
Identification of Ligand Binding Sites of Proteins Using
the Gaussian Network Model
Ceren Tuzmen, Burak Erman*

Center for Computational Biology and Bioinformatics, Koc University, Istanbul Turkey

Abstract

The nonlocal nature of the protein-ligand binding problem is investigated via the Gaussian Network Model with which the
residues lying along interaction pathways in a protein and the residues at the binding site are predicted. The predictions of
the binding site residues are verified by using several benchmark systems where the topology of the unbound protein and
the bound protein-ligand complex are known. Predictions are made on the unbound protein. Agreement of results with the
bound complexes indicates that the information for binding resides in the unbound protein. Cliques that consist of three or
more residues that are far apart along the primary structure but are in contact in the folded structure are shown to be
important determinants of the binding problem. Comparison with known structures shows that the predictive capability of
the method is significant.
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Introduction

Ligand binding is generally known as a local process where the

binding molecule finds a suitable location on the protein that has

the right shape and the favorable energetic interaction [1].

However, observation of both short and long range conforma-

tional changes upon binding led to the suggestion that the full

topology of the protein should be taking part in the ligand binding

process [2]. According to this hypothesis, binding should depend

not on the local structure, but rather on an interaction pathway on

the protein that takes part in the collective reorganization of the

residues to accommodate for the best and most favorable

conformation of the protein-ligand complex. Numerous experi-

mental observations are in support of this hypothesis. The changes

in conformation in calcium binding proteins is cited in the first

comprehensive review of this phenomenon [3]. All experimental

evidence points out to the fact that the full topology of the protein

should take part in such rearrangements. Thus, the information

needed for determining the interaction pathway should somehow

be hidden in the topology. In the simplest case, a coarse grained

picture of the protein is satisfactory. The topology of the protein in

this case is represented by the connectivity matrix, or the contact

map, of the three dimensional structure, where the ij’th element of

the matrix is unity if the ith and jth residues are in contact, and

zero otherwise. Several successful models of proteins exist at this

level of the topology, i e the residue based coarse grained topology.

One of them is the Gaussian Network Model [4] which uses the

connectivity matrix as its force constants matrix. In several recent

papers [5,6,7,8], using the GNM, we proposed a statistical

thermodynamics argument that leads to the determination of the

interaction path of the ligand binding problem. The method,

which we term as the ‘maximum eigenvalue method’ [9] is based

on determining the residues that exchange energy with their

neighbors and the surrounding medium. In the present paper, we

give several examples where we show that these residues which are

closely associated with binding are located on paths of spatially

contiguous residues. The concept of interaction pathways or

networks in relation to ligand binding has been addressed from

different perspectives. Lockless and Ranganathan [10] suggested

that correlations between two residues resulting in energy transfer

among them lead to interaction paths and are evolutionarily

conserved. Nelson et al proposed a relation between long range

perturbations and the interaction path [11]. Pan et al [12] and

Amitai et al introduced the topological closeness measure as a

determinant of interaction paths [13]. Our approach is an addition

to this series of papers that emphasize the significance of topology

in binding. The prediction of binding sites based on GNM is

simple and easy to apply as demonstrated in the following

examples, using thirty benchmark systems, presented in Table 1

and in the Supplementary data. A new additional concept that we

introduce here is the ‘clique’, defined as a subset of three or more

pairs of vertices, with each pair being connected by an edge, i.e.

contacting (or interacting with) each other [14]. Cliques are

expected to have great significance in protein-protein or protein-

ligand interactions, as they are stiff regions, therefore likely to be

conserved throughout evolution. In our data set, cliques made up

of residue triads are identified since triads are frequently observed

as spatial forms in the active sites of the proteins. We show the

significance of cliques in relation to ligand binding.

Results

1. Human Heme-Oxygenase-1
The first system that we analyze is an oxireductase, Heme

oxygenase (HO) which is responsible for the degradation of heme

to biliverdin. In the heme bound state, Human heme-oxygenase-1

PLoS ONE | www.plosone.org 1 January 2011 | Volume 6 | Issue 1 | e16474



(HO-1) arranges its helical shape with the help of highly

conserved, distal helix residues, so that it supplies flexibility to

accommodate substrate binding and product release [15]. Human

HO-1 has a dynamic active-site pocket, which is enlarged in the

apo state as distal and proximal helices surrounding the heme

plane move farther apart. In the holo form, the active site residues

Thr21, Val24, Thr23, Thr26, Ala28 and Glu29, which reside on

the proximal helix, and Tyr-134, Thr-135, Leu-138, Gly-139, Ser-

142, and Gly-143, which reside on the distal helix, are important

as they interact with heme [16,17]. According to the given crystal

structure (PDB Code: 1N3U), the binding site for heme in the B

chain contains the residues, Lys18, His25, Glu29, Gln38, Tyr134,

Thr135, Gly139, Lys179, Phe207, Asn210 and Phe214. Phe207,

Asn210 and Phe214 also lie on the proximal side of the active-site

pocket. Below, we show that these specific features can be

identified by applying the GNM to the apo form of the protein, i.e.

1NI6.pdb.

Figure 1a shows the total correlation, CT, of a given residue,

presented as the residue index along the abscissa, obtained by using

1NI6.pdb. Figure 1b is the contour plot of the distance fluctuations

where the residues that exchange energy with the surroundings are

identified with a darker hue. The heavy vertical strip shows that the

residues 118–124 interact with all the residues of the protein.

In Figure 2a, the ligand and the residues on the interaction

path, i.e. the set of residues with non-zero values of CT, are shown

in yellow and green, respectively. Figure 2b is an enlarged version

of figure 2a. Residues between 17 and 29 constituting the active

site residues exhibit non-zero values of CT. The path that connects

the surface to the heme starts with Leu17 and Glu23 at the surface

and ends at His25 that neighbors the heme. The path is colored in

red and the mentioned residues are labeled in Figure 2b. Residues

53–66 lie on helix H4 that contains the catalytic site Tyr58. The

appearance of this region in Figure 1a is mostly due to its stability,

resulting from hydrogen-bonded and electrostatic pair interactions

with neighboring helix and loop structures such as Tyr58-Asp140,

Glu62-Arg86, and Glu66-Tyr78 [18,19]. Similar to the Leu17-

His25 path, the residues between Pro109 and Thr135 form a path,

one end of which is at the surface of the protein and the other with

Tyr134 and Thr135 terminates at the heme.

The path that is lined by residues Pro109-Asp140 is colored in

blue in Figure 2b. Finally, the largest peak corresponding to

Ala203, which we define as the hub residue, and the second largest

peak corresponding to Phe207, seen in Figure 1a, identifies the

two residues neighboring the heme. The group of residues

between Val199 and Gln212 are represented as the green path,

most of which neighbor the heme molecule. All of the residues

observed in Figure 1a are obtained from the apo structure,

indicating that the information for binding is already present in the

unbound structure.

The residues with non-zero total correlation values and that are

in contact with the ligand, are presented in Table 2. The

interaction path residues that are identified in Figure 2 are also

Table 1. Six selected proteins from the test set.

FUNCTION NAME OF THE PROTEIN PDB CODE/CHAIN ID

Ligand-free state Ligand-bound state

Oxireductase Human Heme-Oxygenase-1 1NI6/B 1N3U/B

Transferase Human glutathione transferase A1-1 1K3O/A 1K3Y/A

Hydrolase Catalytic domain of Protein Tyrosine Phosphatase 1B 2HNP/A 1BZC/A

Ligase BC1 Domain of Acetyl-coA Carboxylase2 (residues Val259–761Ala) 3GLK/A 3GID/A

Lyase Human Carbonic Anhydrase II 2CBE/A 1A42/A

Ca+2-binding Protein S100A6 1K9P/A 1K9K/A

doi:10.1371/journal.pone.0016474.t001

Figure 1. Important residues of human HO-1 predicted with GNM. a) Total correlation CT of residues as a function of residue indices. b)
Contour plot of distance fluctuations S DRij

� �2T of 1NI6.pdb. Highest values indicated by black.
doi:10.1371/journal.pone.0016474.g001
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presented in Table 3. Tabulating all the residues that lie on the

pathways would lead to excessive detail. Therefore only residue

pairs on the pathway separated by less than 7.2 Å are shown.

Because of this, some of the residues cited in the text may not

appear in Table 3, which we are presenting to supplement the

information given here. The hub residues are identified in Table 3

with yellow highlight. As will be seen from Figure 2 and the

following ones, the interaction paths do not consist of a single well

defined line of contiguous residues, but rather of several

bifurcating paths. Therefore, it is not possible to uniquely identify

two extremities to an interaction path. The residues at the multiple

extremities of the paths are defined as the gate residues.

Cliques of size three are shown in pink in Figure 2b. These are

obtained at cut-off 6.2 Å, as 33Phe-214-Phe-218Gln and Gly144-

Lys148-Phe167. The first triad is located on the proximal side while

the latter lies on the distal side of the Heme molecule referring to the

proximal and distal helices that sandwiches the Heme molecule

upon binding[15]. Phe214 is a binding site residue while Gly144 is a

highly conserved, catalytic residue [20]. Cliques obtained by a cut-

off distance of 6.2 Å account for more than 50 percent of the highest

conserved cliques of the proteins studied. In Table 4, residues with

highest conservation for the six proteins that we present here are

shown. These are obtained from the residue conservation data in

PDBsum [21]. Among these, the highlighted residues are those

belong to cliques of size three obtained by the 6.2 Å cut-off.

2. Human glutathione S-transferase
Glutathione S-transferases (GSTs) are involved in the catalysis

of xenobiotics, carcinogens and conjugations with endogenous

ligands. In addition, they can perform a variety of functions in

metabolic pathways, which are not related with detoxification,

such as the intracellular storage or transport of a variety of other

hydrophobic, non-substrate compounds including hormones,

metabolites, and drugs. Besides, due to the elevation of GST

levels in tumor cells, they have been the focus of significant interest

with regard to drug resistance [22,23,24,25,26]. In three-

dimensional structures, a tyrosine or a serine has been shown to

be central in catalysis [22,23,26,27]. In addition, the side chain of

Arg15 is thought to be involved in the inner coordination sphere of

the sulfur[27].

Figure 3a shows the total correlation, CT of residues. Figure 3b is the

corresponding distance fluctuation correlation contour plot. The chain

A of unbound crystal structure, 1K3O.pdb was used for calculations.

Both chains are identical in sequence and in three dimensional

structures, so are the ligands they bind. According to the given ligand-

bound crystal structure 1K3Y.pdb, the binding site residues for S-

hexyl-glutathione (GSH), are Tyr9-Arg45-Gln54-Val55-Pro56-Gln67-

Thr68-Val111-Met208-Leu213-Phe220-Phe222 (chain A) and Ap101

-Arg131 (chain B). In this structure, GST binds two glycerol molecules,

as well.

In Figure 4a, GSH and the residues on the interaction paths are

shown in yellow and green, respectively. Figure 4b shows all of

identified residues in detail. In Figure 4b, red colored residues line

a path starting with a surface residue, Lys64 and ending with the

binding site residues Tyr9 and Pro56, which is the hub residue.

Tyr9 is conserved among the majority of known GSTs and it is

emphasized as an important catalytic residue in literature

[22,23,27,28]. The three-dimensional structures have shown that

Figure 2. Three dimensional structure of one chain of human HO-1 chain. a) with Heme (yellow), interaction path (green) and the cliques
(pink). b) Enlarged version showing interaction path residues and cliques (pink) with their labels. Green dashed line represents the hydrogen bond
between Gly144 and Asp140.
doi:10.1371/journal.pone.0016474.g002

Table 2. List of contacting residues.

1N3U/B 1K3Y/A 1BZC/A 3GID/A 1A42/A 1K9K/A

PHE207ASN210
PHE214

TYR9 ARG15ARG45
GLN54 VAL55 GLN67
THR68 ARG69

CYS215SER216ALA217
GLY218ILE219 GLY220
ARG221GLN262

GLU593 ILE649
ASN679PHE704

GLN92 HIS94
HIS96 GLU117
HIS119

THR28 GLU33 ASP61 ASN63
ASP65 GLU67

doi:10.1371/journal.pone.0016474.t002
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Table 3. List of residue pairs along the interaction paths and the distances between them.

1N3U/B 1K3Y/A 1BZC/A 3GID/A 1A42/A 1K9K/A

i j dist i j dist i j dist i j dist i j dist i j dist

17 200 5.7 6 58 5.6 70 82 5.4 501 519 5.6 95 116 6.8 28 67 6.0

17 203 7.0 6 59 5.0 70 83 5.3 501 520 4.4 95 117 5.5 28 68 5.2

21 203 7.0 6 60 6.9 70 84 6.6 501 521 6.1 95 118 4.5 29 67 5.5

24 207 6.0 7 57 6.3 81 211 5.1 519 532 6.6 96 116 5.5 29 68 5.4

25 207 6.1 7 58 4.7 81 212 6.2 519 533 5.3 96 117 5.3 31 60 5.3

31 211 6.6 7 59 6.6 81 213 7.0 519 534 4.6 96 118 6.7 31 63 6.4

31 214 6.3 8 34 6.1 82 211 5.9 519 535 5.3 96 245 5.5 31 64 4.6

53 111 5.9 8 55 6.9 82 212 4.6 520 533 5.2 98 115 6.3 31 67 6.2

55 89 5.6 8 56 6.0 82 213 6.0 520 534 6.5 98 116 6.7 31 68 6.6

56 111 7.1 8 57 5.4 83 212 5.9 520 535 7.1 102 114 6.3 35 60 6.3

56 115 6.8 8 58 6.2 83 213 4.9 531 649 6.8 102 115 5.8

57 114 6.9 9 34 5.5 83 214 5.8 531 650 5.6 103 114 5.8

57 115 5.7 9 55 6.2 83 219 7.0 531 651 4.6 103 115 5.2

60 115 5.9 9 56 5.6 83 222 6.8 532 649 6.0 104 114 6.1

60 118 6.2 15 56 6.9 84 212 7.0 532 650 5.1 104 115 4.8

60 119 6.4 15 68 7.1 84 213 6.2 532 651 6.5 104 116 4.6

61 118 6.0 16 56 6.2 84 214 5.0 533 648 5.6 104 117 7.0

64 119 6.3 19 72 6.4 84 217 6.6 533 649 4.7 104 245 6.1

64 122 4.9 24 193 6.5 85 214 5.6 533 650 6.1 105 115 6.0

111 213 6.6 24 194 6.8 85 215 6.3 534 595 7.0 105 116 4.5

114 209 5.8 25 193 5.3 85 216 5.3 534 647 5.9 105 117 4.7

128 199 5.0 25 194 5.2 85 217 4.1 534 648 5.3 105 147 6.8

128 202 6.4 50 66 6.9 86 214 5.9 534 649 6.8 105 245 6.5

131 199 5.9 55 66 6.8 86 215 5.8 535 647 6.5 114 147 6.2

131 200 7.0 56 66 6.0 86 216 4.9 595 647 6.4 114 148 6.2

131 202 5.9 56 67 6.9 86 217 6.4 647 706 5.4 114 149 5.7

131 203 4.8 56 68 7.0 104 211 5.5 647 707 5.2 115 148 5.8

132 203 6.4 104 212 6.8 647 709 5.3 115 149 5.3

132 206 6.2 106 211 5.3 647 710 5.5 116 147 6.0

106 212 6.6 647 713 6.1 116 148 5.0

107 211 5.9 648 704 6.5 116 149 7.0

107 212 4.9 648 705 5.3 117 145 6.5

107 213 5.9 648 706 4.4 117 147 4.6

108 175 6.0 648 707 6.5 117 148 5.8

108 212 6.2 648 713 6.0 118 145 5.6

108 213 4.5 649 704 5.7 118 147 6.4

108 214 6.1 649 705 5.2 148 217 5.6

109 175 4.7 649 706 6.6 148 218 6.5

109 213 6.2 649 713 6.2 149 217 5.0

109 214 5.2 649 714 6.7 149 218 6.3

109 215 5.7 650 703 5.7

110 175 6.1 650 704 4.4

110 214 6.2 650 705 6.4

110 215 4.9 651 703 5.4

110 222 6.7 651 704 6.5

219 261 6.1 680 703 6.9

220 261 4.1 680 704 5.6
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the hydroxyl group of Tyr9 stabilizes the thiolate of GSH through

hydrogen bonding [27]. Similarly, residues Leu50-Pro56 (also

shown in red) form a shorter path, which has one end at the

surface and the other end at the binding site. Three highly

conserved residues Gln54, Val55 and Pro56, which also interact

with the ligand via hydrogen bonds, play significant roles in the

stability and function of the protein [29,30]. Arg15 and Met16 are

also interacting with the residues on the Tyr9 path. Arg15 is

mentioned as an important active site residue in literature as

well[31]. The residues between Gln67 and Tyr74 form another

path, which is represented as the green path in Figure 4b, begins at

the surface and ends where Gln67 and Thr68 are positioned to

participate in hydrogen bonds with the amino group and c-

glutamyl carboxyl group of glutathione, respectively [32]. It

involves five conserved residues Gln67, Thr68, Ala70, Ile71 and

Tyr74[33]. A member of this path, Arg69 makes three hydrogen

bonds with the second glycerol molecule.

The remaining binding site residues are situated on helix 9,

which is known to be highly dynamic. Since, the region is assumed

to become structured and localized upon ligand binding

[28,34,35], its electron density is unresolved for apo human

GST A1-1[36,37]. Therefore, the binding site residues between

Glu210-Phe222 do not appear in Figure 3a.

The residues Ala24 and Val194 display relatively high total

correlations. They belong to two different secondary structures

and are in contact with each other. Yet, in literature there is no

comment on their contribution to the structure and function of the

protein. These two residues are not shown in Figure 4b.

Cliques of size three, at cut-off 6.2 Å, are found as Ile92, Ile96

and Ala156 which are located near the interface of chain A and

chain B. These three residues are shown in pink in Figure 4b.

Unlike Ile92 and Ile96, Ala156 is a highly-conserved residue[33].

Ile96 is at the glycerol binding site and hydrogen-bonded to the

first glycerol. (Figure 4b).

3. Tyrosine phosphotase.
The protein tyrosine phosphatases (PTPs) work complementa-

rily with protein tyrosine kinases in regulating signal transduction

pathways which control many physiological processes, such as cell

growth or cell differentiation[38,39]. Protein tyrosine phosphatases

display a great diversity both in structure and mechanism and they

are recognized by the motif HCX5R at their active sites, with an

essential cysteine residue (Cys 215 in PTP1B)[40,41].

As seen from Figure 5a, the residues in between His214-Ser222

exhibit the highest total correlation, CT, where His214 is the hub

residue. This group of residues is also observed in Figure 5b, the

distance fluctuation matrix contour plot, to form a dark strip,

implying that they are correlated with rest of the residues. The

catalytic domain of PTP1B is composed of a single a/b domain,

structured around a highly twisted b-sheet which spans the entire

molecule. A-well known catalytic residue Cys215 is located on the

loop that stays at the edge of this b-sheet. The His214-Ser222

region, which appear in total correlation plot (Figure 5a), indeed

corresponds to the catalytic region of the protein [42]. In PTP1B,

the residues His214, Cys215 and Ser 216 have central roles in the

activation of the active-site [43]. Cys215 is emphasized as an

important catalytic residue in literature [40,41,43]. In the inset of

Figure 5a, the small peaks around the residues Arg45, Pro51,

Tyr66-Asn68, Leu83-Gln85, Met109, Lys120, Thr154-Arg156,

His175 and Gln262 can be seen. In addition to His214-Ser222

region, these mentioned residues draw an interaction path, which

is shown in green in Figure 6a, around the ligand, which is shown

1N3U/B 1K3Y/A 1BZC/A 3GID/A 1A42/A 1K9K/A

i j dist i j dist i j dist i j dist i j dist i j dist

224 261 6.0 680 705 4.3

680 706 6.3

680 716 6.9

680 717 6.8

680 720 6.8

705 716 6.3

705 717 5.4

Residues shown in bold are the hub residues.
doi:10.1371/journal.pone.0016474.t003

Table 3. Cont.

Table 4. Residues with high conservation.

1NI6: 129,130,131,132,133,134,135,136,137,138,139

1K3O: 2,13,23,56,67,68,70,71,140,150,154,156,157

2HNP: 40,43–45,51,56,57,59,66–70,82,83,85,87,91,94–96,98,107,109,124,126,179,185,213–218,220–223,250,254,257,262,266

3GLK: 267–270,274,298,300–303,305–307,311,315,321,328,329,352,355,356,361, 373,374,384,448,450,454–456,458,490,492,500,501,504,508,517,518,521,524,
528,529,535,562,565,567,580,582–584,586–590,592–594,601,604,675,683,700–702,704,716

2CBE: 5,16,28–30,61,63,96,98,105–107,117,119,121,122,186,194,196–201,203, 205, 207, 209, 222, 244, 246,249,254,259

1K9P: 16,20,29,33,61,65,72

Clique residues obtained by cutoff 6.2 Å are shown in bold.
doi:10.1371/journal.pone.0016474.t004
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in yellow in the same figure. In Figure 6b, the ligand and the

interaction path is depicted in more detail and all residues with

non-zero total correlation, CT, are labeled. All these residues are

mentioned in literature. To start with, Arg45 sits in the loop where

phospho-Tyr recognition occurs, with Pro51, a clique residue

(shown in pink in Figure 6b). Being located in the binding site of

PTP1B, Arg45 is also responsible from the electrostatic attraction

of the ligand. Asn68 makes a hydrogen bond with Asn44 and it is

located near a highly conserved residue, Arg257. Leu83 packs or

surrounds the PTP loop (residues 213-223) where Gln85 makes a

hydrogen bond with a highly buried water molecule. Residues

Ile82-Pro87 (not shown in Figure 6b) form the core structure that

surround the PTP loop. Residues around Met109 form the

hydrophobic core structure and they are less conserved compared

to the Ile82-Pro87 motif. Lys 120 is another binding site residue,

which H-bonds to Ser216 and interacts with Asp181 (not shown in

Figure 6b), known as a general acid catalyst among the vertebrate

PTPs. Arg156 is conserved more than %80 among all vertebrate

PTP domains. His175 is found in the surface exposed WPD loop

(residues His 175–Val 184), where a major conformational change

takes place upon binding of phosphopeptides to the PTP loop. The

PTP loop then, moves several angstroms to close the active site

pocket and trap the bound phosphotyrosine [44]. The WPD loop

is also not shown in Figure 6b. Gln262 is also actively involved in

ligand-binding process [43].

Cliques of size three are found as Pro51-Ser70-Arg257 and

Gly86-Cys121-Ser216 at cut-off 6.1 Å, all of which are highly

conserved (pink residues in Figure 6b). The first triad is located

around the active site; Pro51 is on the phosho-Tyr recognition

loop and Arg257 is on the loop Leu250-Leu267 that spans the

active site [45]. Arg257 makes a hydrogen bond with the PTP loop

and also believed to be involved in stabilization of the nucleophilic

nature of the active site cysteine, Cys215[36]. Cys121, another

clique residue is interacting with Cys215, as well[36]. It has been

previously reported that Cys121 in PTP1B is a highly nucleophilic

group accessible and ready for covalent attachment of 1,2-NQ,

which is a known inhibitor of PTP1B. It causes considerable

reduction in dephosphorylation activity of PTP1B. Moreover,

Cys121 was reported as a non-active site cysteine residue, but it sits

on an allestoric site, where it can inhibit the enzyme activity

Figure 4. Three dimensional structure of one chain of human GST A1-1 chain A. a) with S-benzyl-glutathione (yellow), interaction
path(green) and cliques (pink). b) Enlarged version showing interaction path residues and cliques (pink) with their labels. Dashed lines are the
hydrogen bonds.
doi:10.1371/journal.pone.0016474.g004

Figure 3. Important residues of human GST A1-1 predicted with GNM. a) Total correlation CT of residues as a function of residue indices. b)
Contour plot of distance fluctuations S DRij

� �2T of 1K3O.pdb. Highest values indicated by black.
doi:10.1371/journal.pone.0016474.g003
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through specific mechanisms [35,45]. There are a number of PTPs

in which Cys121 (90%) is highly conserved [44]. Ser216 lies on the

active site and functions in the activation of Cys215[43].

All of the residues observed in Figure 5 and Figure 6 are

obtained from the apo structure, 2HNP.pdb.

4. Biotin Carboxylase Domain of Acetyl-CoA
Carboxylase 2

Acetyl-CoA Carboxylase (ACC) is responsible from the biotin-

dependent synthesis of malonyl-CoA, through its catalytic

domains, biotin carboxylase (residues Val259–761Ala) and

carboxyltransferase (residues Leu1809–Gly2305). [46] Since it

has a crucial role in fatty acid metabolism, ACC has become a

target for therapeutic intervention against the treatment of diseases

such as type II diabetes, cardiovascular diseases and atheroscle-

rosis, metabolic syndrome in general, and in the control of

obesity[47,48,49,50]. Acetyl-CoA Carboxylase 2 (ACC2) in

mammals is expressed in the heart and skeletal muscle cells where

it regulates the fatty acid oxidation via its malonyl-CoA product

[50,51,52,53,54]. Therefore, the inhibitors of ACC2 may be used

as novel anti-obesity drugs or therapeutic agents against the

metabolic syndrome[50,51,52,53,54,55]. Among currently known

small potent inhibitors of mammalian ACCs, only Soraphen A

binds to an allosteric site which is about 25 Å distant from the

active site of the biotin carboxylase (BC) domain[56,57].Soraphen

A interacts extensively with the BC domain where it is in contact

with highly conserved residues [50].

In its crystal structure, (PDB code: 3GID), where Sarophen A is

bound to the human ACC 2, the binding site residues are given as

Lys274-Ser278-Arg277-Glu593-Met594-Asn599-Asn679-Trp681-

Phe704-Trp706. Figure 7a shows total correlation, CT as a

function of residue index and the residues between Phe704–

Ser715, exhibit non-zero values of CT, obtained by using

3GLK.pdb. Figure 7b is the contour plot of the distance

fluctuations. Residues that exchange energy with the surroundings

Figure 6. Three dimensional structure of one chain of human PTP 1B. a) with TPI (yellow), interaction path(green) and cliques (pink). b)
Enlarged version showing interaction path residues and cliques (pink) with their labels. Dashed lines are the hydrogen bonds.
doi:10.1371/journal.pone.0016474.g006

Figure 5. Important residues of human PTP 1B predicted with GNM. a) Total correlation CT of residues as a function of residue indices. b)
Contour plot of distance fluctuations S DRij

� �2T of 2HNP.pdb. Highest values indicated by black.
doi:10.1371/journal.pone.0016474.g005
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are shown in black. The intense vertical strips indicate that the

residues around Gln504, Glu533, Ile649 and Ala713, which is the

hub residue, are able to communicate with the rest of the protein.

Figure 8a shows the ligand, Soraphen A, in yellow and the

interaction path in green. Figure 8b, is a more detailed version of

Figure 8a where all identified residues are labeled. As it can be

seen from Figure 8b, Glu711, a surface-exposed residue, sits where

the green path starts. This green path terminates at Phe704 and

Val648, which is also a clique residue (shown in pink in Figure 8b).

Phe704, with Ser705 and Trp706, surrounds the ligand. Ile649

and Asn679 are located around the Phe704–Ser715 path. Ile649

appears with the second highest CT value, according to Figure 7a.

The blue path (Figure 8b), which starts with Arg710, involves

Glu533, Arg519 and ends with Gln504. Glu533 is a well-

conserved residue[33]. There are small peaks around the 500th

and 520th residues, which may correspond to the residues Gln504

and Arg519, lying in blue path. These two residues are known as

catalytic residues in ACC2 [33,58].

In this paper, we present no more than the fastest mode results

for total coupling of residues. Yet, we checked the results for the

second and the third fastest modes and identified new paths of

same kind which extend from surface to the ligand binding (active

site) pocket. For instance, residues around Ser278 show the highest

total correlation values in the fastest third mode. Lys274, Ser278

and Arg277 indeed stabilize the ligand via hydrogen bond

formation[33]. Results for the second mode are presented in the

inset of Figure 7a. Yet, these residues are not shown in Figure 8b.

We will present the contributions from higher modes in detail in

our future work.

Cliques of size three, at cut-off 6.1 Å, are found as Ala534-

Cys591-Val648 and Val648-Ser705-Ala713. Clique residues

which are shown in pink in Figure 8b, reside either in close

proximity or within the active site pocket, most of which fall on the

interaction paths. All clique residues are highly conserved

residues[33].

5. Human Carbonic Anhydrase II
Carbonic anhydrases are found almost in all organisms, and

they are used as catalysts in reversible hydration of carbon

dioxides. Zn+2 ions are essential for their catalytic activity which

Figure 8. Three dimensional structure of BC domain of ACC2. a) with Soraphen A (yellow), interaction path (green) and cliques (pink). b)
Enlarged version showing interaction path residues and cliques (pink) with their labels. Dashed lines are the hydrogen bonds.
doi:10.1371/journal.pone.0016474.g008

Figure 7. Important residues of BC domain of ACC2 predicted with GNM. a) Total correlation CT of residues as a function of residue indices.
b) Contour plot of distance fluctuations S DRij

� �2T of 3GLK.pdb. Highest values indicated by black.
doi:10.1371/journal.pone.0016474.g007
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can bind four or more ligands in carbonic anhydrases. Three

coordination sites are occupied by the imidazole rings of the His

residues and the forth coordination site is occupied by a water

molecule or a hydroxide ion [59]. Carbonic anhydrase II, which is

a major element of red blood cells, is one of the most active

carbonic anhydrases and has been the most widely studied. It has

evolved as a proton shuttle with the primary component His 64

[59]. The catalysis of carbon dioxide hydration by carbonic

anhydrase, so the reaction rate, depends heavily on pH. The

enzyme is more active in high pH values [59].

In its crystal structure (PDB code: 1A42), human carbonic

anhydrase II is complexed with the drug used for glaucoma

therapy, the sulfonamide inhibitor brinzolamide. The given

binding site residues are His64-Gln92-His94-His96-His119-

Val121-Phe131-Val135-Leu198-Thr199-Thr200.

Residues between His96–His107, Tyr114–His119, Phe147–

Lys149, Ser217–Val218 and Asn244–Arg246 exhibit non-zero values

of total correlation according to Figure 9a. These residues interact

with all residues of the protein, referring to the contour plot of the

distance fluctuations given in Figure 9b. These two plots are obtained

using the unbound structure of the protein. (PDB code: 2CBE).

In Figure 10a, the ligand and the residues on the interaction paths

are shown in yellow and green, respectively. Figure 10b depicts all of

identified residues in detail. The first path, which is colored in green

in Figure 10b, has one end at Ser217–Val218 and Lys149, and the

other end at His119. The blue path starts with Ala115 and ends

where the two paths are merged by the H-bonds Glu106 and

His107 make with Glu117. Through the path Ala115 also interacts

with Gly104 via hydrogen bonding. Ser105, which is the hub

residue, links Gly104 with Glu106 and His107. The purple path has

surface exposed Ser99 at one end and terminates at His96, which

interacts with the Zn+2 ion that is directly bound to the ligand

(Figure 10b). Indeed, the active site cleft is characterized by this

Zn+2 ion which is tetrahedrally coordinated by N atoms of three

histidine residues His94(not shown in Figure 10b), His96 and

His119 and a water/hydroxide molecule [60]. Ser105 and Glu117

are within the 10 residues that are completely invariant among the

whole family of a-CAs and a-CA-related proteins. Ser105 is

involved in stabilizing the protein structure, while Glu117 function

as an indirect ligand in the active enzyme [61]. Asn244 and Arg246

are two conserved residues, (colored in purple in Figure 10b) which

also neighbor the ligand [33].

Figure 10. Three dimensional structure of Carbonic anhydrase II. a) with Brinzolamide (yellow) and Zn+2(orange), interaction path (green)
and cliques (pink). b) Enlarged version showing interaction path residues and cliques (pink) with their labels. Dashed lines are the hydrogen bonds.
doi:10.1371/journal.pone.0016474.g010

Figure 9. Important residues of Carbonic anhydrase II predicted with GNM. a) Total correlation CT of residues as a function of residue
indices. b) Contour plot of distance fluctuations S DRij

� �2T of 2CBE.pdb. Highest values indicated by black.
doi:10.1371/journal.pone.0016474.g009
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Cliques of size three are calculated at cut-off 6.1 Å. The residue

triads His96-Gly104-Ala116 and Gly63-Lys170-Phe231 appear

around the catalytic site of the protein (pink residues in Figure 10b).

His96 is an important residue which interacts with the Zn+2 ion

during the catalysis. Gly104 and Ala116 are located in a conserved

region, which involves Ser105 and Glu117 [61]. Gly63 is next to

His64 which acts as a protein shuttle during catalysis[59]. The side

chain of Lys170, the closest of all other residues to the pathway for

protein transfer with His64 in the outward orientation [62]. It is

believed that one function of Lys170 is to maintain an

environment of His64 that maximizes protein transfer and

catalysis of the hydration of CO2 and dehydration of bicarbonate,

by keeping it in its outward orientation [63]. In the outward

conformation, the imidazole ring of His64 heads out of the active

site cavity and the hydrophobic residue Phe231 is located near that

cavity.

6. S100A6
S100 proteins are small dimeric proteins which belong to the

EF-hand family of calcium-binding proteins. They are character-

ized by a pair of calcium-binding sites each having the helix-loop-

helix structural motif. Upon calcium binding, the conformation of

the protein changes through a hand-type motion, which renders

the angle between the helices of EF2 from negative to positive

[64].

The expression of S100 proteins is cell and tissue-specific. Most

S100 genes are localized within human chromosome 1q21[65], a

region which is susceptible to changes during tumor progression in

transformed cells. [66] The expression of the S100A6 gene, is

particularly increased in leukemia cells [67] and during the G1

phase of the cell cycle [68], which implies its role in cell cycle

progression. Experiments at the protein level also show that

S100A6 may be involved in cell growth, cell differentiation and

motility [69,70,71,72].

In the crystal structure of human S100A6 (PDB code: 1K9K),

binding sites for Ca+2 ions are given as, Ser20-Glu23-Asp25-Thr28-

Glu33 and Asp61-Asn63-Asp65-Glu67-Glu72. In Figure 11a, it is

observed that residues between Thr28-Lys35, which contains the

hub residue Lys31, and Asp61-Glu67 exhibit non-zero values of

total correlation, CT. Figure 11b shows the contour plot of the

distance fluctuations where the residues that exchange energy with

the surroundings, are identified with a darker hue. The heavy

vertical strip shows that especially the residues 28–33 interact with

the rest protein.

In Figure 12a, the ligand and the residues lining the interaction

paths are shown in yellow and green, respectively. Figure 12b is an

enlarged view of the ligand and the interaction paths through the

protein. In human S100A6, secondary structure elements are

arranged into two calcium binding motifs, which compromise

Ca+2 binding site I and site II. For site II (S100-hand motif), the

most noticeable difference, upon Ca+2 binding is the movement of

Glu33. In contrast, the coordination of the Ca+2 in site I (EF-hand

motif), is largely mediated by main chain carbonyl of Glu67 and

the side chains of Asp61, Asn63, Asp65 and Glu72. [73] As shown

in Figure 12b, residues between Thr28-Lys35 form a path

beginning with hydrogen bonded residues Lys35 and Lys31, that

terminates with two binding site residues Thr28 and Glu33. The

path that surrounds site I is shorter and involves Asp61, Asn63 and

Glu67, which indeed begins with Leu60, a well-conserved surface-

exposed residue[33].

According to our results, obtained by using the unbound

structure, 1K9P.pdb, the residue pairs with the highest total

correlation appear around the residues Lys31 and Leu60.

Interaction path residues are mostly the binding site residues.

Other residues line a network through the protein between the two

Ca+2 binding sites. (Figure 12a) Cliques are calculated at cut-off

6.1 Å and shown in pink in Figure 12b. The triad Lys 31-Leu 60-

Lys 64 also appears around the catalytic site of the protein.

Results for the remaining twenty four systems are provided in

the Supporting Information S1.

Discussion

Based on the GNM, structural and thermodynamic features of

the bound state are predicted by using the unbound structures.

This shows that the binding information is already present in the

unbound structure. This was also observed by us in a recent work

[6].

We have presented a collection of computational techniques to

study the relationship between the 3-dimensional structure and the

dynamics of protein. These two methods relate protein structure

with protein function and protein dynamics in terms of ligand

binding. Contact map of a protein can be investigated by the tools

of graph theory and provides information about the stiff and

Figure 11. Important residues of s100A6 predicted with GNM. a) Total correlation CT of residues as a function of residue indices. b) Contour
plot of distance fluctuations S DRij

� �2T of 1K9P.pdb. Highest values indicated by black.
doi:10.1371/journal.pone.0016474.g011
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conserved, therefore functionally important regions. These certain

regions are the cliques made up of residue triads and they typically

reside either along the catalytic region, if the protein is an enzyme,

or along the ligand binding pocket. This kind of approach

establishes the structure-function correlations in proteins. Gaussian

Network Model (GNM), on the other hand, correlates the

fluctuations of residues with the three dimensional structure of

the protein. The two computational methods are applied to the

crystal structures of known systems. Ligand-free structures are

used to find the cliques and the interaction pathways through

which the energy is transferred to the system. Then, ligand-bound

systems are used as positive controls.

We conducted our study in a diverse set composed of 30

proteins each having a distinct function. Among those we obtained

successful results in 29 systems. Residues with non-zero total

correlation (CT) values appear along a path with one end located

at the surface and the other end exposed to the ligand binding

pocket (site). These residue interaction networks indicate the

existence of the interaction path which is directly related with

ligand binding and highly dependent on the topology of the

protein. In this paper, we present no more than the fastest mode

results for total coupling of residues. Yet, we checked the results for

the second fastest mode and identified new pathways of same kind

which extend from different energy gate residues (to the ligand

binding pocket).

In a limited set of six proteins, presented in Table 4, several

cliques made up of residue triads, obtained by a cutoff distance of

6.2 Å, appear as conserved residues. For other proteins,

presented in Supporting Information S1 we saw that cutoff

distances around but not exactly equal to 6.2 Å were needed for

favorable agreement of the predictions with experimental

observation. Thus, a clear-cut specification of a clique-cutoff

distance is not available, at least within the level of approximation

of the present model. However, the shortcoming due to lack of a

single cutoff value notwithstanding, we can say from the data we

analyzed that several of the catalytic residues which are

emphasized in the literature are predicted by the present

Gaussian model.

Our approach exhibits a high predictive capability. Table 1

involves the data set and the summary of results for the remaining

proteins is presented in Supporting Information S1. We have

shown this approach to be successful in the identification of

interaction pathways and conserved regions in a diverse set of

protein-ligand systems.

Methods

A coarse grained GNM analysis based on Ca atoms of residues

and a harmonic potential is used. The position of the ith Ca is

denoted by Ri. The �C matrix of GNM is defined as

C ij~

{c� i=j and Rijƒrcutoff

0 i~j and Rijwrcutoff

{
P
k

c� i~j=k

8>><
>>:

ð1Þ

Here, Rij~ Rj{Ri

�� �� is the distance between residue i and j,

rcutoff is the distance that defines the neighborhood condition

generally taken between 6.5–7.5 Å. c� is a positive scaling

parameter. The correlation of fluctuations follows from the

harmonic assumption as

SDRiDRT
j T~kTC{1 ð2Þ

where, DRi is the fluctuation vector of the ith Ca, DRT
j is the

transpose of the fluctuation vector of the jth Ca, k is the Boltzmann

constant and T is the temperature. The correlation matrix may be

expressed in modal form as [74]

SDRiDRT
j T~

X
k

l{1
k ekeT

k

� �
ij

ð3Þ

where, lk is the kth eigenvalue of the �C matrix, ek is the

corresponding eigenvector, and ½ �ij is the ijth element of the

Figure 12. Three dimensional structure of one chain of S100A6. a) with bound Ca+2 ions (yellow), interaction path (green) and cliques (pink).
b) Enlarged version showing interaction path residues and cliques (pink) with their labels. Dashed lines are the hydrogen bonds.
doi:10.1371/journal.pone.0016474.g012
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enclosed matrix. In our recent work [8] we considered only the

largest eigenvalue component of the C matrix for a comparative

study of various HLA proteins.

The mean square fluctuations of the distance between residue i

and j is then written as

SDRij
2T~S DRið Þ2T{2SDRi DRT

j TzS DRj

� �2T ð4Þ

The correlation of residue fluctuations with an energy exchange

DU of the protein is

SDU DRij

� �2T~kTS DRij

� �2T ð5Þ

Equation 5 now shows the correlations of energy fluctuations

with the squared fluctuations of the distance between residues i

and j [8]. Summing both sides of Eq. 5 over the jth index leads to

the total coupling CT ,i of residue i to its surroundings

CT ,i~
X

j

S DRij

� �2T~kT{1
X

j

SDU DRij

� �2T ð6Þ

The last term in Eq. 6 acknowledges the role of energy

exchange of residue i with its surroundings that consist of the

neighboring residues and the surroundings of the protein. Our

exploratory calculations showed that there is a small dependence

on the cutoff value, usually taken as 7 Å as the radius of the first

coordination shell for Ca atoms. In the present study, in order to

eliminate, or at least minimize, this dependence, we averaged the

CT ,i values over the interval 6:9ƒrcutoff ƒ7:1 measured in

Angstorms. The lower and upper values are selected by trial and

error. If rcutoff ƒ6:9, then some relevant interactions are not taken

into account. If, on the other hand, rcutoff §7:1, then too many

residues all of which do not lie on the same path result that are not

of interest to the binding problem are included.

In the largest eigenvalue formalism, the set of residues with non-

zero values of CT ,i constitute the interaction pathway. As has been

shown before [8], and as will also be shown below, these residues

are in contact with each other, in general, and constitute a path,

the ends of which are exposed to the surroundings of the protein,

which we termed as energy gates. Along this path lies a residue

that is highly interactive with a large number of residues of the

protein, and hence is referred to as the hub.

By its structural nature, a clique constitutes a stiff region of the

protein. Considering the contact matrix A of the protein, cliques of

size three are obtained according to the following recipe

Aij~Ajk~Aki

0vivjvkƒn

k§jzc

j§izc

4vc

ð7Þ

where i, j and k are residue indices, c is the residue distance

(number of residues) between contacting residues, and n is number

of residues for each protein.

We studied several different systems, six of which we selected in

the present study. These are given in Table 1. The last two

columns of Table 1 give the pdb codes of the ligand free and

ligand bound structures. In all our calculations, we perform the

predictions on the ligand-free structure and compared the results

using the ligand-bound structure.

The cutoff distances for the C matrix were chosen as follows:

Using 4810 non-redundant PDB structures obtained from

Reference [75], we counted the frequency of observation of

residue contacts for different values of Rcutoff , which was varied in

the interval 5–15 Å. The results are shown in the first figure of

Supporting Information S2, where the filled circles are the results

of calculations. The straight line drawn to the linear part of the

curve therein shows the scaling region. In this region, changing the

Rcutoff value by a factor changes the number of observations

proportionately, and this relates simply to the size effect. Below the

scaling region, effects other than size effects are accounted for as

Rcutoff is increased. An Rcutoff at the boundary of the non-scaling

and scaling regions reflects all the effects that are of interest. The

arrow in the first figure of Supporting Information S2 corresponds

to an Rcutoff value of 7.2 Å. In order to include effects that would

come from smaller Rcutoff values, we took five equally spaced

stations between 6.9–7.2 Å, and averaged the reported total

correlation values over these five stations.

The cutoff distances for the cliques were chosen with a similar

analysis described in the preceding paragraph for the contacting

residue pair’s analysis. The results are shown in the second figure

of Supporting Information S2, where the filled circles are the

results of calculations. The straight line drawn to the linear part of

the curve shows the scaling region. An Rcutoff has to be chosen

below the scaling region. The arrow in the figure corresponds to

an Rcutoff value of 6.2 Å. In the calculations, we tried Rcutoff

values of 6.0, 6.1, 6.2, 6.3 and 6.4 Å, and accepted the value of

Rcutoff that led to the most consistent comparison of the model

with observations.

The binding site residues using the bound complexes are

defined as follows: In the complex, if the distance between an atom

of a residue and an atom of the ligand were less than 3.5 Å, and if

this residue had a non-zero total correlation calculated by using

the unbound PDB file, then the residue was defined as a

contacting residue. The list of contacting residues for the six

systems analyzed in this study is given in Table 2.
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Supporting Information S1 Total correlation CT of residues as

a function of residue indices and the corresponding three

dimensional structures showing the nteraction paths and the
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