, the group of patients with glioma-related
epilepsy; non-GRE, the group of patients without glioma-related epilepsy.
The two sample t-test was used to compare tumor volume between GRE and non-GRE groups. One-way ANOVA was used to compare age, education level, and Karnofsky performance
status between GRE and non-GRE groups. Chi-square tests were used to compare gender, histopathology, and IDH status between GRE and non-GRE groups.
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Moreover, compared with the non-GRE group (2.747 ± 0.081),
the shortest path length was significantly shorter in the GRE
group (2.473 ± 0.079, p = 0.0292).

When gliomas were located in the right prefrontal lobe, there
were some differences in global efficiency (p < 0.0001), shortest
path length (p < 0.0001), local efficiency (p < 0.0001), and
clustering coefficient (p < 0.0001) among the three groups in
the sensorimotor network by one-way ANOVA (Table S9 and
Figure 5). After a post-hoc analysis with Bonferroni correction,
in the GRE group (0.521 ± 0.003), the global efficiency was
significantly greater than those in the non-GRE group (non-
GRE, 0.494 ± 0.007, p = 0.0214). Additionally, the shortest path
length in the GRE group (1.958 ± 0.029) was shorter than in the
non-GRE group (non-GRE, 2.170 ± 0.044, p = 0.0129).
Moreover, compared with the healthy group, the GRE and
non-GRE groups showed significantly greater global efficiency
(hHealthy = 0.416 ± 0.006; GRE vs. healthy, p < 0.0001; and non-
GRE vs. healthy, p < 0.0001), local efficiency (GRE = 0.662 ±
0.013, non-GRE = 0.624 ± 0.010, Healthy = 0.554 ± 0.010, GRE
vs. healthy, p < 0.0001, and non-GRE vs. healthy, p < 0.0001), and
Frontiers in Oncology | www.frontiersin.org 6
clustering coefficient (GRE = 0.548 ± 0.012, non-GRE = 0.525 ±
0.009, Healthy = 0.475 ± 0.009; GRE vs. healthy, p < 0.0001, and
non-GRE vs. healthy, p = 0.0012) after post-hoc analysis with
Bonferroni correction. The shortest path length was significantly
shorter in the GRE and non-GRE groups than in the healthy
group (GRE, 1.959 ± 0.029, non-GRE, 2.170 ± 0.044, Healthy,
2.589 ± 0.047; GRE vs. healthy groups, p < 0.0001, and non-GRE
vs. healthy groups, p < 0.0001).

In addition, the gamma (p = 0.0021) and lambda (p < 0.0001)
values showed a significant difference among the three groups in
one-way ANOVA. Furthermore, after the post-hoc analysis with
the Bonferroni correction test, the value of gamma was found
significantly higher in the healthy group (1.684 ± 0.088) than that
in the non-GRE group (1.288 ± 0.050, p = 0.0017). The value of
lambda was found significantly higher in the healthy group
(1.143 ± 0.016) than in the GRE (1.029 ± 0.004, p < 0.0001)
and non-GRE groups (1.054 ± 0.009, p < 0.0001).

No difference of global topological properties in the other
three networks (visual, auditory, and left/right executive) was
found among the three groups.
FIGURE 2 | Results of alterations in functional connectivity (FC) when gliomas grew in the left prefrontal lobe. The grp GRE (n = 15), group of patients with glioma-
related epilepsy. The grp non-GRE (n = 20), group of patients without glioma-related epilepsy. The grp healthy (n = 25), group of healthy participants.
February 2022 | Volume 12 | Article 840871
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Differences in Nodal Topological
Properties
We analyzed the nodal efficiency and nodal local efficiency
among the three groups (Tables S10, S11) whether the gliomas
were located in the left or right hemisphere. However, no
significant difference was found among these three groups in
nodal properties by one-way ANOVA. Moreover, no difference
in nodal topological properties was found among these three
groups in the other three networks (visual, auditory, and left/
right executive).
DISCUSSION

This study investigated the characteristic alterations of functional
networks in patients with prefrontal glioma and GRE. Our
Frontiers in Oncology | www.frontiersin.org 7
findings implied that gliomas located in different hemispheres
may alter FC and topological properties in different ways. In
addition, decreasing FC between ipsilateral medial BA 6
(supplementary motor area) and caudal ventrolateral BA 6 and
shortening path length of the whole sensorimotor network were
characteristic alterations in patients with GRE.

Seizure onset is associated with alterations in functional
networks (14). In our previous studies, we found that the
decreasing shortest path length was a marker to indicate that
patients with temporal lobe glioma suffered from GRE.
Nevertheless, the relationship between GRE onset and
alterations of functional networks in patients with prefrontal
glioma remains unclear. Whether glioma in the left or right
prefrontal lobe, the edge connecting the medial BA 6 and caudal
ventrolateral BA 6 areas in the ipsilateral hemisphere reduced
their FC in the GRE group but insignificantly altered in the non-
FIGURE 3 | Results of alterations in functional connectivity (FC) when gliomas grew in the right prefrontal lobe. The grp GRE (n = 14), group of patients with glioma-
related epilepsy. The grp non-GRE (n = 16), group of patients without glioma-related epilepsy. The grp healthy (n = 25), group of healthy participants.
February 2022 | Volume 12 | Article 840871
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GRE group. The medial BA 6 area belongs to the supplementary
motor area and the caudal ventrolateral BA 6 area belongs to the
premotor area which is responsible for integrating and regulating
motor information that controls the primary motor area to
generate movement (21, 22). Moreover, our results of
correlation analysis indicated a significant negative correlation
between GRE onset and FC of this edge. Hence, we thought that
glioma led some patients to decrease their FC in the BA 6 area,
and this alteration was specifically related to GRE onset. Due to
the FC reduction in the BA 6 area, the ability of motor functional
control in the supplementary motor area is impaired. Hence, this
Frontiers in Oncology | www.frontiersin.org 8
alteration is presented in patients who suffer from GRE more
easily. Simultaneously, this finding explained why the GRE was
associated with their gliomas growing in or adjacent to the
premotor area (23).

In our study, we found that the number of edges with FC
significant alteration was different between the left and right
gliomas. We thought that this difference was related to tumor
locations. Our previous findings indicated that the left temporal
glioma alters the visual network (14) but the right temporal
glioma alters the language network (15). It meant different tumor
location alters different networks. Hence, in this study, only the
FIGURE 4 | Results of alterations in topological properties when gliomas grew in the left prefrontal lobe. Each property was analyzed with one-way ANOVA test and
post-hoc test with least significant difference correction. The grp GRE (n = 15), group of patients with glioma-related epilepsy. The grp non-GRE (n = 20), group of
patients without glioma-related epilepsy. The grp healthy (n = 25), group of healthy participants.
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sensorimotor network was altered by prefrontal glioma, but the
alterations of edges were different. For this reason, we divided all
patients into four groups based on the history of GRE and tumor
location instead of making the tumor into the same hemisphere
through flipping the rs-fMRI data like in a previous study (24).

An increase in the shortest path length was widely observed in
patients with idiopathic epilepsy (25, 26). This change was
related to long-term and frequent epilepsy onset that caused
cortical sclerosis (27), gray matter atrophy (28), and cortical
hypo-metabolism (29). These alterations of gray matter induce
the pathways of information conveying disruption. However,
Frontiers in Oncology | www.frontiersin.org 9
different from idiopathic epilepsy, preoperative GRE was a
relatively short-term symptom, since the glioma is being
removed as soon as possible once the GRE appears, and most
of GRE onset will be controlled (1). Hence, our findings that the
shortest path length decreased and global efficiency increased in
the GRE group were conversely to idiopathic epilepsy.

The alterations of topological property in glioma patients
were related to network reorganization. Previous studies showed
that glioma can induce network reorganization in cortices that
are close to the lesion (30, 31). In the current study, all gliomas
were located in the prefrontal lobe that was near the
FIGURE 5 | Results of alterations in topological properties gliomas grew in the right prefrontal lobe. Each property was analyzed with one-way ANOVA test and
post-hoc test with least significant difference correction. The grp GRE (n = 14), group of patients with glioma-related epilepsy. The grp non-GRE (n = 16), group of
patients without glioma-related epilepsy. The grp healthy (n = 25), group of healthy participants.
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sensorimotor network (especially near the supplementary motor
area and premotor area). Hence, the topological properties of the
sensorimotor network altered. For this reason, the FC of the edge
between supplementary motor area and premotor area
also altered.

Glioma-induced reorganization resulted in the shortest path
length of sensorimotor networks being shortened (32, 33). A
shorter network path contributed to a reduction in the
convulsive threshold underlying epileptic seizures (34, 35).
Conversely, longer network paths contributed to prolonging
systematic response time that counteracted the rapid spread of
local epileptic discharges (36). Compared with the non-GRE
group, the patients in the GRE group have more significantly
altered in the shortest path length. Thus, we thought that the
shortened path length of the sensorimotor network was related
to GRE onset.

Interestingly, the alterations of topological properties in patients
with different hemispheric glioma were a little different when
comparing the healthy group with the non-GRE group. We
inferred that this discrepancy might be related to two reasons. On
the one hand, all patients and healthy subjects in this study were
right handed. Hence, different topological properties of
sensorimotor network might exist between the left and right
hemisphere. The left hemispheric motor cortices control right-
sided motor functions, which were used more frequently and were
more flexible than left-sidedmotor functions (37, 38). On the other
hand, theremightbe somebias in selection since the sample sizewas
relevant small, especially for patients with right gliomas.

Even though the number of patients was limited, the positive
results identified in our study were reliable under strict statistical
corrections. Here, the topological properties were calculated
using functional matrices with absolute values as in previous
studies (20, 39, 40). Moreover, all patients in our study did not
use antiepileptic drugs before preoperative rs-fMRI scanning.
Hence, we could not investigate how antiepileptic drugs could
influence functional network alterations. Furthermore, the
number of patients with other type of seizure was too small to
analysis. Hence, we only investigated the patients with secondary
generalized GRE in this study. In the future, we will enroll more
patients to validate our findings.

In summary, the reduction of FC between the medial BA 6
(supplementary motor area) and caudal ventrolateral BA 6 in the
ipsilateral hemisphere and a shortening of the path length of the
sensorimotor network were characteristics alterations in patients
with GRE onset. These findings reveal the relationship between
GRE onset and alterations in brain functional networks in
patients with prefrontal glioma.
Frontiers in Oncology | www.frontiersin.org 10
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