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ABSTRACT Bacillus subtilis J-5 was isolated from tomato rhizosphere soil and exhib-

ited strong inhibitory activity against Botrytis cinerea. To shed light on the molecular Received 19 April 2017 Accepted 24 April
. . . . 2017 Published 8 June 2017

mechanism underlying the biological control on phytopathogens, the whole ge-
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nome of this strain was sequenced. Genes encoding antimicrobial compounds an Complete genome sequence of Bacillus subtilis

the regulatory systems were identified in the genome. J-5, a potential biocontrol agent. Genome
Announc 5:¢00275-17. https://doi.org/10.1128/
genomeA.00275-17.

acillus subtilis has been widely described as an important biocontrol strain. It has Copyright © 2017 Jia et al. This is an open-
the ability to suppress phytopathogens by producing antimicrobial compounds, ?ﬁgeéf;’;'viecdo';:”r;’;;‘ziz’:iiirtg‘:’formsOf
such as antibiotics, lantibiotics, and bacillibactin, competing for nutrients and niches It@ingtisns] lieanse.
with pathogens, and inducing systemic resistance to pathogens (1-3). In addition, Address correspondence to Shuishan Song,
B. subtilis is approved to promote plant growth (4). Recently, we isolated a strain from shuishans620@163.com.
tomato rhizosphere soil. This strain has strong inhibitory effect on the growth of Botrytis 2. el il coniizuied eguel o it ki

cinerea, a fungal pathogen causing gray mold in tomato. Biochemical and molecular
biological analyses assigned this strain to B. subtilis J-5. The lipopeptides were identified
from the culture broth of B. subtilis J-5. Moreover, the volatile substances of B. subtilis
J-5 were demonstrated to strongly inhibit the growth of B. cinerea in vitro. To gain more
knowledge on the genetic equipment of this bacterium and provide more insight into
the mechanism by which this bacterium plays its biocontrol roles, we sequenced and
annotated the complete genome sequence of this strain.

Whole-genome sequencing of strain J-5 was performed on the PacBio RSII sequenc-
ing platform at Novogene (Beijing, China). The genomic DNA was randomly sheared to
10-kb target size using PacBio RSl (5). It gives 87 million bases with approximately
211-fold genome sequence coverage. The reads were assembled with SMRT Portal 2.03
software (6). We used GeneMarkS (7) (http://topaz.gatech.edu/) to predict bacterial
coding genes. Genomic islands was predicted using software IslandPath-DIOMB. The
rRNAmmer software was used to predict rRNAs, the tRNAscan software was employed
to predict tRNA regions and tRNA secondary structure, and the Rfam software was used
to predict small RNAs (sRNAs). The secondary metabolite gene cluster was identified
using the antiSMASH program (8). Gene annotation was added using the NCBI Pro-
karyotic Genome Annotation Pipeline (9).

The complete genome sequence of B. subtilis J-5 is characterized by a circular
chromosome of 4,117,900 bp, with a mean G+C content of 46.11%. The chromosome
contains 4,312 coding genes, 87 tRNAs, 27 rRNAs, and 9 sRNAs. No plasmid was found
in this strain. Genome analysis revealed that the genome of J-5 contains 9 gene clusters
devoted to the synthesis of antimicrobial compounds, including polyketide synthase
(PKS) antibiotics (type 2 PKS [T2PKS], TransPKS, type 3 PKS [T3PKS], transAT PKS-
nonribosomal peptide synthetase [TATPKS-NRPS]), NRPS antibiotics (NRPS-bacteriocin,
NRPS), lantibiotics, bacillibactin, and terpene. The two-component signal transduction
systems function in response to prokaryotes under a variety of external conditions. It
was uncovered that a total of 48 two-component systems (TCS) exist in the genome of
strain J-5, including ComP/ComA (10) DegS/DegV (11), QseC/QseB (12), PhoR/PhoP (13),
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and DesK/DesR (14). The genes encoding RpoS and RpoN (15), which play roles in
bacterial adaptation to environmental stress, were also identified in the genome of this
strain.

Accession number(s). The complete genome sequence of B. subtilis J-5 has been

deposited at GenBank under the accession number CP018295. The version described in
this paper is the first version. This strain has been deposited at the China General
Microbiological Culture Collection Center (CGMCC no. 11750).
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