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Abstract

Diabetes mellitus is a disease associated with abnormally high levels of blood glucose due

to a lack of insulin. Combining an insulin pump and continuous glucose monitor with a con-

trol algorithm to deliver insulin is an alternative to patient self-management of insulin doses

to control blood glucose levels in diabetes mellitus patients. In this work, we propose a

closed-loop control for blood glucose levels based on deep reinforcement learning. We

describe the initial evaluation of several alternatives conducted on a realistic simulator of the

glucoregulatory system and propose a particular implementation strategy based on reduc-

ing the frequency of the observations and rewards passed to the agent, and using a simple

reward function. We train agents with that strategy for three groups of patient classes, evalu-

ate and compare it with alternative control baselines. Our results show that our method is

able to outperform baselines as well as similar recent proposals, by achieving longer periods

of safe glycemic state and low risk.

Introduction

Diabetes mellitus (DM) is a disease associated with abnormally high levels of blood sugar

(blood glucose) due to lack of insulin (type 1 diabetes—T1D) or insulin resistance (type 2 dia-

betes—T2D). In 2019, approximately 463 million adults worldwide were suffering from DM,

which is increasing continuously [1]. More than 1.1 million children and adolescents are living

with type 1 diabetes. In addition, there are 4.2 million deaths caused by DM.

T1D can produce little or no insulin, so patients must monitor their blood glucose (BG)

level and manually administer insulin doses. Excessive insulin doses, may cause hypoglycemia,

that is, low blood glucose levels, which can lead to short-term complications, such as drowsi-

ness, shakiness, confusion, loss of consciousness, seizure, or even coma or death [2, 3]. On the

other hand, too little insulin can result in hyperglycemia, that is, high blood glucose levels and

can cause long-term chronic diseases, including retinopathy, nephropathy, and neuropathy

[3].
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A Continuous Glucose Monitor (CGM) is a sensor, usually a wearable device, that provides

real-time readings of BG levels. Combining an insulin pump and CGM with a control algo-

rithm to deliver insulin [4] is an alternative to the traditional patient self-management of insu-

lin injection to manage BG levels in DM. Control algorithms can be classified into: (1) open-

loop controls, which require patient intervention and/or external information, such as meal or

exercise announcement; and (2) closed-loop controls, which do not require the patient inter-

vention to regulate the dosage [5] but some external information can be useful in avoiding

rapid BG growth [6]. In this paper we consider a restricted definition of closed-loop controller

in which any information that cannot be automatically passed to the controller and requires

the intervention of the user is not a closed-loop controller, a point of view shared by similar

works [5, 7]. The combination of a CGM, an insulin pump and a closed-loop control algorithm

is usually referred to as an Artificial Pancreas (AP). Since the technology for CGMs and insulin

pumps is relatively mature, research for AP has been focused in the last years on suitable

closed-loop control algorithms [5, 6, 8–10].

Several methods for closed-loop controls can be found in the literature, including propor-

tional integrative derivate (PID) [8, 11, 12] methods, model predictive control (MPC) [9, 13–

15] and expert-based approaches [10]. In brief, PIDs, one of the most used solutions [6], use

previous BG samples as feedback to determine the insulin needed to drive the desired glucose

concentration in human blood. Their main disadvantage is a poor adaptation to meal distur-

bances [7, 16] and inability to individual treatment. MPC requires a model to predict future

glucose concentration using current BG, insulin delivery and meal intake; then the algorithm

calculates the appropriate insulin infusion rate by minimizing the difference between esti-

mated glucose concentration from the model and the target glucose concentration on a predic-

tion time window [9]. These methods depend obviously on the quality of the model and are

also sensitive to external disruptions such as food intake or physical activity that cannot be

accurately modeled [14, 15]. Expert-based approaches implement case-based logic using expe-

rience from medical experts to decide when and how much insulin to deliver [10]. The model

requires an expert to create, adjust and evaluate the model, which can lead to human errors.

Also, existing empirical models of a patient metabolism cannot be applied to these approaches,

hence there are no theoretically-based performance guarantees.

Artificial intelligence and machine learning techniques are increasingly being used in medi-

cine and healthcare. Among them, Artificial Neural Networks (ANNs) involve machine learn-

ing algorithms that have been already used for diabetes purposes. They need labeled training

data from experts to predict blood glucose concentration based on supervised learning and

avoid human error. ANNs perform well for short-term prediction [17]. However, improving

the prediction of supervised learning approaches implies high volumes of training labeled data

and there still remains the problem of designing an appropriate controller from the predicted

BG level. Reinforcement Learning (RL) has been suggested as a more promising alternative [5,

7]. In RL, a software agent makes observations and takes actions within an environment and

receives rewards from its actions. By appropriately shaping the reward function, the agent can

self-learn the desired goal. Their main advantage is that they are model-free, up to some extent

since the environment provides the implicit model, and can learn latent disturbances and

adapt to them. Nowadays, there are realistic simulators of the glucoregulatory system, even

approved by the United States Food and Drug Administration (FDA) [18], that can be used as

an environment in an RL framework [19].

Even though different RL approaches have been increasingly proposed and discussed [5, 7,

16], effective training of agents for BG control has proved to be difficult [7, 13, 20, 21]. Several

factors may explain the difficulties. First, most of the RL algorithms are designed to approxi-

mately solve a Markov Decision Process (MDP) with a fully observable state space [22], but
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realistic simulators of the glucoregulatory systems cannot be considered fully observable.

Therefore, the environment is at most a Partially Observable MDP (POMDP) and, in spite of

their ubiquity in many fields, only very few recent algorithms have been developed specifically

for POMDPs [23]. Moreover, POMDPs require a mapping from of true environment states to

observable variables that have to be defined by the control algorithm designer [5], usually with

a high degree of arbitrariness. This may have a serious influence on the learning ability of the

agent because a bad choice of observable states makes state changes and associated rewards

not directly related to agent actions. For instance, a delayed response to insulin is a realistic

feature of the simulator but it is also related to the choice of POMDP state mapping, because a

CGM reading (observation) after an insulin injection (action) does not reflect the actual

change of state. Second, compared to other learning environments, there is a remarkable num-

ber of design alternatives whose influence is not clear and usually require careful trial and eval-

uation. Those involve the choice of the RL algorithm (agent) and its underlying neural

network architecture, the tuning of agent hyperparameters, the selection of an appropriate

reward function, and even the design of the action space that may be adapted to patient spe-

cific data [7, 21]. For the sake of conciseness, the design choices related to the aforementioned

issues are called implementation strategy in the rest of the paper.

From the above discussion, it is clear that different implementation strategies can lead to

effective RL-based closed-loop controls. They may result in a viable controller or not, and with

widely different performance, so the implementation strategy is subject to further investiga-

tion, as it is addressed in this paper. In fact, straightforward implementations, as we discuss

and show in the following sections, do not work properly. Therefore, the RL approach to con-

trol is not different to the other main approaches to the control problem, PID and MPC, in the

sense that it can be considered a generic approach, with many potential different implementa-

tions which are proposed and evaluated [14, 15]. In this paper, we evaluate two different rein-

forcement learning algorithms to control in silico blood glucose levels in T1D and compare

them with other well-known alternatives, including a PID controller. We describe and discuss

our implementation strategy and related problems and compare it with recent proposals using

a different implementation strategy [7, 21]. Our work shares with these proposals the initial

premise: to train state-of-the-art Deep Reinforcement Learning (DRL) algorithms, such as Soft

Actor-Critic (SAC) [24] or Proximal Policy Optimization (PPO) [25], as a T1D BG closed-

loop control, but it differs in several aspects of the implementation strategy that we discuss in

the paper. Our results show that our strategy can effectively control BG levels, outperforming

control baselines in terms of the fraction of time spent in the desired glycaemic state and risk

metrics. All the source codes used for evaluation and training as well as the trained agent poli-

cies described in this paper are publicly available in our repository (https://github.com/girtel/

AIML4Diabetes).

The paper is organized as follows. Next section contains background information needed to

better understand the contribution. Afterwards, we describe our implementation strategy and

design methodology. Our results are described and compared with baselines in the Results sec-

tion, and compared with similar proposals in the Discussion section. Finally, we provide con-

cluding remarks.

Background and related work

Type 1 diabetes mellitus

Type 1 diabetes (T1D) is an autoimmune disease involving that the pancreatic islets produce

little or no insulin. Insulin is an anabolic polypeptide hormone regulating carbohydrate

metabolism and normal glucose level in the circulatory system. Pathogenesis of T1D is not yet
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known [26], but it is often found in family members who have had a history of this disease.

T1D is characterized by recurrent or persistent excessive amount of glucose in blood plasma,

that is, hyperglycemia, which can be diagnosed by several criteria defined by World Health

Organization (WHO) [27]. Patients with this type of diabetes need to use insulin by external

means to maintain blood sugar levels, usually by subcutaneous injection. There are four main

types of injectable insulin: rapid-acting insulin, short-acting insulin, intermediate-acting insu-

lin, and long-acting insulin. The insulin dose that a patient has to inject is traditionally planned

by a physician according to the patient characteristics and clinical history.

Models and simulation

Currently, it is possible to experiment with virtual patient populations in simulators to deter-

mine the optimal insulin dosage before being used in patients [18, 28]. Several simulators exist

to research on T1D models, such as TD1_VPP [28], Dosing-RL Gym [29] or UVA/PADOVA

Simulator [18]. TD1_VPP is a virtual patient population software which can generate virtual

patients following single-hormone and dual-hormone mathematical models, integrating the

effects of exercise in the glucoregulatory system. Dosing-RL Gym is based on an expanded ver-

sion of the Bergman minimal model, which includes meal disturbances [29].

The UVA/PADOVA Type 1 Diabetes Simulator can be used as a substitute for preclinical

testing of closed-loop control strategies. The simulator is developed by the Universities of Vir-

ginia (UVA) and Padova and has been accepted by the United States Food and Drug Adminis-

tration (FDA) [18]. It is the most used simulator among in silico software, according to [5, 30].

There are four main components of the simulation, which are depicted in Fig 1: (1) In silico
patient—a model of the glucose-insulin system in a patient; (2) In silico sensor—a model of the

sensor to measure BG including its error; (3) Controller—a model used to estimate the amount

of insulin to maintain blood sugar; and (4) In silico pump—a model of discrete insulin delivery

and subcutaneous kinetics. In this paper, we use an available open-source Python implementa-

tion of the UVA/PADOVA simulator [19], previously used in similar studies [5, 7]. The simu-

lation environment implements the OpenAI gym interface [31], which makes it compatible

with several RL frameworks. It also simulates different noisy CGM sensors, insulin pumps and

a random meal scheduler.

Deep reinforcement learning

Reinforcement Learning (RL) refers to a class of methods to optimize the decision process of

an agent operating on a given environment. The decision process is usually considered to be a

Markov Decision Process (MDP), a discrete-time stochastic control process. Formally, an MDP

is defined by a 4-tuple (S, A, P, R) of states, s 2 S, actions, a 2 A, a state-transition function Pa
(s, s0) = Pr(st+1 = s0|st = s, at = a), and reward function Ra(s, s0). The agent is the learner entity

that seeks the optimal behavior and is able to perform an action a(s), which changes the state.

In this change of state from s to s0, the agent obtains a reward r, considered as the feedback

from the environment. MDP-solving algorithms employ what is called a policy, denoted as π,

which is a mapping between states and actions; that is π: s! a. Their goal is to reach an opti-

mal policy π�, which maximizes the accumulated sum of rewards over the entire lifespan of the

agent. This decision policy can be determined by the state-action function, also called Q-func-

tion, Q(s, a), which can be approximated using Deep Neural Networks (DNN). Deep Rein-

forcement Learning (DRL) refers to algorithms and methods that use DNN to approximate

the Q-function or optimal policy.

It is commonly assumed that the MDP has a fully observable state space S, that is, that the

agent has access to observations that fully represent the state of the environment. However, the

PLOS ONE Evaluation of blood glucose level control in type 1 diabetic patients using deep reinforcement learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0274608 September 13, 2022 4 / 23

https://doi.org/10.1371/journal.pone.0274608


observation may just be a partial representation of the underlying state. A Partially Observable

Markov Decision Process (POMDP) is an extension of an MDP, where the agent cannot fully

observe the system state. In that case, the MDP 4-tuple is extended with a space of observa-

tions, o 2 O, and a usually unknown and potentially stochastic function that maps the observa-

tions to true underlying states, T: o! s. Partial observability may stem from many factors,

including limited sensing capabilities or unknown environment dynamics [23]. Let us remark

that the agent with partial observability cannot know which is the real state corresponding to

the reward received [32]. Despite the ubiquity of POMDPs in many practical systems [23],

most of the DRL algorithms assume an underlying MDP [22, 25]. POMDPs are usually

addressed in DRL by augmenting the observation space with the history of past observations

and actions and the use of Recurrent Neural Networks (RNN) [23] in the architecture of the

learning algorithm. Only recently, a few algorithms have been specifically designed to deal

with POMDPs [23]. Moreover, the state transition in some environments is determined not

only by agent actions, but also by exogenous stochastic input actions [33]. Efficient methods to

deal with this kind of environments are discussed by Mao et al. [33]

Most of the state-of-art DRL algorithms used for MDPs are based on actor-critic methods:

temporal difference learning algorithms that separate representations of value functions and

Fig 1. Principal components of the computer simulation environment.

https://doi.org/10.1371/journal.pone.0274608.g001
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policies explicitly [22]. The actor selects actions in the action space, while the critic estimates

the value function from the action made by the actor. They can be applied to either discrete or

continuous action spaces. However, these methods show poor sample efficiency and stability

convergence properties. A variety of techniques have been developed to address those prob-

lems [22, 25, 34]. In this paper, we have used Soft Actor-Critic (SAC), a widely used continu-

ous-state DRL algorithm [7, 24], whose policy maximizes a trade-off between the expected

return and entropy, a measure of randomness in the policy, which ensures higher robustness

and stability [22]. Maximum entropy policies have been shown to solve POMDP with unob-

served rewards [32]. Besides SAC, we have used Proximal Policy Optimization (PPO), another

popular DRL algorithm [25]. PPO ensures that its policy does not change much from the pre-

vious policy updates, leading to smooth learning and avoiding variance in training. The trade-

off between SAC and PPO is stability and sample efficiency. PPO tends to be more stable and

uses more data, whereas SAC tends to be the opposite. PPO is also claimed to work well on

POMDPs [35]. Both allow the use of RNNs in their architecture.

Related work

State-of-the-art control algorithms for AP systems on devices already on the market are based

on PID and MPC approaches [6, 11, 12, 14, 15, 36, 37]. PID and MPC controllers usually work

as hybrid closed loop system, requiring announcements of meal carbohydrates amount and

exercise activity [37]. Two commercially available FDA-approved systems are Metronics 670G

and 770G using PID [36–38] and Tandem Control-IQ using MPC [36, 37]. With PID and

MPC, most commercial products avoid hypoglycemia overnight by utilizing Predictive Low

Glucose Suspend (PLGS) [37]. PLGS technology predicts glucose concentration trends, then

suspends insulin delivery before hypoglycemia occurs. A PID controller is simple but have

problems to adapt to meal consumption [6, 7]. Several variations to the basic PID approach

have been proposed, as the use of insulin feedback (IF), which improves its performance [11,

12]. MPC controllers are more proactive than PID in insulin delivery by predicting BG levels,

but they need a minimal compact mathematical model. Di Ferdinando et al. [14] and Borri

et al. [15] use nonlinear differential difference equation (DDE) models for the endogenous

insulin delivery rate (IDR), which is better accounted for in these models. Since the IDR can-

not be neglected for T2DM patients, and the DDE model reproduces it accurately, MPC that

use DDE usually address T2DM. Their results show that MPC provides good performance as

long as a minimal compact model is available. However, as the complexity of the model

increases, MPC approaches are not tractable and one has to resort to other control methods.

Among these methods, the number of data-driven models for prediction of BG in T1DM is

increasing [30]. Reinforcement learning is being used in recent research works in the field of

health care. For instance, the RL Q-Learning algorithm was applied on discrete action space

simulation for radiotherapy to understand scenarios of tumor growth and its treatment plan

[39]. RL agent-based models have been used on continuous state and action spaces problems

to find cytokine therapy for sepsis, reducing mortality from 49% on average to 0.8% [40]. RL is

suitable for time sequence problems, as in the glucoregulatory system. Furthermore, the agent

can learn the policies without the need for labeled data as in supervised learning methods [5,

16]. The ability of RL to capture food intake patterns without human input makes it a good

candidate for a fully closed-loop system and more responsive and safer policies [7].

Particularly about T1DM control, a recent review discusses most of the approaches used so

far in this topic [5]. This review exposes the wide variety of alternatives used in almost all the

defining elements of the RL framework, such as the definition of the state space, the action

space, class of RL algorithms used and the reward function, what we have called the
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implementation strategies. To mention a few which differ in the class of RL algorithms, in [16]

a control based on RL is proposed and the value function is not approximated by a DNN, but

by a quadratic function, and in [41] the value function is approximated by a Gaussian process.

In both cases, robust solutions are provided, but simplified glucose models are used. On the

contrary, in this paper we use a more realistic simulator which generally requires DRL to

approximate the value function.

Fox et al. adopt an approach similar to the one adopted in this paper in two recent papers

[7, 20]. In fact, they share the basic premise with this paper: training a DRL agent for BG

closed-loop control. However, they employ different implementation strategies. In their first

one [20], the state space comprises the previous 24 hours of CGM samples and insulin doses at

5-minute intervals, but the action space is discrete and made of only three insulin doses. Three

relatively simple DNN architectures were used to approximate the value function and the

improvements over the PID baseline were not particularly noticeable. In their second work

[7], the state space is also made of CGM and insulin samples but only from the four previous

hours and the action state is continuous, so the SAC algorithm is used. Additionally, the

reward functions differ in both cases. In contrast, in this work we use only the last CGM sam-

ple as state but take a relatively long interval of 30 to 60 minutes between observations and

actions and define a simpler reward function. A hybrid model-based approach is discussed by

Yamagata et al. [13], which uses a discrete action space combined with meal announcement.

Finally, very recently, Lin et al. [21] proposes a combination of machine learning methods for

BG control: the controller uses a DRL SAC agent which is driven by a PID control as an initial

policy and, in addition, the observation state is extended by the predictions of a dual attention

network. Finally, the actions are also regulated by an adaptive safe action. The results of the

last three aforementioned methods [7, 13, 21] are further compared with ours in the Discus-

sion section.

Implementation strategy and methodology

In this section, we describe and discuss the design process and choices for our implementation

strategy for a BG closed-loop control based on DRL. Our goal is to balance blood glucose as

long as possible with low risks. First, we define the state and action space and discuss the

reward function. Afterwards, we conduct an initial evaluation based on naive strategies to

determine the features of the environment that may have more influence on the agent learn-

ing. This leads us to refine our design and propose an implementation strategy that is evalu-

ated in the Results section.

Analysis of environment and initial design

The simglucose simulator environment implements the UVA/Padova glucose model [42] and

provides CGM sensors that sample the BG level through a noisy (stochastic) process as well as

a random and patient-dependent meal schedule. From this description, it is clear that the envi-

ronment should be considered a POMDP, since the CGM observations of BG levels include

noise reads from sensors. In fact, the underlying hidden states of the environment, s, are given

by the glucose model states [42], rather than the BG level. Moreover, the dynamics of the envi-

ronment, that is, the state transitions, are not only determined by the actions taken by the

agent (insulin dose injected), but also by exogenous stochastic input actions [33], such as the

intake of CHO (meals) or physical exercise. However, since simglucose does not consider

physical exercise, unlike T1D_VPP [28], we restrict our study to external meals.

All the above considerations have an influence on the DRL controller design. We first

define the elements of the DRL algorithm for our problem as follows:
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Observations and state. The mapping of the observable variables may determine whether

the environment is a POMDP or an MDP. As an example, the number of frames included in

the observations in the Atari Pong game makes it become a POMDP or a MDP [43]. We start

by using only CGM samples as observation variables, since they are readily available. Unlike

the work in [7], we do not use past actions (insulin doses) in the observations. Since we target

a closed-loop controller, we do not include CHO intake as part of the observation, which has

to be announced by the user, even though some devices may facilitate its announcement [44].

We start by using only the current observation, given by the last CGM sample, o 2 Rþ. The

CGM sample frequency is three minutes per environment step.

Action. The action is the amount of basal insulin that the patient gets injected. It is a deci-

mal number, ranging between 0 to 30 units, a 2 [0, 30], according to the specifications of the

insulin pumps implemented in the simulator.

Goals and risk metrics. Safety is crucial in healthcare applications. The main goal of our

BG controller is to balance the BG level for as long as possible with low health risks. A com-

monly used metric of risk associated with BG levels is the blood glucose risk index (BGRI),

and it has also been used to measure the performance of control methods [45]. BGRI is a mea-

sure of glucose variability and associated risks and it is based on a symmetrization of the BG

measurement scale [45]. The Clarke BGRI is defined as BGRI = LBGI+ HBGI, where LBGI and

HBGI are computed over a series of n CGM samples as:

LBGI ¼
1

n

Xn

t¼1

rlðBGiÞ ð1Þ

and

HBGI ¼
1

n

Xn

t¼1

rhðBGiÞÞ ð2Þ

where LBGI and HBGI represent the risk associated with low and high BG levels. They are

computed from the following function:

f ðBGÞ ¼ 1:509� ½logðBGÞ1:084
� 5:381� ð3Þ

Noted that BG is measured in mg/dL. f(BG) is the basis to calculate the BG risk function

using the formula r(BG) = 10 × f(BG)2 and separating it as low rl and high rh as follows:

rlðBGÞ ¼
rðBGÞ; if f ðBGÞ < 0:

0; otherwise:

(

ð4Þ

rhðBGÞ ¼
rðBGÞ; if f ðBGÞ > 0:

0; otherwise:

(

ð5Þ

Similar risk measures have been defined and used in the literature. For instance, in [7] the

Magni risk function is used, defined as:

riðBGÞ ¼ 10½3:35506ððlnðBGÞÞ0:8353
� 3:7932�

2 ð6Þ

The curves from Clarke and Magni are shown in Fig 2. As can be seen, the BGRI adequately

captures the increased risk associated with hypoglycemia for the patients.

It is common practice to define the reward function in terms of the Clarke or Magni RI [7,

20]. But, as we discuss next, they may not be adequate to capture our intended goal.

Termination limits and safety. In DRL, an environment finishes when some condition is

met. For instance, in standard OpenAI gyms such as the BipedalWalker [46] the episode
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finishes when the robot falls. In simglucose, the episode ends when the BG level goes out of a

predefined range. T1D patients should aim for a target range of 70–180 mg/dL [47]. We have

configured simglucose to end the episode when BG < 70 mg/dL or BG > 350 mg/dL in order

to try to avoid dangerous BG levels. Let us note that this is a quite conservative range. In con-

trast, in [7], episodes are done when the BG falls below 10 mg/dL or raises over 1000 mg/dL.

Reward. A crucial, and problematic, aspect of DRL is the need to design a reward function

that helps the agent learn the intended goal [43]. In our solution, we have tried different

approaches. In particular, we have tried using the negative of the Clarke BGRI as reward func-

tion, in order to keep the BG at the desired level, but in this case negative rewards induce the

agent to terminate early, leading to dangerous regimes. Basically, the agent learns to inject

more insulin to avoid keeping receiving negative rewards, provoking hypoglycemia. A termi-

nation penalty to correct for this behavior is usually introduced, as is done in [7]. From our

point of view, this solution is not satisfactory, because the value of the reward at termination

becomes effectively another hyperparameter. It requires to be tuned for the expected duration

of the episodes. In fact, as an extreme case, since the desired goal is to avoid termination at all,

the value should be set to infinity, or at least to a value high enough to counteract the expected

lifetime of the patient. We have tried a different strategy: combined with the conservative ter-

mination limits mentioned above, we use a simple reward to encourage large episodes, which

results in extended periods within adequate BG level regimes. Of course, our reward function

can be refined, for instance, considering more sophisticated safe zones. Therefore, the reward

is simply:

reward ¼

1; if BG 2 ½70; 350� mg=dL:

0; if BG 2 ½10; 69� or ½351; 1000� mg=dL:

� 100; otherwise:

8
><

>:
ð7Þ

Fig 2. Blood glucose risk index function. Our target value is BG level at 112.517 mg/dL for Clarke RI and 138.89 mg/

dL for Magni RI and having a zero BGRI implies that there is no risk for a patient at this point (Zero-risk). This plot

shows graphically this point, including the left and right sides of the zero-risk target value, i.e., LGBI and HBGI,

respectively. BG level at 70-350 mg/dL is considered as the target range.

https://doi.org/10.1371/journal.pone.0274608.g002
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Discount factor. The discount factor helps to balance the importance of immediate and

future rewards. Since the effect of insulin on the BG is usually delayed, we set it to a relatively

large value of γ = 0.999.

Virtual population. The UVA/PADOVA simulator provides parameters for fully specify-

ing the glucoregulatory system of patients in three groups: children, adolescents, and adults,

each category including 10 patients. According to the simglucose developer [48], the patient

parameters correspond to the 30-patient subset available for the academic edition of the 2008

commercial UVA/PADOVA simulator. The commercial version provides a virtual population

of 100 patients in each group.

Although 30 patients cannot cover all the possible variations in a heterogeneous population,

the size of our population is similar to most of the previous works based on RL: according to

the systematic review by Tejedor [5], only 3 out of 23 proposals that used in silico patients have

over 30 patients. These proposals use 100-patient sets from the UVA/PADOVA simulator.

Moreover, ten of the reviewed proposals use just one in silico patient. Unlike other methods,

such as model-based classical control (MPC) [14, 15], which have an almost negligible compu-

tational cost and can be evaluated on thousands of virtual patients, methods based on RL typi-

cally use a reduced number of patients. There are two main practical reasons behind these low

numbers. First, training RL agents is a highly time-consuming and resource-intensive task.

Effective training of a single patient with a set of parameters and hyper-parameters typically

takes seven to ten days with our mid-level computing facilities (intel i9-10920X, 64 GB RAM, 2

Nvidia RTX 2080 GPUs). We are able to train 4 to 8 patients in parallel. Second, even if enough

time and computing power is available, to train an RL agent, we have to rely on a proven train-

ing environment and a set of validated virtual patients. Generating additional patients is possi-

ble by sampling from the joint distribution of the model parameters, as described in [9], and

variations of this generation method have been used by Di Ferdinando [14] and Borri [15].

However, the values of several parameters were not published, which makes it necessary to

guess some of them. Pompa et al have very recently compiled the required parameters for

future implementations [49]. Nevertheless, we consider that the effort required to rigorously

generate patients is beyond the scope of the current paper.

Thus, for an initial search for a viable implementation strategy for RL, which is the

paper goal, we consider that 30 patients split into age groups is a reasonable trade-off. As

said, our choice is in line with most of the previous works on this topic and even surpasses

most of them. Once a viable implementation strategy has been established, a more comprehen-

sive training campaign can be carried out, including the generation of additional virtual

patients.

Initial evaluation

We conducted a series of initial tests to determine the features of the environment that may

have a greater influence on the agent learning, according to the initial choices described in the

previous section. Simglucose comes with a population of 30 virtual patients: 10 adolescents, 10

adults, and 10 children, which statistically represent different cohorts of patients [19]. We have

tested on one patient from each group the initial alternatives that are summarized below and

in Table 1.

• Algorithms: PPO and SAC, with a standard configuration using dense DNN with two hid-

den layers of 256 units. In addition, we used an alternative recurrent architecture intended

to capture temporal context, which uses as actor and critic networks a RNN with a 10 LSTM

cells. We call this variant PPO-RNN and SAC-RNN. The performance of PPO-RNN and

SAC-RNN was similar to the one shown in Table 1 and will not be reproduced.
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• Observation space: we used as observation both (O1) the current CGM sample and a (O2)

vector of the past 20 CGM samples, corresponding to the previous hour at 3-minute

intervals.

• Reward functions: we used (R1) the one point per step reward of Eq (7) and (R2) the nega-

tive of the Clarke BGRI with a termination penalty. In all the case we set the termination lim-

its to BG<70 or BG>350.

• Meal schedule: the simulator selects a non-deterministic meal schedule particular to each

patient according to the Harris-Benedict algorithm [7].

We used the PPO and SAC implementations from stable-baselines3 [50] and PPO-RNN,

SAC-RNN from TensorFlow Agents (TF-Agents [51]) and trained it on two Nvidia GeForce

RTX 2080 GPUs and Intel Core i9-10920X CPU @ 3.50GHz 12 cores. All agents were trained

for 1 million steps, keeping the best model (best average reward) and with a maximum episode

length of 10 000 steps (a step represents 3-minute interval).

From the average length of the episode, it can be seen that the agents are not able to keep a

safe control of BG levels beyond 10 hours. In general, PPO is able to achieve longer duration

within a safe BG range, because it injects lower insulin levels and patients spend more time in

a hyperglycemic state. In fact, most of the episodes with PPO end because of high BG levels.

On the contrary, SAC tends to inject insulin aggressively and patients go rapidly to a hypogly-

cemic state, ending the episode. In both cases, using just the current CGM observation (O1) or

Table 1. Summary of initial evaluation. All columns show average ± 95% confidence intervals.

Subject Alg/Obs/Reward Length(min) Hypoglycemic(%) Hyperglycemic(%) Euglycemic(%)

Child#1 PPO/O1/R1 234 ± 50.921 0.0077 ± 0.003 0.44 ± 0.03 0.550 ± 0.040

Child#1 PPO/O2/R1 213.3 ± 34.836 0.004 ± 0.004 0.41 ± 0.06 0.58 ± 0.069

Child#1 PPO/O1/R2 42.9 ± 9.8369 0.074 ± 0.009 0± 0 0.925 ± 0.0093

Child#1 PPO/O2/R2 41.1 ± 6.7217 0.075 ± 0.007 0 ± 0 0.92 ± 0.0079

Adolescent#1 PPO/O1/R1 617.7 ± 155.75 ± 0 0.48 ± 0.11 0.510 ± 0.11

Adolescent#1 PPO/O2/R1 536.7 ± 147.89 ± 0 0.58 ± 0.09 0.415 ± 0.094

Adolescent#1 PPO/O1/R2 59.4 ± 1.8709 0.050 ± 0.001 0± 0 0.94 ± 0.0015

Adolescent#1 PPO/O2/R2 60 ± 0 0.05 ± 0 0 ± 0 0.95 ± 0

Adult#1 PPO/O1/R1 555.6 ± 157.16 0 ± 0 0.57 ± 0.14 0.42 ± 0.1

Adult#1 PPO/O2/R1 505.5 ± 121.09 0.0057 ± 0.001 0.41 ± 0.08 0.57 ± 0.08

Adult#1 PPO/O1/R2 63.6 ± 0.85843 0.047 ± 0.000619 0± 0 0.95 ± 0.0006

Adult#1 PPO/O2/R2 63.6 ± 0.85843 0.047 ± 0.000619 0± 0 0.95 ± 0.0006

Child#1 SAC/O1/R1 39 ± 0 0.0769 ± 9.9276e-18 0 ± 0 0.92308± 0

Child#1 SAC/O2/R1 63.6 ± 19.166 0.05248± 0.010184 0.030 ± 0.064 0.91773± 0.05

Child#1 SAC/O1/R2 36.3 ± 0.64 0.082± 0.001 0 ± 0 0.91731± 0.001

Child#1 SAC/O2/R2 36.9 ± 0.98 0.08± 0.002 0 ± 0 0.91859± 0.002

Adolescent#1 SAC/O1/R1 123.6 ± 12.13 0.02± 0.001 0 ± 0 0.97538± 0.001

Adolescent#1 SAC/O2/R1 97.2 ± 15.30 0.03± 0.0046488 0 ± 0 0.96773± 0.004

Adolescent#1 SAC/O1/R2 54 ± 0 0.05± 4.9638e-18 0 ± 0 0.94444± 0

Adolescent#1 SAC/O2/R2 64.5 ± 7.57 0.04± 0.0044488 0 ± 0 0.95248± 0.004

Adult#1 SAC/O1/R1 87.9 ± 14.83 0.03± 0.003685 0 ± 0 0.96466± 0.00

Adult#1 SAC/O2/R1 137.1 ± 29.87 0.02± 0.005159 0 ± 0 0.97598± 0.00

Adult#1 SAC/O1/R2 59.1 ± 0.98 0.05± 0.00086268 0 ± 0 0.94921± 0.0008

Adult#1 SAC/O2/R2 66.6 ± 2.68 0.04± 0.0018355 0 ± 0 0.95481± 0.001

https://doi.org/10.1371/journal.pone.0274608.t001
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the last one-hour interval of CGM observations (O2) has little influence, and using the simple

reward (R1) works better than the negative of the Clarke BGRI.

Discussion and refinement of design

From the previous evaluation, we hypothesize that the three main characteristics of the simula-

tion that affect the lack of training success are: (1) The action drives the BG level to lower val-

ues, but the rise of BG level depends on the environment dynamics and as consequence of the

exogenous input actions, that is, the intake of CHO in the meals. (2) The observation (CGM)

is a noisy sample of the BG level. (3) The effect of actions on the BG level is delayed. That is,

applying an action does not immediately decrease the BG level. Even though those effects are

expected from the initial analysis of the environment, and not particularly surprising, we think

they deserve further discussion.

Regarding (1), the agent should learn the policy to deal with this fact, that is, that it does not

need to deliver insulin when the BG level is low. In fact, our results show that the PPO agent is

able to learn policies that anticipate the meal consumption and the subsequent rise of BG. How-

ever, they are not enough precise to control adequately the BG levels. This is probably because of

the conservative BG range that leads to an early episode ending. Regarding (2), let us just notice

that the reward is usually assigned according to the actual BG level, not the CGM sample, which

seems to negatively affect learning since it makes termination penalties appear random. But

even using only BG levels, instead of noisy CGM samples, did not improve learning. Regarding

(3), both the large discount factor and the recurrent architecture should have improved learning.

But the termination limits of the environment, the glucose dynamics and the randomness of

meal schedules make it hard to learn:if the agent tries high insulin does, the patient goes very

quickly to hypoglycemia, and the episode ends, and when the agent injects low doses, meals,

which are not included in the observation, raise the BG level ending also the episode. Therefore,

it seems that the combination of all these factors prevents the agent from properly learning.

Both (2) and (3) stem from the fact that we are dealing with a POMDP and the recurrent archi-

tecture should improve learning, but several variations tried in our tests did not actually improve

much. We could have tried changing the RNN architecture and other hyperparameters, but due

to the large parameter space, we chose to focus on the delay of actions as follows.

Observation frequency and insulin response. We just configured the environment to

decrement the frequency of the observations and actions, instead of using the usual 3 or

5-minute CGM sample resolution. Even though the samples are taken, since the simglucose

environment is running and updating the state in mini-steps of 1 min, they are passed less fre-

quently to the agent, which then provides an action. The rationale is simple: to let the agent

observe the actual effects of its actions, that is, the actual patient insulin response according to

the glucose dynamics, instead of a seemingly random transition. Even though it is similar to

using as state a history of the previous CGM data, as is done in [7], it improves the learning

process and leads to more adequate insulin regimes in our results. Therefore, we have intro-

duced an additional hyperparameter, observation frequency, which is actually already present

in the simulator (CGM sample resolution) although usually left at the default device value (a

CGM sample every 3 minutes) [7]. Let us notice that this new hyperparameter does not

increase the complexity compared to using a history of previous samples [7], since in that case,

the lengths of the history vectors are also additional hyperparameters to be tuned.

We selected the frequency for the observations by testing the insulin response time when

injecting a given unit of insulin without taking any meals. This delay is different depending on

the patient group, as expected, and it is shown in Fig 3: ten different amounts of insulin doses

were used to estimate each subject insulin reaction, from 1 to 30 units. As can be seen, the
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adult response to insulin tends to be more stable and less pronounced and the reduction in BG

starts to show around 45 minutes after injection. Adolescent reaction is slightly slower and

more pronounced. Finally, children clearly react faster and more strongly to insulin. In fact,

high insulin doses quickly drive some of the patients to hypoglycemia and episode termina-

tion. From these observations we chose reducing the frequency of observations as follows: for

adults, observations are made every 45 minutes (corresponding to 15 three-minute environ-

ment steps), adolescent frequency is set to 30 minutes (10 steps) and children is set to 15 min-

utes (5 steps).

Then, we started over the training of the SAC, SAC-RNN, PPO and PPO-RNN agents.

After running several experiments, only PPO-RNN could learn effective policies. Therefore,

we have selected this algorithm and architecture for a full evaluation of performance in the

Results section.

Summary of implementation strategy

We provide here a brief summary of our implementation strategy, before conducting an evalu-

ation and comparison of alternatives in the next section.

From the discussion in the previous section we derive the following implementation strat-

egy: (1) we reduce the observation frequency of the environment state (CGM) and, hence,

rewards passed to the agent, depending on the subject (45 minutes, 1 hour and 15 minutes for

adults, adolescents and children, respectively), (2) we set broad termination limits for the epi-

sodes, BG 2 [10, 1000], to let the agent explore more thoroughly the environment; and (3) we

use the simple reward function of Eq (8) below, to force the agent to learn to keep the patients

in euglycemia for as long as possible.

reward ¼
1; if BG 2 ½70; 180� mg=dL:

0; if BG 2 ½10; 69� or ½181; 1000� mg=dL:

� 100; otherwise:

8
><

>:
ð8Þ

Fig 3. Insulin response time for each patient. The insulin dose depicted in the color legend on the right was injected

at 9:00 AM and no meal is taken subsequently.

https://doi.org/10.1371/journal.pone.0274608.g003
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Let us note that the reward is accumulated during all the simulation ministeps and then

passed to the agent. For example, if we set the observation frequency to 10, the environment is

going to simulate 10 ministeps before passing the sample to the agent, and, if BG level has been

in the desired range all those ministeps, the accumulated reward passed will be 10.

Results

Experimental setup

Training and evaluation. Our goal is to keep the patient BG level in the selected range for

as long as possible. We have trained a PPO-RNN agent for each of the patients with the imple-

mentation strategy summarized in the previous section and the hyperparameters listed in

Table 2. During the training, there are periods of instability, where the average reward drops,

as reported in other studies [7]. Rigorous convergence of the RL algorithms tested in this

paper, SAC and PPO, including their variants with RNN, has not been proved analytically, in

general, to the best of our knowledge. Only recently, the convergence of PPO to a local mini-

mum of the associated losses has been proved [52]. In practice, the convergence of the algo-

rithms is assumed when the learning curve does not improve over time. In our case, both PPO

and SAC tend to show an oscillatory behavior in the learning curves so that the learning curve

increases and then drops. PPO is able to recover from this behavior and we stop the training

process when the learning curve has stabilized. The reason for these oscillations is likely the

presence of unbounded exogenous stochastic inputs, that is, the meals or the noisy observa-

tions. We save the policy every 100 training steps and select the policy with a highest average

reward as a trained agent. Once trained, the agents are evaluated 20 times with different seeds

for all the patients, and statistics for episode length, fraction of time in glycemia states (eu,

hypo and hyper) and other metrics are collected. For evaluation, we also set the environment

termination limits to BG = 10 and BG = 1000, in order to test the fraction of time that the

patients spend in the different states and make them comparable to similar proposals [7]. Let

us remark that patients whose BG reaches levels below or above those limits are considered

events that result in serious damage or death.

Baselines

We have compared our results with four baselines: a basal-bolus regime (BB), that simulates

the usual self-managed treatment for patients with both T1D and T2D, basal-bolus with cool-

down, a PID, and PID with insulin feedback baselines.

Table 2. Hyperparameters for PPO-RNN.

Hyperparameter name Value

actor_fc_layers 200, 100

value_fc_layers 200, 100

actor_lstm_size 128, 128

critic_lstm_size 128, 128

num_environment_steps 25000000

collect_episodes_per_iteration 10

num_parallel_environments 30

replay_buffer_capacity 1001

num_epochs 25

learning_rate 1e-3

num_eval_episodes 20

https://doi.org/10.1371/journal.pone.0274608.t002
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Basal-bolus Baseline (BB). A multiple daily injection therapy which involves using long-

acting insulin with a dosage of basal:

basal ¼
u2ss� bodyweightðkgÞ

6000ðU=minÞ
ð9Þ

where u2ss is the steady state insulin rate per kilogram pmol/L × kg; and short or rapid-acting

insulin (bolus) to regulate blood glucose concentration with bolus:

bolus ¼ ðCHO > 0Þ �
CHO
CR
þ
BGcurrent � BGtarget

CF

� ��

t ð10Þ

where CF is a correction factor, t is the time between samples and CR is a carbohydrate ratio

[7].

To obtain a more stable regime, an alternative is to apply a cooldown signal to the basal-

bolus insulin delivery policy (BB-CD) to ensure that each meal is corrected only once:

bolus ¼ ðCHO > 0Þ �
CHO
CR
þ cooldown �

BGcurrent � BGtarget

CF

� ��

t ð11Þ

where cooldown is 1, if the patient has not had meals in the past three hours and otherwise is

0. Let us note that this treatment requires the patient to be aware of the meal intake and so it is

not a closed-loop control. The controls that require explicit knowledge of meal intake are usu-

ally called controls with meal announcement in the literature.

PID baseline (PID). A closed-loop control which uses a discrete PID controller aims to

set the system output to a given target, st, by setting the control variable ak as a linear combina-

tion of three terms:

ak ¼ KpPðskÞ þ KiIðskÞ þ KdDðskÞ ð12Þ

where P(sk) = sk − st, IðskÞ ¼
Pk

i¼0
ðsi � stÞ and D(sk) = |sk − sk−1|.

We use the optimal values for the PID parameters, Kp, Kd, Ki, for each patient provided by

Fox et al. [7]. In fact, insulin in blood suppresses the next insulin production, called insulin

feedback. Thus, we introduced PID control with insulin feedback (PID-IF) based on [11],

adðkÞ ¼ ð1þ g=KpiÞ � ak � g � IpðtÞ ð13Þ

where γ is the degree of suppressed insulin delivery by the current plasma insulin, which is

equal 0.5, Kpi is the normalized insulin concentration in units. Kpi is equal to 1, and Ip(t) is the

model of pharmacokinetics of insulin adapted from [12], given by

IpðtÞ ¼
IB

Kpiðt2 � t1Þ
ðe� t=t2 � e� t=t1Þ ð14Þ

where the parameter IB is the insulin injected in the previous action, and τ1 and τ2 are time

constants (in minute) associated with the subcutaneous absorption of insulin equal to 55 and

70, respectively.

Episode length

First, we examine the average episode length in evaluation. Table 3 shows the average fraction

of episodes that were completed by each patient group. Note that an episode is terminated

when the BG level goes out of the 10-1000 mg/dL range, which means that the patient has

reached a BG level that may result in serious damage or death. A primary goal, therefore, of
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any control method is to avoid early episode termination. Almost all control methods are able

to make all the patients finish the 10-day evaluation simulations for all the groups except for

BB. The adult group is the easier to control and all patients. PPO-RNN, BB-CD, PID and

PID-IF were able to finish the 10-day evaluation period for all the 20 simulations. On the con-

trary, the children are the most difficult group and BB can only reach on average 78% of full

episodes, that is 7.8 days. The introduction of a cooldown (BB-CD) improves basal-bolus over-

all episode length. But being able to finish the evaluation period is not enough to determine

the quality of the treatment: BG levels of patients must be kept in the desired range for as long

as possible. In the following sections, we examine how the controls keep the state of the patient

during that period.

Risk index and glycemic states

We compare the results of BB, BB-CD, PID, PID-IF and PPO-RNN controllers for the risk

index and fraction of time spent in hyper, hypo and euglycemia. The aim is to determine how

well controllers regulate the risk of hypoglycemia and hyperglycemia. First, Fig 4a shows with

boxplots the distribution for all the methods evaluated. As can be seen, PPO-RNN makes all

patients spend more time in an euglycemic state than the baselines, which is the actual goal of

this mechanism. Both the median and 25 and 50 percentiles are above those of the other meth-

ods. In addition, PPO-RNN also outperforms the baselines globally in terms of the fraction of

time spent in hyperglycemia and hypoglycemia. It is instructive to remark how the distribu-

tions are more informative in this case that single point estimates, such as the median or

mean. For instance, even though the median for the hypoglycemic fraction is similar for

PPO-RNN and PID, we can see that a remarkable number of patients spent an unacceptably

large fraction of time in hypoglycemia with all PID variants.

In Fig 4b we show that PPO-RNN also outperforms the baselines when the patient groups

are examined separately. The results for children are especially noteworthy, since, as we have

discussed, it is the most difficult group to train. For that group, we remark that: (1) PPO is able

to perform especially well to avoid hypoglycemia, unlike PID, which fails clearly in this aspect;

and (2) BB seems to provide reasonable results for children. However, for BB, the results of the

Table 3. Fraction of completed 10-day evaluation reached for each method and group.

Group-Method Fraction of full episode (average % ± 0.95 CI)

Children-BB 77.6 ± 4.7

Children-BB-CD 100 ± 0

Children-PID 100 ± 0

Children-PID-IF 100 ± 0

Children-PPO-RNN 100 ± 0

Adolescent-BB 88.2 ± 3.8

Adolescent-BB-CD 100 ± 0

Adolescent-PID 100 ± 0

Adolescent-PID-IF 100 ± 0

Adolescent-PPO-RNN 100 ± 0

Adult-BB 91.9 ± 3.3

Adult-BB-CD 100 ± 0

Adult-PID 100 ± 0

Adult-PID-IF 100 ± 0

Adult-PPO-RNN 100 ± 0

https://doi.org/10.1371/journal.pone.0274608.t003
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previous section have to be taken into account, that is, that the control is only able to reach

78% of the full episode on average. In other words, the control may provide a good response

on average for typical BG levels and meal intakes, but not be able to react to unusual variations,

which drive the patient to a dangerous state. On the other hand, BB-CD is able to practically

eliminate hypoglycemia, but at the cost of a much higher hyperglycemia for all groups.

Therefore, to better assess the results, it is necessary to look also at the risk index, which

informs us whether the patient is at a safe level within the desirable range. For instance, a

patient may spend a large fraction of the time in the euglycemic range but with BG levels very

close to the hyper or hypoglycemia thresholds, which may make it vulnerable to unusual con-

ditions, such as irregular meal intakes. Recall that RI penalizes more hypoglycemia, because

even though both hypoglycemia or hyperglycemia can lead to fatal outcomes, the short-term

effects of hypoglycemia can cause T1D patients to have an immediate crisis [37], as opposed to

hyperglycemia, whose effects manifest in the long term. We show the average RI, HBGI and

LBGI all over the evaluation period globally in Fig 5a and by groups in Fig 5b. In both cases,

PPO-RNN outperforms the other controls and keeps all the RI metrics within reasonable lev-

els, unlike the baselines, especially PID and BB-CD, which show high RI metrics. These results

show that PPO-RNN keeps the patients within safe limits most of the time, unlike the base-

lines, which do not success in smoothly control BG levels: Even though the patients may be

euglycemic, they exhibit less safe BG levels. This is the reason why, combined with poor adapt-

ability, some BB-controlled patients are not able to finish the 10-day episodes.

Discussion

The Results section shows that our implementation strategy can effectively control BG levels

and consistently outperforms the baselines. A first result to remark is that our tests showed

that no patients controlled by PPO-RNN terminated earlier in any of the evaluation trials.

Early terminations are called catastrophic failures by Fox [7], since they signal potentially fatal

Fig 4. Comparative fraction of time spent in different glycemic states. (a) Global glycemic state (b) Glycemic state

by group.

https://doi.org/10.1371/journal.pone.0274608.g004
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BG levels. Our work in this aspect shows slightly better results than Fox [7], which shows eval-

uation failures of around 0.1%, but their evaluation extended to 100 10-day replications per

patient, whereas ours has been limited to 20 10-day replications. On the other hand, we define

a failure when BG goes below 10 mg/dL, whereas they apply an even lower threshold of 5 mg/

dL. PPO-RNN clearly improves over Yamagata [13], which reports very high failure percent-

ages, with some patients completely unable to finish any episode. Of course, the critical nature

of BG control requires exhaustive evaluation of results. Closed-loop controllers must be evalu-

ated by its capability to keep the BG within an acceptable range for years. As a future work we

will evaluate for extended time periods, but, since our tests show that patients keep BG levels

above 50 mg/dL and below 400 mg/DL in all the replications so far, we are confident

PPO-RNN can avoid failures for longer episodes.

Attending to the time spent in euglycemia, our results are in line with the ones reported by

Fox [7], but outperforms those of Lim [21] and Yamagata [13]. Regarding the former, the

implementation strategy, as well as ours, is able to keep euglycemia over 73% of time globally,

and, in our case, also for all groups. Our implementation strategy can be considered simpler

than the Fox one because our observation space is unidimensional (last CGM sample), which

makes training more efficient, whereas Fox uses 96 dimensions (previous 48 CGM and insulin

data samples). The extended observation frequency for each patient group is an additional

hyperparameter to be optimized in our case, but the choice of 48 previous samples is also a

hyperparamter in their case. Lim and Yamagata papers show only marginal improvements

over the baselines using different strategies, and in both cases only report 64% of time in eugly-

cemia. Moreover, in all the discussed papers, the children group shows more difficulties to be

appropriately controlled with a closed-loop controller. In fact, in the work by Lim [21] the chil-

dren group is not evaluated at all, despite using a fairly sophisticated control involving DRL

driven by PID as initial policy. Similarly, in [13] only three patients of each group were

evaluated.

The evaluation discussed in this proposal and the aforementioned works show that the

application of DRL to BG control is a challenging task. Our results show, however, that DRL

has a great potential as a closed-loop controller. Proposals put forward so far discuss just a tiny

Fig 5. Comparative fraction of risk indexes. (a) Global risk index (b) Risk index by group.

https://doi.org/10.1371/journal.pone.0274608.g005
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fraction of the space of potential implementation strategies for DRL-based BG control. The

fact that the employed ones at the moment are relatively simple but exhibit a performance bet-

ter than PID and PID-IF, encourages further exploration of this approach. In our case, there is

a great margin for improvement. As a future work, we plan to optimize the hyperparameters

of our method and test variations in the RNN architecture. We think that changes in the

reward function, narrowing the desired range to obtain reward, may help improve the euglyce-

mia fraction. The introduction of an extended observation frequency in our case has been the

key to make agents learn effectively. It is introduced as a new hyperparameter, which may be

optimized, but we plan to try strategies to make agents learn it. Once the strategy has been

optimized, we plan to conduct a thorough analysis of the way the agent applies insulin doses

and compare it with those prescribed by clinical practitioners. The goal is to find whether

trained policies employ unusual patterns of dosage that may help clinical practice. In any case,

we acknowledge a slight limitation of our approach: the small size of the virtual population of

patients, which cannot completely reflect a heterogeneous population. As discussed in previ-

ous sections, this is a common drawback of current RL proposals, due to demanding time and

computation requirements of this method, and specially, the lack of validated patient sets.

Since an exhaustive compilation of the required parameters have been recently published [49],

we plan to generate and validate additional sets of virtual patients. Finally, as alternative imple-

mentation strategies, it should be worth trying algorithms designed specifically to deal with

POMDP and input-dependent environments [23, 33].

As a final note, it is important to consider how to practically apply RL-based controls in

real patients. Only a proof-of-concept approach can be considered, due to the difficulties for

real application. That is, training an agent requires experimentation (insulin injection) on the

subject to learn the optimal control, which is out of the question for real patients. It can only

be tested on virtual patients and how to transfer it to real patients is a difficult matter [53].

However, our results may be used with more realistic approaches, such as offline RL [54]. With

this novel method, the agent, usually a neural network with a transformer architecture, is

trained on previously collected datasets, without direct experimentation on the subject. Those

datasets may correspond to a series of BG levels and insulin doses collected from real patients,

but they may also come from simulations on virtual patients, and both can be combined. Sur-

prisingly, agents trained this way may show better performance than the original methods [55,

56], especially if the datasets contain high-reward regions of the state space. Therefore, the

availability of methods to generate very diverse datasets for further use as input, combined

with additional data sources, is importante in offline RL. The agents proposed here can actually

generate such high-rewards datasets.

Conclusion

In this work, we propose a closed-loop BG level control based on DRL. We discuss the particu-

lar characteristics of a realistic simulator of the glucoregulatory system as a training environ-

ment for DRL agents and the complexity of their training in this environment. Effective

training of such agents can be achieved by very different design choices for the learning pro-

cess, which we call the implementation strategy.

We describe the initial evaluation of several alternatives conducted on a T1DM UVA/

PADOVA simulator and, based on the results, propose a particular implementation strategy

based on reducing the frequency of the observations and rewards passed to the agent, and

using a simple reward function. PPO-RNN agents are trained with that strategy for three

groups of patients, evaluated and compared with PID, PID-IF, BB, BB-CD baselines. Our sys-

tem is able to outperform common PID and BB strategies in overall terms, attending to healthy
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glycemic states and the risk index. A critical discussion of the results and a comparison with

several recent works is provided, indicating that our system outperforms current solutions at a

lower computational cost. Euglycemia is maintained in 73% of the time, and no early termina-

tion events (BG out of range) are reported. Hence, our results show DRL as a promising meth-

odology for implementing closed-loop BG control.

There is still large space of potential strategies and margin for improvement in future

research. In particular, as a future work, in addition to variations on our current strategy, we

consider the use of novel algorithms for POMDP and exogenous stochastic input actions. In

our continued work, we plan to consider offline RL and investigate it as a T1D plasma glucose

controller.
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