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ABSTRACT
Adoptive cell therapy is a rapidly advancing approach to 
cancer immunotherapy that seeks to facilitate antitumor 
responses by introducing potent effector cells into the 
tumor microenvironment. Expanded autologous T cells, 
particularly T cells with engineered T cell receptors (TCR) 
and chimeric antigen receptor- T cells have had success 
in various hematologic malignancies but have faced 
challenges when applied to solid tumors. As a result, 
other immune subpopulations may provide valuable and 
orthogonal options for treatment. Natural killer (NK) cells 
offer the possibility of significant tumor clearance and 
recruitment of additional immune subpopulations without 
the need for prior antigen presentation like in T or B 
cells that could require removal of endogenous antigen 
specificity mediated via the T cell receptor (TCR and/or the 
B ecll receptor (BCR). In recent years, NK cells have been 
demonstrated to be increasingly important players in the 
immune response against cancer. Here, we review multiple 
avenues for allogeneic NK cell therapy, including derivation 
of NK cells from peripheral blood or umbilical cord blood, 
the NK- 92 immortalized cell line, and induced pluripotent 
stem cells (iPSCs). We also describe the potential of 
engineering iPSC- derived NK cells and the utility of this 
platform. Finally, we consider the benefits and drawbacks 
of each approach and discuss recent developments in the 
manufacturing and genetic or metabolic engineering of NK 
cells to have robust and prolonged antitumor responses in 
preclinical and clinical settings.

NATURAL KILLER CELLS IN CANCER
Natural killer (NK) cells are an essential 
component of the innate lymphoid cell (ILC) 
compartment. NK cells contrast from other 
lymphoid populations like T or B cells, which 
drive adaptive immune responses through 
specificity of individual cells for distinct 
antigens.1 2 Instead, NK cells can exert their 
effector responses without prior antigen 
exposure and have an analog signaling mech-
anism in which the integration of numerous 
activating and inhibitory signals ultimately 
determine the cytotoxic response of the NK 
cell.3–6

NK cells have significant roles in anti- tumor 
responses. They can detect transformed 
tumor cells with expression or absence of 

ligands that are associated with cancer.5 
Notably, tumor cells can often downregulate 
expression of MHC class I and thus escape 
surveillance by CD8 +T cells, but because 
MHC I molecules are cognate ligands for NK 
cell inhibitory receptors, NK cells kill such 
MHC- deficient cells.7 Furthermore, NK cells 
express a variety of other activating and inhib-
itory receptors central to antitumor innate 
immunity. NKG2D is an important acti-
vating receptor that recognizes MHC class I 
polypeptide- related sequences A and B (MICA 
and MICB) as well as UL16 binding proteins, 
which can be expressed on rapidly dividing 
tumor cells.4 6 Additionally, CD16 is a human 
IgG1 Fc receptor on NK cells that provides 
a mechanism for antibody- dependent cell- 
mediated cytotoxicity (ADCC) of tumor 
cells.6 NK cells can exert direct cytotoxicity 
via granzyme and perforin- mediated lysis and 
also via death- inducing ligands like FasL.6 
Additionally, the LFA1- ICAM1 axis normally 
involved in immune cell trafficking has been 
implicated in optimizing NK cell recognition 
of tumor cells.4

In addition to their direct cytotoxicity, 
NK cells are also capable of driving tumor 
inflammation and making the tumor micro-
environment (TME) more immunologically 
‘hot’ by producing chemokines like XCL1 or 
XCL2 or cytokines like IFN-γ and recruiting 
and maturing additional immune cells.4 8 9 
NK cells themselves can effectively home to 
tumor sites via chemokine signaling, and 
CXCR3 in particular is important for NK 
cell localization to tumor.10 11 Furthermore, 
NK cells in circulation have been shown to 
mitigate progression of disease by inhib-
iting tumor metastasis.4 12 13 From a clinical 
perspective, many cancer types—including 
melanoma, head and neck squamous cell 
carcinoma (HNSCC), non- small- cell lung 
cancer (NSCLC), leukemia, and gastrointes-
tinal cancer— show improved outcomes with 
greater NK cell infiltration or involvement, 
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confirming the importance of this distinct cell type in the 
antitumor response.4 14–17

Despite these antitumor roles for NK cells, cancer can 
persist and progress due to various malfunctions in immu-
nosurveillance, including the NK cell response. The TME 
can be highly immunosuppressive via secretion of nega-
tive chemical modulators, nutrient deficiency (including 
hypoxia), expression of inhibitory checkpoint molecules, 
and other factors that continue to be investigated.18 More-
over, NK cell activating receptors are downregulated and 
inhibitory receptors like NKG2A/CD94 heterodimer are 
upregulated to inhibit NK activity.11 NK cell recruitment, 
metabolism, and cytotoxicity can all become dysfunc-
tional in the disruptive TME, posing a need for novel 
therapeutics that can potentially overcome the inhibi-
tions of the TME.

NON-INDUCED PLURIPOTENT STEM CELL ALLOGENEIC NK CELL 
THERAPIES
Overview
Allogeneic NK cell therapies have been increasingly 
evaluated for the treatment of numerous malignancies, 
and many have even progressed to clinical testing. This 
treatment modality presents copious opportunities for 
next- generation cell therapy, although much remains 
to be discovered and understood about allogeneic NK 
cells. Typically, adoptive NK cell therapy is administered 
after lymphodepletion via fludarabine and cyclophospha-
mide in order to minimize NK graft rejection.19 NK cell 
graft rejection is thought to be mediated via recipient T 
cells, particularly CD8 +T cells that activate and prolif-
erate following IL- 15 supplementation intended to boost 
NK cell persistence and expansion. Thus, suppression 
of recipient T cell activity may help promote NK graft 
persistence.20 21

Considering their alloreactivity, allogeneic NK cells are 
often mismatched such that donor NK inhibitory killer 
Ig- like receptors (KIRs) fail to recognize recipient human 
leucocyte antigen (HLA) molecules. This mismatch can 
induce a protective effect that promotes survival and 
reduces risk of relapse, as observed in acute myeloid 
leukemia (AML) patients with haploidentical trans-
plants.22 Unfortunately, not all KIR- HLA mismatches are 
robust, and some may not convey any therapeutic bene-
fits for patients undergoing haploidentical transplants or 
HLA- matched, related, or unrelated transplants.23

Moreover, allogeneic NK cell transfers do not show an 
increased risk of graft- versus- host- disease (GVHD) and 
actually may even decrease risk of GVHD, a stark contrast 
from the increased risk of GVHD observed in adoptive T 
cell therapies.23 24 Donor NK cells can possibly eliminate 
recipient dendritic cells from priming reactive T cells, or 
these NK cells can directly eliminate alloreactive T cells 
triggering GVHD. Furthermore, KIR- HLA mismatch 
can promote the anti- GVHD effects of donor NK cells.25 
The lack of GVHD is a significant advantage of alloge-
neic NK cell therapies that paves the path for off- the- shelf 

administration of these treatments, allowing for scaling of 
manufacturing and ultimately treatment of patients.

Additionally, allogeneic NK cell transfers can be 
combined with orthogonal therapies. Radiation and 
chemotherapy are classic adjuvants that can improve 
overall and/or progression- free survival from hema-
tologic malignancies. Some clinical studies found that 
pretreatment with NK cells or multiple infusions over 
time of NK cells could improve efficacy of hematopoietic 
stem cell treatment.26 One significant strategy for alloge-
neic NK cell combination immunotherapy involves co- in-
fusion of monoclonal antibodies with donor NK cells in 
hopes of achieving a synergistic, therapeutic effect. One 
study of patients with advanced NSCLC found combina-
tion allogeneic NK cells and pembrolizumab (anti- PD- 1) 
improved overall survival more than pembrolizumab 
alone in a trial of 109 enrolled patients (15.5 months vs 
13.3 months). Patients receiving both NK and pembroli-
zumab dosed with multiple courses of NK therapy also 
had longer survival (18.5 months vs 13.5 months for single 
course).27 Additionally, a phase I study of patients with 
refractory or relapsed non- Hodgkin’s lymphoma found 
the combination of allogeneic NK cells with rituximab 
(anti- CD20) to have an objective response rate of 55.6% 
in 9 patients with no GVHD.28 Similarly, weekly infusions 
of NK cells via hepatic artery combined well with cetux-
imab (anti- EGFR) and showed therapeutic benefit in 9 
patients with liver metastases of colorectal or pancreatic 
cancer. Objective response was observed in three patients, 
and two of these patients had HLA- KIR mismatch.29 30 
Finally, trastuzumab (anti- HER2) shows synergy with allo-
geneic NK cells in HER2- positive patient tumors, and 
engineering of a modified NK cell line to be conjugated 
to trastuzumab had significant preclinical potency in vitro 
and in vivo.31 32 Taken together, allogeneic NK cells can 
be enhanced through a multitude of combinations with 
monoclonal antibodies to improve clinical efficacy.

Peripheral blood-derived and umbilical cord-derived NK cell 
therapies
Traditional approaches to adoptive NK cell therapy 
involve allogeneic transfusions of NK cells derived from 
the peripheral blood (PB- NK) or umbilical cord blood 
(UB- NK). PB- NK cells comprise approximately 10% of 
circulating lymphocytes.24 33 In UB, NK cells are relatively 
more frequent, comprizing up to 30% of lymphocytes.33

Both PB- NK and UB- NK have shown successes in 
preclinical and clinical studies. PB- NK cells derived from 
healthy donors that were activated by coculture with a 
K562 cell line expressing membrane- bound IL- 15 and 
4- 1BB ligand were found to show potent cytotoxicity 
against multiple hepatocellular carcinoma cell lines 
in vitro and in vivo in immunodeficient mice.34 When 
this coculture stimulus system was applied to previ-
ously treated patients with high- risk relapsing myeloma, 
NK- cell infusion resulted in a partial response for one out 
of seven evaluable patients with no severe adverse events, 
and fresh (not cryopreserved) cells were found to be key 
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to significant in vivo NK cell proliferation.35 Furthermore, 
Kottaridis et al showed in a phase I trial that allogeneic NK 
cell infusions from haploidentical donors in patients with 
high risk AML had mild efficacy with one patient having 
a complete remission out of seven total treated patients at 
1- year post- treatment.36

The use of PB- NK subsets with ‘adaptive’ memory- 
like features may also have clinical utility. Preactivation 
of PB- NK with IL- 12, IL- 15, and IL- 18 has been demon-
strated to result in NK cells with a lower threshold for 
activation by cytokine or activating receptor restimula-
tion.37–39 These ‘cytokine- induced memory- like’ NK cells 
have shown efficacy in treatment- refractory AML and may 
be an important strategy for enhancing chimeric antigen 
receptor (CAR)- NK cell immunotherapy approaches.37 40 
Another emerging strategy is the ex vivo expansion and 
adoptive transfer of a subset of PB- NK with antibody- 
dependent adaptive features. These cells have epigeneti-
cally silenced the expression of the FcεR1γ adaptor protein 
and exhibit robust effector responsiveness to tumor cells 
when directed by target- specific antibodies.41–44 The 
FcεR1γ-deficient (‘G–’) NK cells are found in approxi-
mately one third of the population, and their presence 
in individuals is associated with prior infection by human 
cytomegalovirus, a virus that has also been observed to be 
associated with expansion of NKG2C+ adaptive NK cells in 
vivo.45 46 The ex vivo expansion and use of healthy donor- 
derived G– NK cells as an adoptive cell therapy approach, 
in combination with target- specific antibodies, has been 
proposed to be another possible therapeutic strategy.47

UB- NK cells have also been evaluated in clinical treat-
ment of patients with various hematologic cancers, 
including AML, acute lymphocytic leukemia, and chronic 
lymphocytic leukemia (CLL).48 In particular, UB- NK cell 
engineering efforts have advanced clinically. A CD19 
CAR- NK therapy administered after lymphodepleting 
chemotherapy showed significant efficacy with 8 out of 11 
patients treated having a response at a median follow- up of 
13.8 months, with 7 of those 8 having complete responses. 
None of the patients had above a grade 3 adverse event. 
However, a small number of contaminating CAR- T cells 
were detected in infusions, although this was a small 
fraction that likely did not contribute to any adverse 
reaction or drive the host anticancer response.49 Other 
UB- NK therapeutic approaches include precomplexing 
the allogeneic cells with engineered cell engagers. For 
instance, Kerbauy et al precomplexed AFM13, a bispecific 
CD30/CD16 antibody, with UB- NK cells for treatment of 
CD30 +leukemias or lymphomas in order to engage NK 
cells more robustly with tumor cells for enhanced cytotox-
icity. This technology preclinically showed significant in 
vitro cytotoxicity and in vivo efficacy.50 This platform has 
been advanced to clinical trials for which press reports 
have been written but no formal data published yet, 
and an objective response rate of 100% with a complete 
response rate of 42% was observed in 12 patients after 
1 cycle of treatment in a Phase I- II study with no major 
adverse reactions noted (NCT04074746).51

Although PB- NK and UB- NK therapies have shown 
success in multiple contexts, they have certain limitations. 
PB- NK cells have poor efficacy if cryopreserved and worse 
bone marrow homing relative to UB- NK cells. However, 
UB- NK cells have weaker cytotoxicity compared with 
PB- NK cells, showing an immature phenotype with higher 
expression of inhibitory NKG2A with decreased expres-
sion of activating receptors.48 52 However, IL- 2 and/or 
IL- 15 stimulation has been noted to boost UB- NK activity 
and differentiation into more functional effector cells.48 
Importantly, PB- NK and UB- NK cell infusions fundamen-
tally are heterogeneous. First, other leucocytes, especially 
lymphocytes like T cells, can potentially contaminate NK 
cell infusions and pose an increased risk for GVHD or 
passenger lymphocyte syndrome. To avoid such compli-
cations, robust purification protocols to isolate solely NK 
cells would be necessary, possibly complicating efforts to 
genetically modify NK populations. Additionally, within 
the NK compartment, cells can have variable effector 
capabilities, with some cells having greater proliferation 
and cytotoxic potential than others. The intrinsic hetero-
geneity associated with blood- derived NK treatments 
poses a challenge for efforts to deliver consistent and 
homogeneous treatment to patients, although applica-
tions of PB- NK and UB- NK therapies thus far have not 
faced significant drawback from this issue.49 53 Impor-
tantly, both UB- NK and PB- NK cells require ex vivo 
expansion from their donor sources in order to obtain 
sufficient quantity of NK cells for therapeutic effects. 
Specifically, membrane- bound (mb) IL- 2, IL- 15, or IL- 21 
with K562 feeder cells that lack HLA but express costimu-
latory molecules are used for consistent, effective ex vivo 
expansion, and K562- mb15- 4- 1BBL cells are a common 
generative basis for numerous clinical trials involving 
allogeneic NK cell therapy.48 52 54–56 This complex manu-
facturing process poses obstacles to scaling of NK cell 
therapies and can be a contributory factor to higher cost 
of treatment.

Overall, PB- NK and UB- NK adoptive cell therapies 
have seen numerous successes in the treatment of various 
hematologic cancers. However, they are limited by donor 
supply and require non- trivial investment of time and 
resources to expand the limited numbers of NK cells in 
blood and purify the NK population to obtain a homoge-
neous infusion.

NK-92 cell line-derived therapies
In addition to the isolation and expansion of NK cells from 
blood, clonal NK- cell lines have also been investigated for 
adoptive NK cell therapy. NK- 92 is an immortalized cell 
line derived from a patient with lymphoma that has shown 
good cytotoxicity in various cancers.57 NK- 92 expresses 
numerous activating receptors while lacking expression 
of some inhibitory ones. The immortalized NK- 92 cell 
line provides a path for clinical translation by allowing 
for easy in vitro culturing. The homogeneity of the cell 
line also confers ease of engineering and genetic modi-
fication that produces a consistent product.53 57 Notably, 
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Jochems et al engineered the NK- 92 cell line to express 
a high- affinity variant of CD16, which is normally absent 
on the NK- 92 cell line despite being an important driver 
of ADCC in circulating NK cells. This high- affinity CD16 
(haNK) cell line was also genetically modified to produce 
endogenous IL- 2 for enhanced survival and propagation 
in culture. In in vitro studies, gamma- irradiated haNK 
cells showed potent cytotoxicity against multiple tumor 
types, including lung and breast.58 The haNK system 
was further modified to express a PD- L1- targeting CAR 
(t- haNK), and this system had good efficacy in vitro and 
in vivo, with PD- L1- dependent tumor control achieved in 
murine MOC1 HNSCC.59 60

Clinically, NK- 92 cells that are irradiated by gamma rays 
have been proposed to be safe for allogeneic adoptive cell 
therapy.57 61 Un- engineered NK- 92 cells did not induce any 
serious adverse effects in trials for renal, lung, and other 
advanced cancers. Furthermore, NK- 92 shows therapeutic 
potential in aggressive, metastatic tumor models.57 4 of 11 
patients with metastatic renal cell carcinoma had stable 
disease after NK- 92 infusions, and the 1 patient with meta-
static melanoma treated had a minor response. Unfortu-
nately, 10 of the 12 patients treated died within 4 years of 
follow- up due to progressed disease, as these tumors were 
advanced. NK- 92 infusions were moderately safe, and of 
the 12 patients, one patient had a grade 3 fever and one 
patient had a grade 4 hypoglycemic episode.62 In a sepa-
rate phase I trial, three out of four patients with advanced 
lung cancer had a mixed response or stable disease after 
NK- 92 infusion, with no major toxicities.61 More recently, 
the QUILT 3.064 trial of the PD- L1 t- haNK system has 
shown no dose- limiting toxicities in preliminary data (not 
yet peer- reviewed) from six patients with locally advanced 
or metastatic solid tumors (NCT04050709).63

While the NK- 92 cell line addresses the heterogeneity 
and difficulties with isolation and expansion of NK cells 
seen in the blood- sourced NK cell therapies, it does 
carry its own set of drawbacks. Mainly, NK- 92 cell lines 
have poor in vivo expansion to drive strong and durable 
effector responses. This lack of expansion decreases 
the maximum efficacy that NK- 92 cell therapies can 
achieve.53 64 NK- 92 cells have failed to provide significant 
benefit to patients with refractory or relapsed AML, and 
infusion of irradiated NK- 92 cells were found to only have 
transient effects on a patient’s cytokine profile. Gamma- 
irradiation of NK- 92 cells is necessary to control prolif-
eration of the cells prior to infusion, but the irradiation 
protocol prevents persistence of the infused cells.65 Addi-
tionally, healthy PBMCs, particularly NK cells, have been 
found to target and lyse NK- 92 cells, further diminishing 
the potency and survival of this cell- line in systemic circu-
lation.66 However, coadministration of IL- 15 could miti-
gate this rejection of NK- 92 cells in vitro, possibly through 
alterations of KIR and KAR profiles.67 All together, these 
data suggest that the longevity of NK- 92 cells in systemic 
circulation is likely a key obstacle that must be addressed 
to advance this class of allogeneic NK cell therapy forward 
clinically to a greater degree.

Induced pluripotent stem cell- derived NK cell therapies
Induced pluripotent stem cells (iPSCs) are derived 

by reversing the developmental program of somatic 
cells. They were first generated from mouse fibroblasts 
via expression of four key transcription factors: Oct3/4, 
Sox2, c- Myc, and Klf4.68 iPSCs present vast opportu-
nities in regenerative medicine and were first applied 
to treat sickle cell anemia in humanized mice.69 iPSCs 
initially faced a major obstacle with translation because 
the induced stem cells could spontaneously differentiate 
and needed continuous expression of genes conferring 
pluripotency, yet integration of these genes into human 
cell genomes proved risky because of poor control over 
the locus of integration. However, Valamehr et al reported 
a transgene- free culture system that allows for stable iPSCs 
in culture, further enabling clinical translation.70

NK cells derived from iPSCs (iPSC- NK) present 
another avenue for adoptive cell therapy. Like NK- 92 
cells, iPSC- NK cells are homogeneous, as they are derived 
from a clonal population, and can be engineered.53 For 
instance, CAR- NK cells derived from iPSCs targeting 
mesothelin showed strong in vivo responses in human 
A1847 ovarian cancer and outperformed PB- NK cell 
therapy.71 Compared with primary NK cells derived from 
blood, iPSC- NK cells are significantly easier to genetically 
engineer in a reliable and efficient manner. Primary NK 
cells comprise a small subpopulation in blood, and viral 
integration is a poorly controlled and inefficient process 
that involves the death of numerous cells. However, the 
clonal iPSC population is well suited to these viral integra-
tion methods, making iPSC- NK products simpler to use 
for engineering pipelines by allowing for straightforward 
knock- in or knock- out of genes.71 72 An example of how 
iPSCs can enable the engineering of tolerogenic alloge-
neic NK cells is the forced expression of HLA- E and the 
knockout of the β2M gene in iPSCs prior to differentia-
tion into NK cells. The NK cells from these iPSCs would 
have the ability to avoid GVHD by the downregulated 
surface expression of MHC I (thus avoiding host T cell 
recognition) and the overexpression of HLA- E, which is 
the cognate ligand for the inhibitory receptor NKG2A 
(thus avoiding activation of host NK cells).73 Further-
more, the clonal iPSC- NK populations can overcome the 
donor- to- donor variability seen in PB- NK or UB- NK ther-
apies. This variability in NK cell function and expansion 
potential results in an added step of validating PB- NK or 
UB- NK batches prior to adoptive transfer, complicating 
manufacturing.53 iPSC- NK cells can streamline manufac-
turing by overcoming this challenge and provide more 
consistent batches of cells for therapy.

iPSC- NK cells can also be selected for good cytotoxic 
profiles conducive for strong antitumor responses. 
iPSC- NK cells showed effector cytotoxic responses in 
vitro against a variety of hematologic and solid tumor 
cell lines, including lung cancer, hepatocellular cancer, 
ovarian cancer, myeloid leukemia, and melanoma. These 
iPSC- NK cells also successfully delayed tumor progression 
in a xenograft ovarian cancer model. Notably, iPSC- NK 
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cells can also recruit PB T cells and synergize with anti- 
PD- 1 therapy to elicit a robust antitumor response in 
ovarian cancer.74 iPSC- NK cells are able to generate an 
inflammatory environment to elicit antitumor responses 
that are coordinated with other immune subpopulations.

In clinical contexts, iPSC- NK cell therapy has shown 
significant promise, although there are no therapies yet 
that have received FDA- approval. One clinical trial is in 
place for iPSC- NK cell monotherapy or combination with 
immune checkpoint inhibitors (NCT03841110). Another 
trial is evaluating iPSC- NK engineered to express high- 
affinity, non- cleavable CD16 (NCT04023071) as a mono-
therapy and combination therapy. Although no formal 
data has been published, reports indicate that this high- 
affinity CD16 iPSC- NK system has good safety and efficacy 
in patients with relapsed and refractory AML, with four of 
nine patients having an objective response.75 This same 
therapy has also been reported to be safe and effective 
in combination with rituximab in B cell lymphoma with 
6 of 11 patients having a complete response.76 Although 
these trial data are promising, they are still in phase I and 
formal peer- review of data is still necessary before further 
conclusions can be made. Table 1 highlights key ongoing 
clinical trials involving iPSC- derived NK cell therapies.

Manufacturing challenges of iPSC-NK cells and potential 
solutions
While iPSC- NK cells present the opportunity for effec-
tive adoptive NK cell therapy at a clinical scale, they do 
have limitations. The process of differentiating iPSCs into 
NK cells and maintaining a stable iPSC- NK cell culture 
presents a major challenge in manufacturing clinical 
scale therapies. Differentiation of iPSCs must occur in a 
controlled manner and can be disturbed by numerous 
factors, including components of culture media and 
oxygen supply.77

In the case of NK cells, traditional methods involved a 
single cell adaptation step in which iPSCs survive in culture 
as a single cell and differentiated cells are completely 
removed from culture. This process takes roughly 12–15 
passages and can require weeks to months of culturing 
before the iPSC single- cell suspension is ready for differ-
entiation.78 79 This rate- limiting step impedes efforts to 

translate iPSC- NK cells to patients in an efficient manner 
for reliable adoptive cell therapy.

However, Zhu and Kaufman reported a novel, method 
that bypasses the single- cell adaptation process. Instead, 
iPSCs are grown in feeder cell- free media and then 
formed into embryoid bodies directly via addition of 
Rho- associated protein kinase inhibitor (ROCKi) to the 
mixture of SCF, VEGF, and BMP4 in APEL that was used 
in traditional methods. The use of ROCKi and feeder- 
free media allows one to skip the single cell adaptation 
process and expedites differentiation of iPSCs into NK 
cells significantly.78 Furthermore, this pipeline can work 
well with genetic engineering of iPSCs, and iPSCs engi-
neered to express high- affinity non- cleavable CD16 could 
successfully differentiate into iPSC- NK cells expressing 
the same construct and maintained their cytotoxic 
profile with enhanced ADCC.80 Additionally, Angelos et 
al report that the aryl hydrocarbon receptor antagonist, 
StemReginin- 1, could enhance differentiation of embry-
onic stem cells to CD34 +CD45+hematopoietic progen-
itor cells. Moreover, StemReginin- 1 treatment increased 
hematopoietic differentiation into conventional NK cells, 
pointing to aryl hydrocarbon receptor antagonism as a 
possible tool to enhance iPSC- NK manufacturing.81 Thus, 
while iPSC differentiation does present a manufacturing 
challenge, significant advances have already been made 
to expedite the process, and additional developments 
may arise in the future.

Metabolic reprogramming of NK cell activity
One challenge that all NK- based cell therapies face is 
the relatively short lifespan of these infused cells when 
compared with other adoptive cell therapies like CAR- T. 
Autologous CAR- T cells are capable of surviving for up 
to years after transplantation, while allogeneic NK cells 
do not survive beyond the scope of weeks.82 There are 
numerous elements that contribute to the metabolic 
function and persistence of NK cells, and several of them 
have been targeted for further engineering.

IL- 15 is a key cytokine in the immune synapse that 
promotes innate and adaptive immune cell develop-
ment and survival, including for CD8 +T cells and NK 
cells. Blocking IL- 15 receptor α (IL- 15Rα) can lead to 

Table 1 Ongoing clinical trials with unengineered iPSC- derived NK cells

Trial identifier Intervention(s) Phase Cancer subtypes Date initiated

NCT03841110 1. iPSC- NK monotherapy
2. iPSC- NK with nivolumab, pembrolizumab, 

or atezolizumab
3. iPSC- NK with IL- 2 and nivolumab, 

pembrolizumab, or atezolizumab

I Various advanced solid tumors February 2019

NCT04023071 High- affinity, non- cleavable CD16 iPSC- NK 
with or without rituximab or obinutuzumab

I AML (monotherapy) or B- cell 
lymphoma (combination)

July 2019

NCT04630769 High- affinity, non- cleavable CD16 iPSC- NK at 
various doses with or without enoblituzumab

I Ovarian, fallopian tube, or 
primary peritoneal cancer

November 2020

AML, acute myeloid leukemia; iPSC, induced pluripotent stem cell; NK, natural killer.
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NK apoptosis and diminished survival.83 84 However, in 
clinical applications, IL- 15 has a short in vivo half- life 
and is not reliable for eliciting strong, durable immune 
responses, even though IL- 15Rα+cells can serve as a 
sustained source of IL- 15.83 85 Protein engineering of 
IL- 15 or IL- 15Rα has improved on the wild- type variant of 
this cytokine. Soluble expression of the N- terminal sushi 
domain of IL- 15Rα enhances IL- 15 binding to IL- 2Rbeta 
and gamma.86 Additionally, fusion of a IL- 15 superagonist 
with IL- 15Rα could successfully inhibit TGF-β1 and main-
tain NK cell cytotoxicity in immunosuppressive environ-
ments like the TME.87 Thus, maintaining and stimulating 
the IL- 15 signaling axis appears to be a crucial driver of 
NK cell survival in adoptive transfers.

Considering regulators of IL- 15, cytokine- inducible 
SH2- containing protein (CIS) is an inhibitor of IL- 15 
signaling for NK cells. CIS is expressed in response to 
IL- 15 signaling and deletion of CISH, the gene encoding 
CIS, confers IL- 15 hypersensitivity to NK cells, allowing 
them to have enhanced survival, proliferation, and 
effector functions.88 Notably, CIS- ablation does not 
drive spontaneous hyperactivity of NK cells; rather, CIS- 
ablation reduces the threshold for NK cell activation.89 
Thus, CISH- knockout can pave the path for more robust 
NK cell responses.

IL- 15 metabolic control has been harnessed in preclin-
ical NK cell therapies. A CISH- knockout (CISH- KO) 
iPSC- NK cell platform showed improved proliferation 
and strong cytotoxicity in vivo in murine AML. Further 
characterization found that these CISH- KO iPSC- NK 
cells had better metabolic fitness, as measured by glyco-
lytic and oxidative phosphorylation rates.90 Additionally, 
application of this CISH- KO to UB- CAR- NK cells was also 
successful, and NK cell effector functions were enhanced 
with increased mTORC1 and c- Myc signaling.91 These 

data suggest that numerous avenues for allogeneic NK cell 
therapy could benefit from metabolic reprogramming 
via CISH- KO. In particular, iPSCs are an easy system in 
which to execute targeted genetic modification, making 
iPSC- NK cells a well- suited model for enhanced effector 
functions via CISH modulation. However, other forms 
of allogeneic NK cell therapy are by no means excluded 
from the possible benefits of CISH- KO.

Besides the IL- 15 signaling axis, other metabolic 
modulators of NK cells can affect survival and function. 
CD38 catalyzes hydrolysis of cyclic ADP- ribose (cADPR), 
a NAD+metabolite0.92 CD38+cells have reduced 
persistence and are more susceptible to oxidative stress.93 
CD38 expression can interfere with antitumor responses, 
and blockade of CD38 improved T cell tumor control, 
providing an avenue for enhancing cell therapies.94 
In cells derived from patients with multiple myeloma 
(which commonly expresses CD38), genetic ablation 
of CD38 in PB- NK cells via CRISPR/Cas9 synergized 
with daratumumab, an anti- CD38 monoclonal antibody, 
and improved in vivo persistence and enhanced ADCC. 
These CD38- KO PB- NK cells had metabolic changes as 
well, demonstrating increased mitochondrial respira-
tory capacity.95 Moreover, a CD38 knockdown NK cell 
platform expressing a CD38 CAR showed significant effi-
cacy against AML in vitro.96 Thus, CD38- KO presents an 
orthogonal option to IL- 15 signaling enhancement as a 
tool to promote NK cell survival, proliferation, and func-
tion and could be easily adaptable to iPSC- NK and other 
allogeneic NK platforms.

While it is unlikely that NK cell persistence via meta-
bolic engineering will ever surpass autologous T cell 
persistence, these efforts collectively point to novel ways 
of boosting NK cell therapy. Enhanced in vivo survival 
and effector function encourages prolonged NK cell 

Figure 1 Engineering of NK cells for allogeneic therapy. NK cells can be genetically modified via knock- in or knockout of 
genes to enhance efficacy, reduce host rejection, or increase in vivo persistence of allogeneic NK therapies. Figure uses 
adaptations of cartoon images from Servier Medical Art, licensed under CC BY 3.0. CAR, chimeric antigen receptor; HLA, 
human leucocyte antigen; NK, natural killer.
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antitumor responses that can result in stronger and more 
durable patient responses.

CAR-NK cell therapy
CAR- NK cells present another avenue for engineering 
allogeneic NK cells that is rapidly advancing. Although 
CAR- T cells can achieve durable responses as they 
persist longer and have the potential to differentiate 
into memory T subsets, CAR- NK cells retain the addi-
tional ability to clear tumor cells independent of CAR- 
function.19 97 Moreover, CAR- T cells can have significant 
associated toxicities, such as cytokine release syndrome 
and neurotoxicity. Due to their limited lifespan in circu-
lation as well as the lack of HLA- recognition necessary 
for activation, CAR- NK cells generally have less toxicities, 
especially in allogeneic contexts.19 Moreover, given the 
more facile and reliable methods of engineering iPSC- NK 
cells, CAR- NK may be easier to manufacture than CAR- T 
cells. Thus, CAR- NK cells are an avenue for off- the- shelf 

CAR therapy and can potentially bypass the leukapheresis 
and subsequent T cell processing that complicates CAR- T 
manufacturing.

As of March 2022, there are over 20 clinical trials 
testing CAR- NK constructs in various hematologic and 
solid tumor malignancies, according to  ClinicalTrials. 
gov. As discussed in the section on UB- NK therapies, a 
CD19- targeting CAR- NK construct showed significant 
efficacy in an initial phase I study with no serious toxic-
ities.49 Moreover, Bachanova et al presented initial clin-
ical data on FT596, a CD19- targeting, off- the- shelf, 
iPSC- derived CAR- NK therapy, in B- cell lymphoma 
at the 62nd American Society of Hematology Annual 
Meeting. Although formal peer- reviewed publication of 
the data is still pending, initial data of FT596 in a single 
patient showed a partial response with over 50% reduc-
tion in tumor volume. However, several adverse events, 
including leukopenia, neutropenia, anemia, urinary tract 

Table 2 Summary and comparison of distinct allogeneic NK cell donor sources

Donor source
Peripheral blood NK
(PB- NK)

Umbilical cord blood NK
(UB- NK) NK- 92 cell line

iPSC- derived NK
(iPSC- NK)

Safety Well tolerated with no 
severe adverse events 
commonly reported in 
clinical data.
Contamination with other 
lymphocytes (T cells) 
can occur during ex vivo 
processing and potentially 
affect toxicity.

Well tolerated with no 
severe adverse events 
commonly reported in 
clinical data.
Contamination with other 
lymphocytes (T cells) 
can occur during ex vivo 
processing and potentially 
affect toxicity.

Well tolerated with no 
severe adverse events 
commonly reported in 
clinical data.
Clonal population 
reduces risk of potential 
toxicity caused by 
heterogeneity of product.

Generally well tolerated, 
although some adverse 
events were occasionally 
reported.
Clonal population reduces 
risk of potential toxicity 
caused by heterogeneity 
of product.

Cytotoxicity Activation via ex vivo 
coculture with HLA- 
deficient K562 cells 
and IL- 2, IL- 15, or IL- 21 
stimulation.
Clinical data shows 
good efficacy in liquid 
tumors. PB- NK has 
better cytotoxicity on 
average than UB- NK cells. 
However, poor efficacy 
was seen if cells were 
cryopreserved.

Activation via ex vivo 
coculture with HLA- 
deficient K562 cells 
and IL- 2, IL- 15, or IL- 21 
stimulation.
Clinical data show good 
efficacy in liquid tumors, 
and UB- NK has better 
bone marrow homing than 
PB- NK cells but poorer 
cytotoxicity.

Poor in vivo expansion 
due to gamma irradiation, 
resulting in limited 
cytotoxicity.
Clinical data shows some 
efficacy, but more limited 
compared with other NK 
cell sources.
NK- 92 cells thus have 
poor longevity in 
systemic circulation 
that prevents a durable 
response.

Do not require gamma 
irradiation or a coculture 
system for expansion. 
Significant in vivo 
cytotoxicity has been 
observed in hematologic 
and solid tumor models.
Clinical data shows good 
efficacy in hematologic 
tumors.
Ease of engineering makes 
metabolic reprogramming 
to boost cytotoxicity and 
persistence more facile.

Manufacturing NK cells are a small 
subset of total lymphocyte 
population that must be 
expanded ex vivo.

NK cells are more 
prevalent than in PB but 
ex vivo expansion still 
needed.

NK- 92 cell line can be 
easily expanded via 
culture before dosing.

Differentiating iPSCs to NK 
cells can be complex, but 
new methods to bypass 
single cell adaptation are 
simplifying manufacturing.

Engineering Difficult to extract a clonal 
population, and genetic 
engineering can kill many 
of the NK cells available.

Difficult to extract a clonal 
population, and genetic 
engineering can kill many 
NK cells present, making 
the process inefficient.

NK- 92 is a clonal 
population, allowing 
for homogeneous 
engineering and genetic 
manipulation.

iPSC cells provide a clonal 
population with well- 
established methods of 
viral integration to knock 
in or knock out genetic 
constructs.

iPSC, induced pluripotent stem cell; NK, natural killer.
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infection, and hypertension were observed. Although 
FT596 shows promise, more data and peer- review are still 
necessary before any conclusions can be made about this 
therapy.98 Clinical trials of other CAR- NK constructs in 
different hematologic malignancies and solid tumors are 
currently recruiting, and we expect to see further clinical 
validation of CAR- NK treatments in the coming years.99 
CAR- NK therapy is merely one key example of the bene-
fits of genetical manipulation of NK cells, and figure 1 
highlights different ways to genetically modify NK cells 
that have been discussed in this review.

FUTURE DIRECTIONS FOR NK CELL THERAPY
Allogeneic NK cell therapy continues to be a promising 
avenue for adoptive cell immunotherapy in a variety of 
hematologic and solid cancers. NK cells can be produced 
at a clinical scale with a variety of methods, including 
isolation and expansion from blood, generation of 
clonal, immortalized NK cell lines, and more recently, 
the use of iPSCs. Preclinical data supporting all these 
technologies exist, and clinical data demonstrating the 
safety of these technologies have been well documented 
for blood- derived NK cells and NK- 92 cells. iPSC- NK cells 
are a newer approach to clinical- scale generation of NK 
cells, but the preliminary safety and efficacy data from 
clinical trials are very promising. The results and formal 
publication of these clinical trials will confirm the safety 
and efficacy profiles seen thus far in phase I data. Table 2 
compares the different types of allogeneic NK cell sources 
with each other.

Additionally, a deeper understanding of how other 
metabolic markers and signaling axes can influence NK 
cell persistence and effector functions is needed. CIS and 
CD38 have been important negative regulators of NK 
cell activity, and knockout of these proteins contribute to 
more robust NK cell function. Investigation of the role of 
other metabolic regulators on NK cell biology can pave 
potential future directions for adoptive NK cell therapy.

As NK cell therapies advance in clinical efficacy, efforts 
will need to focus on streamlining manufacturing in all 
allogeneic approaches. Reliable, homogenous infusions 
are necessary to ensure standard of care as NK cells are 
administered to patients. This means PB- NK and UB- NK 
approaches require methods to reduce donor variability 
and effectively extract and expand the NK cell population. 
iPSC- NK cells represent an emerging technology in which 
clonal populations can adequately maintain effector func-
tion. Manufacturing challenges for iPSCs focus on their 
production and differentiation, and solutions are already 
emerging. In coming years, iPSC- NK cell production may 
be streamlined. At the level of clinical translation, efforts 
should be made to identify new ways to maintain NK cell 
persistence in systemic circulation without lymphodeple-
tion. Such immunosuppression often results from chemo-
therapy or radiation administered alongside allogeneic 
NK cells. Avoiding patient lymphodepletion can poten-
tially unlock the full spectrum of NK cell functionality 

to trigger a larger and possibly more robust network of 
immune interactions and create strong, durable anti-
tumor responses.

As problems in manufacturing and engineering of allo-
geneic NK cell therapies are addressed, new technologies 
that can modulate NK cell activity and mitigate toxicities 
can offer new paths for the field. While genetic modifica-
tion has already been successfully executed in NK cells, 
more complex genetic circuits can be established in the 
future to improve longevity and functionality of infused 
cells. Furthermore, genetic modulation of cytotoxicity 
can mitigate off- target toxicities and adverse events in 
patients. For instance, a CAR construct was developed 
whose surface expression is controlled by the small mole-
cule asunaprevir, which blocks CAR expression when 
administered.100 Such technologies can expand in the 
future to provide options to ensure the safety of patients 
receiving these therapies.

Additionally, opportunities exist to extend cell therapy 
to closely related ILC subsets. Other ILC populations 
besides NK cells can be used and offer the possibility of 
fine- tuned immune responses that are adapted to the 
patient’s specific tumor profile. Additionally, newly char-
acterized subtypes of NK cells could enhance antitumor 
responses. Intraepithelial ILC1- like (ieILC1- like) NK cells 
have recently been documented as a potent antitumor 
subpopulation in the TME of HNSCC samples, and this 
novel population could be a source of future NK cell 
therapies.101

Overall, allogeneic NK cell therapies have been an 
established yet continuously evolving approach to cancer 
immunotherapy with immense potential for the treat-
ment of numerous forms of cancer.

Correction notice This article has been corrected since it was first published 
online. In the section titled 'Induced pluripotent stem cell- derived NK cell therapies', 
The sentence 'For instance, CAR- NK cells derived from iPSCs targeting mesothelin 
showed strong in vivo responses in mouse A1847 ovarian cancer and outperformed 
PB- NK cell therapy' has had the phrase 'mouse A1847 ovarian cancer' updated to 
'human A1847 ovarian cancer'.
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