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Abstract

Prodiginines, tripyrrole alkaloids displaying a wide array of bioactivities, occur as linear and 

cyclic congeners. Identification of an unclustered biosynthetic gene led to the discovery of the 

enzyme responsible for catalyzing the regiospecific C–H activation and cyclization of prodigiosin 

to form cycloprodigiosin in Pseudoalteromonas rubra. This enzyme is closely related to 

alkylglycerol monooxygenase, and unrelated to RedG, the Rieske oxygenase that produces 

cyclized prodiginines in Streptomyces, implying convergent evolution.

The prodiginines are a family of red tripyrrole natural products that display a broad range of 

promising medicinal properties including antimalarial, anticancer, and immunosuppressive 

activities1–3. Notably, they have been shown to induce apoptosis in cancer cells while 

leaving nonmalignant cells unaffected3–5. Most prodiginines occur in linear and cyclic forms 
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with respect to their aliphatic tails, which is apparent in prodigiosin (1) versus 

cycloprodigiosin (2), and undecylprodigiosin versus streptorubin B (Fig. 1). It has been 

proposed that these carbocycles bias the molecules towards their biologically active 

conformations6. For instance, when tested for antimicrobial activity, the cyclic prodiginine 2 
was found to be more active against a variety of bacteria than its straight-chain congener 17.

The biosynthesis of cyclic prodiginines proceeds by oxidative cyclization of their respective 

linear congeners (Fig. 1a). The enzymes catalyzing the cyclization reactions to produce 

streptorubin B, metacycloprodigiosin, marineosin and roseophilin in various Streptomyces 
spp. all belong to a family of Rieske oxygenases represented by Streptomyces coelicolor 
RedG (Fig. 1c)8–11. The remarkable catalytic capacities of these enzymes have been 

employed to synthesize natural and unnatural cyclic prodiginines10–12. However, to date, no 

enzyme catalyzing the cyclization of 1 into 2 has been identified. Given the difficulty of 

realizing regiospecific C–H activation using traditional synthetic methods, additional 

enzymes catalyzing such oxidative cyclizations would be a welcome expansion of the 

biocatalytic toolbox. Here, we identify the enzyme responsible for the regiospecific C–H 

activation and cyclization of 1 in the marine bacterium Pseudoalteromonas rubra, which is 

known to produce both 1 and 2. The enzyme is unrelated to RedG, but is rather a member of 

the FA_hydroxylase integral membrane di-iron oxygenase family, and is closely related to 

metazoan alkylglycerol monooxygenase.

The biosynthesis of 1 has been thoroughly studied in Serratia spp., where the pig (for 

“pigment”) gene cluster encodes the enzymes responsible for biosynthesis of 113,14. Apart 

from pigK and pigN, whose precise roles remain uncharacterized, the function of each pig 
gene has been elucidated. The biosynthesis of 1 has been shown to proceed through a 

bifurcated pathway (Fig. 1a). PigBDE biosynthesize 2-methyl-3-amylpyrrole (MAP, 3), 

while PigA and PigF–N form 4-methoxy-2,2′-bipyrrole-5-carboxaldehyde (MBC, 4). These 

two intermediates are condensed by PigC to yield 1. We expected the biosynthesis of 1 to 

proceed similarly in P. rubra, given that its genome15 harbors a biosynthetic cluster showing 

high sequence identity with the Serratia ATCC39006 pig cluster (Fig. 1b and Supplementary 

Results, Supplementary Table 1).

We first set out to ensure that cyclization is the final step in cyclic prodiginine biosynthesis 

in P. rubra, as is the case in S. coelicolor8 (Fig. 1c). To this end, we constructed an in-frame 

∆pigE mutant of P. rubra which, as expected, produced neither 1 nor 2. Upon feeding it 1, 

we were able to detect 2 using LC-MS (Supplementary Fig. 1). These results confirmed that, 

like in S. coelicolor, the cyclization of 1 in P. rubra can occur as the final step in 2 
biosynthesis. Further support for this model is the observation that recombinant E. coli 
expressing P. rubra pigBCDE produces 1 but not 2 upon feeding with synthetic 4 (Fig. 2a 

and Supplementary Fig. 2).

Bioinformatic analysis of the P. rubra genome15 revealed no redG homologs, and the only 

genes encoding enzymes homologous to oxidases found in the pig cluster were those already 

ascribed to steps in the 1 biosynthesis pathway. Upon examining the P. rubra pig cluster for 

genes not present in Serratia (which does not produce 2), we noticed that while the two 

clusters show near-perfectly conserved synteny, the P. rubra cluster actually lacks a pigN 
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gene (Fig. 1b). We thus searched the P. rubra genome for pigN homologs. While no close 

pigN homologs could be found, we did detect a homolog of S. coelicolor redF—which is 

thought to fulfill the role of pigN in S. coelicolor13,14—in the PRUB675 locus. (For a more 

in-depth analysis of the relationship between these proteins, which are all in the DUF_1295 

protein family, see Supplementary Fig. 3). In Serratia, disruption of pigN impedes but does 

not abolish conversion of 4-hydroxy-2,2′-bipyrrole-5-carboxaldehyde (HBC, 5) into 4. 

Accumulation of 5 results in diminished production of 1 and increased production of 

norprodigiosin (6), which is formed by the PigC-catalyzed condensation of 5 with 316. The 

same phenotype was observed for P. rubra ∆PRUB675, suggesting that PRUB675 fulfills the 

function of pigN in P. rubra (Supplementary Fig. 4).

Analysis of the gene neighborhood of PRUB675 revealed that the gene appears to be part of 

a transcriptional unit with PRUB680, which bears homology to di-iron oxygenases. Deleting 

PRUB680 in P. rubra abolished production of 2, while 1 was left unaffected (Fig. 2a). 

Furthermore, heterologous expression of PRUB680 alongside pigBCDE in E. coli fed 4 led 

to the formation of 2. Direct bioconversion of 1 to 2 by recombinant E. coli could only 

barely be observed, which has also been found to be the case for the bioconversion of 

undecylprodigiosin to streptorubin B by Streptomyces expressing redG8. We suspect that 1 
is unable to cross the E. coli cell wall effectively, while 4 can.

Bioinformatic analysis showed that PRUB680 shares no significant sequence similarity with 

RedG, and is instead a member of the FA_hydroxylase family of integral membrane di-iron 

oxygenases. PRUB680 displays the characteristic eight-histidine motif that is essential for 

iron binding and catalysis in this enzyme family (Supplementary Fig. 5)17,18. Di-iron 

oxygenases are known to carry out a wide variety of C–H activation chemistries 

(Supplementary Figs. 6 and 7, and Supplementary Table 2)17, but so far none have been 

reported to catalyze oxidative cyclization or C–C bond formation19.

The closest characterized homolog of PRUB680 is alkylglycerol monooxygenase (AGMO), 

which is present only in metazoans and some protists, and forms an isolated eukaryotic 

branch of the FA_hydroxylase family. AGMO plays a central role in lipid homeostasis by 

catalyzing the breakdown of ether lipids, a deficit of which leads to the development of 

cataracts and disrupts spermatogenesis in mice20. AGMO is distinct among di-iron 

oxygenases—most of which obtain their reducing equivalents from nicotinamide cofactors

—in that it utilizes pterin cofactors, which are thought to bind in a pocket on the cytosolic 

side of this transmembrane protein21. To ensure that a possible analogous pocket in 

PRUB680 would be accessible to exogenously added reducing cofactors, we pursued the in 
vitro characterization of PRUB680 in inverted membrane vesicles, generated via sonication 

of E. coli spheroplasts22. Under these conditions, we were able to observe PRUB680-

catalyzed conversion of 1 to 2. Like AGMO, PRUB680 appeared to require pterin cofactors 

to supply its reducing equivalents, accepting various pterins equally well (Fig. 2b). 

Nicotinamide and flavin cofactors were not accepted.

PRUB680 was inhibited by EDTA, but activity could be recovered by iron supplementation 

(Fig. 2b), suggesting that, like all other characterized members of the FA_hydroxylase 

family, PRUB680 utilizes iron to achieve catalysis. Copper and vanadium—other metals 
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known to facilitate enzymatic C–H activation19—could not recover activity. On the basis of 

the mechanistic analysis of other di-iron enzymes17,18, we propose that the cyclization of 1 
proceeds by abstraction of an aliphatic hydrogen followed by addition of the radical into the 

tripyrrole π system (Supplementary Fig. 8).

Besides the functional similarity between PRUB680 and AGMO, these enzymes’ catalytic 

domains share 43% sequence identity (Supplementary Fig. 9), and are predicted to have the 

same nine-transmembrane topology (Supplementary Fig. 5)21. Since thus far all efforts to 

express AGMO in microbial hosts have been unsuccessful20,23, PRUB680 may serve as a 

convenient model system for the biochemical characterization of this enzyme.

PRUB680 resides in a predominantly prokaryotic clade of the FA_hydroxylase protein 

family (Fig. 6) which, considering the remarkable catalytic diversity displayed by the few 

members characterized so far, may contain many enzymes catalyzing novel C–H activation 

reactivity. Moreover, some of these unexplored enzymes may be involved in C–H activating 

steps in the biosynthesis of novel natural products. None of PRUB680’s closest homologs 

are found in organisms known to produce prodiginines (Supplementary Fig. 7), suggesting 

that PRUB680 is a functional outlier among enzymes that carry out other oxidative 

chemistry. The genomic context of these homologs of gives no clear indication regarding 

their functions (Supplementary Table 3).

Most characterized bacterial biosynthetic pathways are encoded by genes physically 

clustered on the genome. However, in P. rubra, the genes encoding prodiginine biosynthesis 

are split across two loci, a situation we were alerted to by the absence of the strictly 

conserved gene pigN. An analogous strategy may help to identify biosynthetic enzymes in 

other organisms that are not clustered with their respective pathways.

The exact role of PigN in prodiginine biosynthesis is still unknown. Given that PigB—which 

catalyzes the final step of 3 biosynthesis—is predicted to have two transmembrane helices 

(Supplementary Fig. 10), and the condensing enzyme PigC has been found to localize to the 

membrane when expressed heterologously24, we suspect that the concluding steps of 1 
biosynthesis occur at the membrane. PigN has five predicted transmembrane helices 

(Supplementary Fig. 11) and might act to recruit PigF to the membrane. The presence of 

pigN (or redF) is strictly conserved among prodiginine-producing organisms, despite the 

weak phenotype of ∆pigN merely changing the ratio of 1 to 6. P. rubra may have acquired 

pigA–M in one horizontal gene transfer event, while acquiring PRUB675–680 
independently, perhaps due to strong selective pressure for a gene fulfilling the role of pigN.

In summary, we have shown that PRUB680, a membrane di-iron oxygenase-like enzyme, 

produces 2 by cyclization of 1, analogous to the cyclization of undecylprodigiosin to form 

streptorubin B catalyzed by RedG, a Rieske oxygenase-like enzyme. Despite sharing no 

sequence similarity, both enzymes are predicted to employ histidine-ligated non-heme iron 

centers18,25 to catalyze the oxidative cyclization of prodiginines. PRUB680 bears strong 

homology to AGMO and has similar cofactor requirements, and hence may serve as a 

prokaryotic model for the latter. Furthermore, the large supply of uncharacterized bacterial 

enzymes related to PRUB680 may provide a valuable source of novel C–H activation 
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reactivity. PRUB680 itself may also prove useful as a biocatalyst to produce novel 

prodiginines, as RedG has. The fact that cyclic prodiginine biosynthesis evolved 

independently at least twice suggests that there exists a strong selective pressure to produce 

cyclic prodiginines. However, thus far the ecological role of the prodiginines—and hence the 

adaptive advantage conferred by cyclic prodiginines—remains an enigma.

Online methods

Synthetic chemistry

Cycloprodigiosin (2)26 and MBC (4)27 were synthesized as described previously.

Bacterial cultivation

E. coli was propagated at 37 °C on LB agar or in LB broth. For the cultivation of P. rubra (at 

30 °C), these media were supplemented with 10% v/v 180 g/L Instant Ocean Sea Salt (IO) 

(Spectrum Brands, Blacksburg, VA), autoclaved separately. Descriptions of bacterial strains 

employed in this study are provided in Supplementary Table 4.

Plasmid construction

DNA assembly protocols were designed using j5 and DeviceEditor software28. Descriptions 

of plasmids employed in this study are provided in Supplementary Table 5. Assembly of 

DNA fragments (Supplementary Table 6) was performed using NEBuilder HiFi DNA 

Assembly Master Mix or NEB Golden Gate Assembly Mix (NEB) per manufacturer’s 

directions. The 11 kb pigBCDE fragment was cloned behind a T7 promoter using the Zero 

Blunt TOPO PCR Cloning Kit (ThermoFisher).

Targeted gene disruptions in P. rubra

We employed conjugative transfer of a suicide plasmid following literature precedent29, 

however, counterselection with SacB was not effective in our hands. This held true even with 

sacB under the control of promoters expressed highly in P. rubra, as determined by shotgun 

proteomics (Supplementary Table 7). Instead, we replaced sacB with lacZ and identified 

double crossovers by blue-white screening (Supplementary Fig. 12). E. coli WM3064 was 

transformed with suicide vectors conferring both erythromycin and chloramphenicol 

resistance markers under the control of the P. rubra elongation factor G (PRUB9669 on 

contig 67) promoter, the P. rubra 30S ribosomal protein S13 promoter (PRUB13406 on 

contig 115, this is actually a polycistronic locus with a number of ribosomal proteins and an 

RNA polymerase subunit) driving lacZ, and ~1 kb regions homologous to those upstream 

and downstream of the target. After overnight growth on LB agar with 25 μg/mL 

chloramphenicol, 100 μM X-gal, and 300 μM diaminopimelic acid (DAP), a colony was 

patched directly on LB agar with 4% v/v 180 g/L IO and 300 μM DAP, with a wild-type P. 
rubra colony patched on top. After conjugating at 30 °C overnight, the patch was struck out 

for single colonies on LB agar with 10% v/v 180 g/L IO, 25 μg/mL erythromycin, and 500 

μM X-gal. Blue colonies (single-crossovers) were passaged until homogeneous. These were 

then sub-cultured on the same growth media without erythromycin, and white colonies were 

isolated and confirmed to be sensitive to erythromycin. To distinguish double-crossovers 

from revertants, colony PCR was performed by picking colonies into neat DMSO, diluting 
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1:10 with water and using that as template (1% v/v) with 5Prime HotMasterMix polymerase 

and primers as specified in Supplementary Table 6.

Prodiginine production in P. rubra

P. rubra was grown in 50 mL 20% v/v LB, 10% v/v 180 g/L Instant Ocean, 70% de-ionized 

water, in a 250 mL baffled shake flask. After 12 hours of growth at 30 °C, 2 mL of the 

culture was extracted with 3 mL 1:1 chloroform:methanol. The organic layer was evaporated 

to dryness, dissolved in ethanol, diluted 1:1 in de-ionized water, and analyzed by LC-MRM-

MS and LC-TOF-MS.

Heterologous prodiginine production in E. coli

E. coli BLR (DE3) was transformed with plasmids containing pigBCDE and either 

PRUB680 or RFP. Overnight cultures were diluted 1:10 into LB supplemented with 50 

μg/mL kanamycin and 25 μg/mL chloramphenicol and grown at 37 °C to an OD600 of 0.6, 

upon which they were induced with 100 μM IPTG at 30 °C for 16 h. 10 mL of cells were 

harvested by centrifugation (8,000 g, 5 min), resuspended in 300 μL of LB medium, and 

spread onto agar plates with 0.1 mM IPTG and antibiotics as before. 10 μL of 1 mM MBC 

in 1:3 DMSO:water was spotted onto the plates, which were left to grow overnight at 30 °C. 

The pink halo (as can be seen in Supplementary Fig. 2) was scraped off and resuspended in 

1 mL de-ionized water with 2% TFA by vigorous vortexing. The cell suspension was 

extracted with 2 mL of 1:1 v/v chloroform:methanol. The organic layer was evaporated to 

dryness dissolved in ethanol, diluted 1:1 in de-ionized water, and analyzed by LC-MRM-

MS.

In vitro analysis of PRUB680 in inverted E. coli membrane vesicles

An overnight culture of E. coli BLR (DE3) containing pET28-PRUB680 was diluted 1:10 

into 3 × 500 mL LB supplemented with 50 μg/mL kanamycin in 2 L baffled flasks and 

grown at 37 °C. When the cells reached an OD600 of 0.6, the flasks were cooled to 18 °C 

and induced with 100 mM IPTG for 3 h. The cells were harvested by centrifugation (5,000 

g, 10 min), washed with 30 mL spheroplasting buffer (30% sucrose, 200 mM Tris∙HCl pH 

8.0, 2mM EDTA) and incubated rocking for 30 min at room temperature in 30mL 

spheroplasting buffer + 3 mg lysozyme. Spheroplasts were harvested by centrifugation 

(5,000 g, 10 min), resuspended in 30 mL assay buffer (100 mM HEPES∙KOH pH 7.8, 50 

mM K2SO4, 1% v/v Sigma Protease Inhibitor Cocktail P8849), divided into 20 × 1.5 mL in 

2 mL centrifuge tubes, and sonicated in a cup-horn sonicator (Qsonica Q700 with 431MPX 

horn, Amplitude: 75%, 1 min on, 1 min off) for 45 min. of total “on” time. The water bath 

temperature was maintained between 3 and 10 °C. The tubes were centrifuged at 12,000 g 

for 10 min at 4 °C, the supernatants combined and again centrifuged at 12,000 g for 10 min 

at 4 °C. The supernatant was centrifuged at 120,000 g for 30 min at 4 °C and the orange 

pellet thoroughly resuspended in 22 mL assay buffer. For each reaction, 500 μL of the 

vesicle preparation was used. For the metal dependence experiments, EDTA was added to a 

final concentration of 4 mM, the mixture incubated at 4 °C for 5 min, followed by the 

addition of metal at a concentration of 5 mM and incubation at 4 °C for 5 min. For all 

experiments, 10 μM prodigiosin (Enzo Life Sciences, 100X stock solution prepared at 1 mM 

in 20% v/v ethanol in water) was added, the mixture transferred to a round-bottom glass tube 
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(16 mm × 100 mm) at room temperature. The reaction was started by adding reducing 

cofactor (NADH, NADPH, (6R)- or (6S)-tetrhydrobiopterin, or tetrahydrofolate, all from 

Sigma-Aldrich) at 250 μM, or, in the case of FMNH2, adding FMN to the mixture pre-

loaded with a cofactor generation system consisting of glucose-6-phosphate (20mM), 250 

μM NADP+, 1 unit/mL glucose-6-phosphate dehydrogenase, and 1 unit/mL NADPH:FMN 

oxioreductase from Photobacterium fischeri (all from Sigma-Aldrich). Enzymatic generation 

of FMNH2 was necessary because the enzyme is inactivated by sodium dithionite. The in 
situ reduction of FMN to FMNH2 was verified by observing the loss of yellow color. Metal 

dependence experiments used 250 μM (6R)-tetrahydrobiopterin. After shaking at 200RPM 

at room temperature for 10 min, reactions were quenched using 2 mL 1:1 v/v 

chloroform:methanol. 500 μL de-ionized water was added, the organic layer evaporated to 

dryness, dissolved in ethanol, diluted 1:1 with de-ionized water, and analyzed by LC-MRM-

MS. Peak areas were calculated using Analyst 1.6.2. To calculate relative enzyme activity, 

cycloprodigiosin peak areas were normalized to the prodigiosin starting material peak areas 

to correct for extraction efficiency (< 0.1% conversion had occurred under all conditions), 

and to a (6R)-tetrahydrobiopterin reaction to normalize for enzyme activity differences 

between vesicle preparations. All conditions shown in Figure 2b, except for FMNH2, were 

performed in parallel with the same vesicle preparation.

LC-MS acquisition and data analysis

LC-MRM-MS was performed on an AB Sciex 4000 QTRAP with an Agilent 1200 series LC 

system. 1 μL of sample was injected onto a Phenomenex Kinetex XB-C18 (3 mm × 100 

mm) column. Mobile phase: A = 10 mM ammonium formate, brought to pH 4.5 with formic 

acid, B = methanol buffered identically to A. Method: 35% B for 5 min, ramp from 35% to 

80% B in 30 min, 80% B for 8 min, ramp to 35% B in 2 min, re-equilibrate at 35% B for 15 

min, all at a flow rate of 200 μL/min. A Turbo Spray V ion source was used in positive ion 

mode (curtain gas: 20 L/min, temperature: 600 °C, voltage: 4800 V, source gas: 50 L/min, 

entrance potential: 8 V, collision energy: 45, declustering potential: 45 V, column 

temperature: 50 °C, Q1 resolution: high, Q3 resolution: unit). The transitions monitored 

(324→252 for 1, 322→292 for 2) were based on published tandem MS spectra7,30.

LC-TOF-HRMS was performed on an Agilent 1200 series Rapid Resolution HPLC system. 

Mobile phases were the same as above. 2 μL of sample was injected onto a Phenomenex 

Kinetex XB-C18 (3 mm × 50 mm) column. Method: 30% B for 8 min, ramp from 30% to 

80% B in 20 min, 80% B for 4 min, ramp to 35% B in 1 min, re-equilibrate at 30% B for 7 

min, all at a flow rate: 200 μL/min. An Agilent ESI source was used in the positive ion mode 

(drying gas: 11 L/min, temperature: 325 °C, capillary voltage: 3500 V, nebulizer gas: 25 

lb/in2, fragmentor: 150 V, skimmer: 50 V, declustering potential: 45 V, column temperature: 

50 °C, OCT 1 RF Vpp: 170 V).

Semi-quantitative shotgun proteomics

Cell lysis and protein precipitation were performed using a chloroform-methanol extraction 

as previously described31. The protein pellet was re-suspended in 100 mM (NH4)HCO3 with 

20% methanol and the protein concentration was measured using the DC Protein Assay Kit 

(Bio-Rad). The protein was reduced with 5 mM TCEP for 30 minutes at room temperature, 
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alkylated with 10 mM iodoacetamide for 30 minutes in the dark at room temperature, and 

digested with trypsin (1:50 w/w, trypsin:protein) overnight at 37 °C.

Peptide samples (20 μg) were analyzed on an Agilent 6550 iFunnel Q-TOF mass 

spectrometer coupled to an Agilent 1290 UHPLC system (Agilent Technologies). Peptides 

were loaded into an Ascentis Express Peptisde ES-C18 column (100 mm × 2.1 mm i.d., 2.7 

μm particle size; Sigma Aldrich, St. Louis, MO, USA) operating at 60 °C and flowing at 

0.400 mL/min. Mobile phase: A = 0.1% formic acid in water, B = 0.1% formic acid in 

acetonitrile. Method: 2% B for 2 min, ramp from 2% to 30% B over 30 min, ramp to 50% 

over 5 min, ramp to 80% over 1 min, hold at 80% B for 7 min, ramp to 2% B over 1 min, 

hold at 2% B for 4 min. An Agilent Dual Jet Stream Electrospray Ionization source was used 

in positive-ion mode. Gas temperature: 250 °C, drying gas: 14 L/min, nebulizer: 35 psig, 

sheath gas temp: 250 °C, sheath gas flow: 11 L/min, VCap: 4,500 V, nozzle voltage: 1,000 

V, fragmentor: 180 V, and OCT 1 RF Vpp: 750 V.

The data were acquired with Agilent MassHunter Workstation version B.06.01 and searched 

against the P. rubra genome using Mascot version 2.3.02 (Matrix Science), then filtered and 

refined using Scaffold version 4.6.1 (Proteome Software Inc.).

Bioinformatics

Pre-aligned Uniprot-RP75 (representative proteome clustered at 75% sequence identity) 

sequences for the FA_hydroxylase (PF04116) family were obtained directly from Pfam 

version 3.032. A maximum-likelihood phylogenetic tree was built with Fasttree using default 

parameters33. Branches were assigned colors based on metadata from the Uniprot 

database34. The tree was rendered using iTOL version 335.

Data Availability Statement

Strains and plasmids developed for this study (Supplementary Tables 4 and 5) along with 

annotated sequences, have been deposited in the public instance of the JBEI Registry 

(https://public-registry.jbei.org/folders/260) and are physically available from the authors 

and/or Addgene (http://www.addgene.org) upon request. The Department of Energy will 

provide public access to these results of federally sponsored research in accordance with the 

DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Biosynthesis of prodiginines in P. rubra compared to that in other organisms
(a) Hypothetical prodigiosin (1) biosynthetic pathway in P. rubra (by analogy to the pathway 

elucidated in Serratia) and the cyclization of 1 into cycloprodigiosin (2) investigated in this 

work. (b) Comparison of the pig gene cluster in Serratia, which produces only 1, and P. 
rubra, which produces both 1 and 2, shows that pigN is absent in the latter. The gene 

downstream of pigM in P. rubra shows no similarity to pigN. Also shown is an excerpt of P. 
rubra contig 4, which contains PRUB675 and PRUB680. Genes in pink have homology to 

Serratia pig genes and/or to Streptomyces red genes. (c) The Rieske monooxygenase-like 

RedG catalyzes the carbocyclization of undecylprodigiosin to form streptorubin B, 

motivating our search for the enzyme responsible for the analogous cyclization of 1 in P. 
rubra.
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Figure 2. Analysis of prodigiosin cyclization in vivo and in vitro
(a) In vivo production of prodiginines. For experiments in E. coli, the cells were fed MBC 

(4), which is turned into prodigiosin (1) by PigBCDE. 1 is in turn converted to 

cycloprodigiosin (2) by PRUB680 if present. For standards, see Supplementary Figure 1. (b) 

In vitro experiments with PRUB680 in inverted E. coli membrane vesicles. Vesicles were 

shaken with 10 μM 1 in the presence of the indicated cofactors (left). Reactions were 

initiated by addition of 250 μM reducing cofactor. For metal dependency experiments 

(right), vesicles were incubated with 4 mM EDTA, followed by 5 mM metal ion, before 

initiating the reaction with 250 μM (6R)-tetrahydrobiopterin. Error bars represent s.d. of 

triplicates.
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