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Abstract: Atypical fibroxanthoma (AFX) and pleomorphic dermal sarcoma (PDS) are rare tumors
developing in chronically sun-exposed skin. Clinicopathological features are similar, but they differ
in prognosis, while PDS has a more aggressive course with a higher risk for local recurrence and
metastases. In current clinical practice, they are diagnosed by exclusion using immunohistochemistry.
Thus, stringent diagnostic criteria and correct differentiation are critical in management and treatment
for optimal outcomes. This retrospective single-center study collected clinicopathological data and
tumor samples of 10 AFX and 18 PDS. Extracted genomic DNA from tumor specimens was analyzed
by a next-generation sequencing (NGS) platform (FoundationOne-CDx™). Among 65 identified
mutations, TP53 inactivating mutations were observed in all tumor specimens. In both AFX and
PDS, the known pathogenic gene alterations in CDKN2A, TERT promoter, and NOTCH1 were
frequently present, along with high mutational burden and stable Micro-Satellite Instability status.
The mutational profiles differed only in ASXL1, which was only present in AFX. Further differences
were identified in likely pathogenic and unknown gene alterations. Similarities in their genomic
signatures could help to distinguish them from other malignancies, but they are not distinguishable
between each other using the FoundationOne-CDx™ NGS panel. Therefore, histological criteria
to determine diagnosis remain valid. For further insight, performing deep tumor profiling may
be necessary.

Keywords: atypical fibroxanthoma; pleomorphic dermal sarcoma; tumor genomic profiling; next-
generation sequencing

1. Introduction

Atypical fibroxanthoma (AFX) and pleomorphic dermal sarcoma (PDS) are rare malig-
nant cutaneous neoplasms of fibrohistiocytic mesenchymal origin. They both typically arise
in chronically sun-exposed skin of elderly patients and show male predominance. AFX
and PDS share similarities in clinicopathological features and their treatment; however,
they differ in the disease course [1,2]. Thus, rigid diagnostic criteria are essential to ensure
appropriate disease management and follow-up.

Clinically, AFX and PDS are both characterized as rapidly growing nodules. Both
tumors can demonstrate ulceration and bleeding in the disease course. Histologically,
both malignancies present proliferation of pleomorphic spindle and epithelioid cells or
multinucleated giant cells, which often display atypical mitotic figures and hyperchroma-
tism. Neoplastic cells are located under an occasionally thinned or ulcerated epidermis
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and extend into the reticular dermis. In contrast to AFX, PDS can display perineural and
lymphovascular invasion, tumor necrosis, and a deeper infiltration into the subcutaneous
tissue, muscle, or bone; hence, AFX is described as a superficial variant of PDS [1,3].

Both neoplasms are diagnosed by exclusion. Using immunohistochemistry (IHC), they
can be differentiated from clinically and histologically similar tumors, such as spindle-cell
squamous cell carcinomas (SCCs), melanoma, especially desmoplastic, and leiomyosar-
coma. In contrast to the mentioned malignancies, neoplastic AFX and PDS cells stain
positively for CD10, vimentin, α 1-antitrypsin and negative for Melan-A, S-100, SOX-10,
cytokeratins, and desmin [1,3,4].

Consistent with clinical presentation in sun-exposed skin, previous studies revealed
that most AFX and PDS harbor ultraviolet (UV)-induced (C > T or CC > TT) mutations
in TP53 and TERT promoter [5–8]. Moreover, frequent gene alterations in CDKN2A,
NOTCH1/2, COL11A1, FAT1 were reported in AFX and PDS, acting as possible drivers of
proliferation [5,6,9,10]. Nonetheless, activating RAS mutation was observed in PDS but not
in AFX, suggesting an extraordinary impact on the development of the more aggressive
PDS [6,9].

Furthermore, a study evidenced DNHD1, RTN1, RTL1, ZBTB7A, NCKAP5L, and
FAM200A as significantly mutated genes in PDS and demonstrated recurrent point mu-
tation in DDX31 (R72K) in five out of 28 PDS by performing whole-exome sequencing.
Additionally, a high tumor mutational burden (TMB) with an average of 42.7 nonsynony-
mous variants per mega base was reported in the analyzed PDS cohort [11].

Treatment options for both malignancies are limited to surgery with wide local excision
(WLE) or Mohs micrographic surgery (MMS). In AFX, MMS is considered as first-line treat-
ment, as MMS results in a lower local recurrence rate of AFX in comparison to WLE [1,12].
Furthermore, treatment with WLE requires a surgical safety margin of two centimeters to
reach a clearance of 96.6% AFX tumors, which is suboptimal for tissue conservation [13]. In
PDS, the first-line treatment for optimal management is less defined. WLE with an excision
margin less than two centimeters was reported to be a risk factor for tumor relapse in
PDS [14]. While WLE with a minimum margin of one centimeter was described to have a
recurrence rate of 3.7% in PDS [15]. No standard of care is established for AFX and PDS
with unresectable, recurrent, or metastatic disease [3,16].

Even though AFX and PDS generally have a good prognosis, PDS is associated with a
higher risk for local recurrence, resulting in up to 28% of patients [17] and distant metastases
in up to 20% of the patients [18].

In this study, we aim to analyze the clinicopathological and genetic characteristics of
AFX and PDS. Furthermore, we intend to improve the understanding of pathogenesis and
seek to identify the molecular profile of AFX and PDS through next-generation sequencing
(NGS) with the FoundationOne-CDx™ (F1CDx) platform [19]. Molecular profiles could
improve the diagnostics and could help to distinguish AFX from PDS. Moreover, detected
molecular alterations might lead to new treatment options such as targeted therapies.

2. Materials and Methods

In this retrospective study, we analyzed patients who fulfilled the following crite-
ria: adult patients (≥18 years), diagnosed and/or treated for AFX and/or PDS at the
Department of Dermatology, University Hospital Zurich, Switzerland, from January 2000
to December 2010 with a follow-up period of at least six months. Patients were excluded
from the study if insufficient tumor material was available, or if the available samples had
tumor content below 20%.

We identified the patients in the “DermaPro” (ifms GmbH, Saarbrücken, Germany)
database by using the keywords “atypical fibroxanthoma, AFX, pleomorphic dermal
sarcoma, dermal sarcoma NOS (not otherwise specified)”.

Tumor samples were histologically re-evaluated for diagnosis of AFX and PDS, tu-
mor infiltration depth, and ulceration status. Tumor infiltration depth was measured in
millimeters from the granular layer of the epidermis to the deepest point of invasion. In
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cases where tumor thickness was ≥1 mm and extended beyond the basal excision margin,
tumor thickness was designated as ≥1 mm. Demographic patient data, as well as clinico-
pathological and histological features of the tumors, were obtained from electronic medical
records.

Out of 32 identified patients, 23 were included in the final NGS analysis through
F1CDx. Of 32 enrolled patients, we collected 40 Formalin-fixed paraffin-embedded (FFPE)
tissue samples. More than one sample was available from five patients. One patient
diagnosed with PDS was excluded from the study due to insufficient tumor material, and
samples from eight patients (total 11 biopsies) with tumor content below 20% were also
excluded from the study. In total, 10 samples from 10 patients diagnosed with AFX and
18 samples from 13 patients with PDS (one patient with four longitudinal samples within
the timeframe of eight months, one patient with three longitudinal samples collected within
nine months) underwent further analysis with NGS through F1CDx (Figure 1).
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Figure 1. Representative flowchart of inclusion and exclusion of patients and samples. * 2 Patients with longitudinal
samples.

Total genomic DNA was extracted from FFPE tumor tissue samples with DNA iso-
lation kits on a Promega Maxwell RSC. Isolated DNA and gene alterations were ana-
lyzed by a validated hybrid capture-based next-generation sequencing (NGS) platform
(FoundationOne-CDx™) at the Department of Pathology and Molecular Pathology of the
University Hospital Zurich, Switzerland. The methods of F1CDx have been previously
described [19]. The current F1CDx gene panel (https://www.foundationmedicine.com
(accessed on 29 November 2020)) includes cancer-related genes, 309 genes with full coding
exons, 21 genes with selected intronic regions, one gene with a promotor region (TERT,
telomerase reverse transcriptase), and one non-coding RNA gene (TERC, telomerase RNA
component). Alterations were classified into known, likely and unknown pathogenicity by
the F1CDx assay pipeline.

Additionally, Micro-Satellite Instability (MSI) and Tumor Mutational Burden (TMB)
were assayed by F1CDx. TMB was measured as mutations (mt) per megabase (mb). TMB
levels were divided into two groups: low (1–9 mt/mb) and high (≥10 mt/mb).

https://www.foundationmedicine.com
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Patient primary tumor samples were stratified according to the histological diagnosis
of AFX and PDS. For each tumor, the number of pathogenic mutations, variants of unknown
significance, or both were counted per gene. In the case of multiple simultaneous mutations
in a gene of a patient, the mutation count of the gene was incremented only once. The
difference between the number of mutations of a gene in AFX and PDS was assessed by
Fisher’s exact test using R (version 4.0.4). Multiple testing adjustment was made using
Benjamini–Hochberg FDR (false discovery rate) correction. Differences in the TMB in the
patient subgroups were analyzed through Wilcox–Rank sum test. A FDR adjusted p-value
of <0.05 was considered statistically significant.

3. Results
3.1. Study Cohort

The AFX cohort included 10 patients with 10 representative AFX tumors, while the
PDS cohort included 13 patients with 18 tumors. Five PDS tumor specimens represented
local relapses and were obtained from two different patients with PDS.

The majority of patients with AFX (9/10, 90%,) and PDS (9/13, 69%) were male. The
median age at diagnosis was 80.5 years (range: 61–90 years) in patients with AFX and
83.5 years (range: 71–92 years) in patients diagnosed with PDS. Two patients with PDS
(15%) developed metastatic disease, with one patient developing nodal and one patient
in-transit metastasis. No metastasis was observed in the AFX group. Local tumor relapse
was present in one (10%) patient with AFX and three (23%) patients with PDS. Local
relapses occurred after complete surgical excision, except for one patient with PDS who
underwent incomplete excision.

3.2. Clinicopathological Features

Representative clinical and histological images of AFX and PDS from our cohort are
shown in Figure 2. Most AFX and PDS primary tumors were located on the head (22/23,
96%), as represented in Figure 3. One (8%) PDS tumor was located in the lower leg. Baseline
clinicopathological features of AFX and PDS of our study cohort are presented in Table 1.
Upon IHC, neoplastic cells were generally negative for melanoma, cytokeratin, and muscle
markers. In nine tumors, vimentin staining was used and showed positivity in 8 cases.
CD10 staining was performed in two AFX tumors and was positive on neoplastic cells in
both cases. (Supplemental Table S1).

Table 1. Clinicopathological features of atypical fibroxanthoma (AFX) and pleomorphic dermal
sarcoma (PDS).

AFX PDS Total
(n = 10) (n = 13) (n = 23)

Diameter (cm)
≤2 3 2 5

2.1–3.9 0 0 0
≥4.0 1 0 1

Unknown 6 11 17

Invasion depth (mm)
≥1 3 5 8
≤2 3 0 3

2.1–3.9 1 5 6
≥4.0 3 3 6

Ulceration
Present 5 7 12
Absent 5 6 11
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Figure 2. Clinical and histological picture of a male patient with AFX (a–c) and a female patient 
diagnosed with PDS (d–f). (a) AFX located at the vertex, (b) proliferation of pleomorphic spindle 
cells located under a thinned and ulcerated epidermis, (c) high power representation of atypical 

Figure 2. Clinical and histological picture of a male patient with AFX (a–c) and a female patient
diagnosed with PDS (d–f). (a) AFX located at the vertex, (b) proliferation of pleomorphic spindle cells
located under a thinned and ulcerated epidermis, (c) high power representation of atypical mitotic
figures and multinucleated giant cells, (d) PDS located at the vertex, (e) neoplastic cells located at the
deep dermis and infiltrating subcutaneous tissue, (f) pleomorphic, spindle-shaped neoplastic cells.
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3.3. NGS Analysis

To investigate the molecular landscape, we attempted to identify common and dif-
ferent driver events in primary tumors of the two patient subgroups by F1CDx analysis.
Across 23 analyzed primary tumor samples a total of 65 mutations with known and likely
somatic impact were identified. (Supplemental Table S2).

All PDS and AFX tumors carried TP53 (tumor protein 53) inactivating mutation
(Figure 4a). A frequent driver gene evidenced in both subgroups was CDKN2A (cyclin-
dependent kinase inhibitor 2A) gene loss or inactivating mutation, present in six (60%) AFX
and 11 (85%) PDS samples (Figure 4b). Moreover, NOTCH1 (NOTCH receptor 1) activating
mutation was present in half (5/10) of the AFX and eight (62%) PDS tumors (Figure 4c).
Further, TERT promoter activating mutation was frequently evidenced in six (60%) AFX
and in nine (69%) PDS samples. However, no significant differences in the most frequent
alterations were identified between the subgroups. (Figure 5 and Supplemental Table S3).
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We have observed a non-statistically significant difference for ASXL1 (additional sex
combs-like 1) alteration between the subgroups. ASXL1 mutation was detected in 3 AFX
(30%) samples but in none of the PDS samples (p = 0.0593). (Supplemental Table S3).

Previously reported gene alterations in FAT1 (FAT atypical cadherin 1) and COL11A1
(collagen type XI α 1 chain), DNHD1 (Dynein Heavy Chain Domain 1), RTN1 (Reticulon
1), RTL1 (retrotransposon like 1), ZBTB7A (Zinc Finger And BTB Domain Containing 7A),
NCKAP5L (NCK Associated Protein 5 Like), FAM200A (Family With Sequence Similarity
200 Member A) and DDX31 (DEAD-Box Helicase 31) could not be assessed, as these
genes were not part of the F1CDx panel. KRAS (Kirsten rat sarcoma) activating mutation
was observed in one sample of each subgroup (AFX: 1/10, 10% and PDS: 1/13, 8%).
Furthermore, we detected activating mutation in NOTCH2 (NOTCH receptor 2) in a subset
of our cohort (AFX: 3/10, 30% and PDS: 3/13, 23%).
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Besides known and likely pathogenic mutations, we also analyzed mutations of
unknown significance. A tendency for the difference in GATA4 (GATA binding protein 4)
alterations was observed among the subgroups, with half of the AFX (5/10) samples and
one (8%) PDS sample demonstrated alteration in GATA4 (p = 0.0501). Moreover, MPL (MPL
proto-oncogene, thrombopoietin receptor), PIK3CA (phosphatidylinositol-4,5-bisphosphate
3-kinase catalytic subunit α), CUL4A (cullin 4A), and DAXX (death domain associated
protein) were only present in the AFX subgroup and were observed in 3 (30%) tumors
(p = 0.0593). One patient with AFX harbored all the above-mentioned alterations.

In contrast, alterations in CDH1 (cadherin 1) and in CD22 (cluster of differentiation-22)
were mostly observed in PDS samples. CDH1 was evidenced in five (38%) PDS samples and
was absent in the AFX subgroup (p = 0.053). Gene alteration in CD22 were predominant
in PDS (7/13, 54%) and present in one (10%) AFX sample (p = 0.0791). (Figure 6 and
Supplemental Table S4).
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We further investigated the differences among subgroups based only on mutations of
unknown significance. Matching tendencies in gene alteration were evidenced in GATA4A
(AFX: 5/10, 50% and PDS: 1/13, 8%, p = 0.0501) (Figure 7a), MPL (AFX: 3/10, 30% and PDS:
0/13, p = 0.0593), CUL4A (AFX: 3/10, 30% and PDS: 0/13, p = 0.0593) alterations in AFX
tumor samples and CDH1 (AFX: 0/10, PDS: 5/13, 38% p = 0.053) (Figure 7b) alterations in
PDS tumors. (Figure 8 and Supplemental Table S5).

GNAS (GNAS Complex Locus) was previously reported as a significantly mutated
gene in PDS. In our analysis, alterations in GNAS were assigned in mutations of unknown
significance and were evidenced in both subgroups (AFX: 4/10, 40% and PDS: 4/13, 30%,
p = 0.6734).

Among all analyzed AFX and PDS tumors, including the longitudinal samples, most
tumors (27/28, 96.4%) had high (≥10 mt/mb) TMB, while one PDS tumor had a low TMB
(2.52 mt/mb). Mean measured TMB was 54.59 mt/mb in AFX and 69.49 mt/mb in PDS
samples (p = 0.6484). MSI status was stable in all analyzed tumor samples. (Table 2 and
Supplemental Table S6).

Table 2. Tumor Mutational Burden (TMB) and Micro-Satellite Instability (MSI) status of all analyzed
tumor samples.

AFX PDS Total
(n = 10) (n = 18) (n = 28)

TMB-Status
High (≥10 mt/mb) 10 17 27
Low (1–9 mt/mb) 0 1 1

TMB (mt/mb)
Mean 54.59 (20.2–90.8) 69.49 (2.52–157.2) 64.17 (2.52–157.2)

MSI-Status
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Figure 8. Heatmap of variants of unknown significance in atypical fibroxanthoma (AFX) and pleomorphic dermal sarcoma
(PDS) tumor samples. The red box marks the presence of a gene alteration.

Among 18 PDS tumors, four longitudinal samples of one and three longitudinal
samples of another patient with PDS underwent NGS analysis. Comparing recurrent
specimens to primary PDS tumors among the same patient, we identified a consistency
in the gene alterations. Most of the mutations showed a trend towards an increase in the
variant allele frequencies. Additionally, a tendency to increase TMB was likewise observed.

4. Discussion

We have identified similarities in the demographic, clinicopathological, and genomic
features of AFX and PDS. NGS analysis through F1CDx identified TP53 inactivating muta-
tion in all investigated primary AFX and PDS tumors. Known gene alterations in CDKN2A,
TERT, and NOTCH1 were frequently evidenced in AFX and PDS. Both subgroups harbored
high TMB and had a stable MSI status. Differences between AFX and PDS were identified
in likely and unknown gene alterations, although they were not statistically significant.

Our study included a cohort of 23 patients, highly representative for AFX and PDS
cases considering their rarity among cutaneous malignant tumors. For AFX a prevalence
rate of 0.24% was estimated in a retrospective study of over 42′000 skin tumors; however,
the incidence of PDS and AFX is unknown [20]. The clinico-pathological characteristics
of AFX and PDS in our cohort were as expected, showing consistency with previous
reports [1,18].

Advances in NGS technology have encouraged clinicians to implement NGS analysis
in guiding their daily clinical practice. This type of molecular profiling may provide
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insights into disease pathogenesis. Therefore, we screened for molecular signatures that
could improve the distinction of AFX and PDS in addition to the current clinical practice.

NGS analysis of over 300 analyzed genes in the F1CDx panel, revealed high similarity
in driver events (TP53, TERT promoter, CDKN2A, and NOTCH1), showing no significant
difference between AFX and PDS. This is consistent with a previous report, where the
authors pre-selected 11 genes for comparing the mutational profile of AFX and PDS [9].

Alterations in TP53, TERT promoter, CDKN2A, and NOTCH1 have been previously
reported in cSCC. cSCC, as well as AFX and PDS, are known to frequently develop in
chronically sun-exposed skin areas. This could explain why they share similar UV- induced
gene alterations in their molecular profile [21,22].

A difference in the subgroups among the known alterations was observed in ASXL,
with a p-value above the significance level of 0.05 (p = 0.0593). Few AFX patients showed
ASXL1 alterations; whereas, these alterations have not been detected in patients with PDS.
ASXL1 is located on chromosome 20 and belongs to the group of ASX- like genes (ASXL1-3).
It encodes a nucleoprotein which enhances regulatory proteins and plays a role in the
stability of gene expression. ASXL1 mutations have been previously observed in a variety
of hematological malignancies in humans [23]. Even though ASXL1 could help distinguish
the respective subgroups, its occurrence is restricted to a subset of patients with AFX.
Therefore, ASXL1 cannot be used as an isolated distinct biomarker for AFX and explored
in a larger cohort.

Including the unknown alterations as well as the known and likely mutations in our
analysis, we noted potential differences in GATA4, PIK3CA, CUL4A, DAXX, MPL, CDH1,
and CD22 among AFX and PDS. Alterations of unknown significance have an unclear
effect on function. However, these alterations have been previously reported in the context
of various cancer entities, which may indicate biological relevance.

Half of the AFX cohort harbored a GATA4 alteration of unknown significance. GATA4
(chromosome 8) encodes for GATA-4, a member of the zinc finger transcription factors
family (GATA-1-GATA-6). It is involved in the differentiation of endoderm- and mesoderm
originated tissues and has been reported in various cancers such as gastrointestinal, ovarian,
and lung cancer and glioblastoma multiforme [24,25]. Based on TCGA (The Cancer Genome
Atlas) one unknown alteration evidenced in our AFX cohort (GATA4 P359K) has been
previously reported in lung squamous cell carcinoma.

Alterations in PIK3CA were present in almost one-third of the AFX cohort (3/10,
30%). One mutation (E542K) has already been described in the literature [26]. On the
contrary, PIK3CA mutations were absent in the PDS group. PIK3CA encodes p110-α, a
subunit of phosphatidylinositol 3-kinase (PI3K). PI3K pathway is involved in cell signaling,
which regulates cell functions such as cellular growth, proliferation, differentiation, and
motility and was described as activating mutation in breast cancer [27,28]. In PIK3CA-
mutated breast cancer targeted therapy with alpelisib, an α-selective phosphatidylinositol
3-kinase inhibitor is used for treatment [29]. Preclinical and clinical data in different tumor
entities indicate that activating PIK3CA alterations may predict sensitivity to therapies
targeting PI3K or AKT [30]. PIK3CA-mutated AFX tumors may therefore respond to mTOR
inhibitors, including everolimus and temsirolimus, or an α-selective phosphatidylinositol
3-kinase inhibitor [31].

Comparable to PIK3CA, alterations in CUL4A, DAXX, and MPL were seen in 30%
(3/10) of the AFX group and were not found in the PDS cohort. CUL4A (chromosome
13) is part of the cullin family. It acts as part of a ubiquitin-protein ligase complex and is
associated with oncogenesis. Amplification and overexpression of CUL4A were reported
in different tumor types (e.g., breast and prostate cancer, hepatocellular carcinoma) [32].

DAXX (chromosome 6) codes for death-associated protein 6. DAXX plays a role
in tumorigenesis. Overexpression of DAXX has been reported to have an oncogenic
function [33].
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Myeloproliferative leukemia protein is encoded by MPL (chromosome 1). The role
of activating MPL mutation has been reported in the context of myeloproliferative neo-
plasms [34].

On the contrary, our analysis revealed an opposite trend of alterations for CDH1
and CD22 within the explored neoplasms. CDH1 was only present in PDS (5/13, 38%).
Inactivating mutation of CDH1 (chromosome 16), encoding for E-cadherin, are known to
contribute to malignant cell detachment from the primary tumor [35,36].

Additionally, CD22 (chromosome 19) was evidenced in more than half of the PDS
cohort and one AFX tumor. CD22 encodes for a surface molecule and is known to be
expressed by most blasts of B-cell acute lymphoblastic leukemia [37].

Altogether, all listed alterations are known to play a role in cancer. However, alter-
ations with unknown somatic impact are still poorly investigated in the context of AFX
and PDS and require further in-depth studies. Moreover, the difference in the listed alter-
ations among AFX and PDS was not significant. Thus, they are not suitable as potential
biomarkers to discriminate the explored malignancies.

Our results showed that AFX exhibits high TMB, also known as a mutational load. The
PDS subgroup also evidenced high TMB, which is in line with a previous report [11]. TMB
is affected by different sources, including exposure to mutagenic agents such as ultraviolet
light in melanoma and cigarette smoke in lung cancer [38,39]. Hence, we could hypothesize
that the investigated neoplasms harbor high TMB due to chronic UV- exposure, given that
they arise in high sun-exposed skin areas. A low TMB of 2.52 mt/mb was noted only in
one biopsy taken from the lower leg, a site less chronically exposed to the sun.

In comparison to cSCC TMB levels were reported equally high (median TMB 45.2
mt/mb) [40]. In other cutaneous sarcoma subtypes, such as superficial angiosarcoma, high
TMB (20.7 mt/mb) was lower than observed in our cohort [41].

High TMB is known to be associated with a better response to immunotherapy
with checkpoint inhibitors (CPI) such as anti-PD-1 and anti-PD-L1 across diverse tumor
entities [42]. Interestingly, a case study reported that two patients diagnosed with ad-
vanced PDS and high TMB have been successfully treated with anti-PD-1 (Pembrolizumab,
(KEYTRUDA® MSD Kenilworth, NJ, USA). One patient with a locally metastasized PDS
(TMB 63.162 mt/mb) showed complete remission after 8 cycles of treatment with Pem-
brolizumab. Another patient with an inoperable relapsed PDS (TMB 77.997 mt/mb) treated
with Pembrolizumab for four months, similarly showed a complete response. However,
this patient received additional radiotherapy, introducing an additional factor potentially
influencing treatment response [42]. Pembrolizumab is approved for other UV-induced
skin tumors, such as malignant melanoma [43]. Therefore, we suggest that metastasized
and/or unresectable AFX and PDS could be considered for immunotherapy with CPIs.

5. Conclusions

Our analysis highlights that mutations in TP53, TERT promotor, CDKN2A, and
NOTCH1 are frequent in AFX and PDS, along with a high TMB. This signature could
help to distinguish AFX and PDS from other malignancies, although this molecular profile
is not unique for AFX and PDS.

Our data demonstrate that AFX and PDS are not distinguishable from each other with
the current F1CDx panel. Thus, our findings did not reveal new rigid diagnostic criteria
to distinguish AFX from PDS. The current clinical practice using histological criteria to
determine the diagnosis and the prognosis remains valid. Nevertheless, an interesting
trend in ASXL1 occurring more frequently in AFX has been noted. To further investigate
the prevalence of ASXL1 in AFX, NGS analysis of a larger cohort is necessary. The inclusion
of somatic alterations with unknown impact into our analysis showed a potential difference
in GATA4, PIK3CA, CUL4A, DAXX, MPL, CDH1, and CD22 among the subgroups. Further
studies with the inclusion of the unknown alterations may present significant differences
between AFX and PDS. For further insight into the molecular pattern of the investigated
malignancies, performing deep tumor profiling such as single-cell analysis may be required.
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This could identify new biomarkers unique for AFX or PDS. Furthermore, our data show
that AFX and PDS harbor high TMB, which is expected from a UV-exposed anatomical
site. Therefore, unresectable and/or metastasized AFX and PDS harboring high TMB
could be considered for immunotherapy. Although immunotherapy could offer a new
promising therapeutic approach, further investigations in randomized prospective trials of
immunotherapy in AFX and PDS patients with high TMB are needed.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/genes12070974/s1. Table S1: IHC features of AFX and PDS tumor samples, Table S2: Gene
alterations identified by F1CDx, Table S3: Results of statistical analysis of known and likely gene
alterations, Table S4: Results of statistical analysis of all identified gene alterations, Table S5: Results of
statistical analysis of unknown gene alterations, Table S6: TMB and MSI-Status identified by F1CDx.
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