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Abstract: With the advent of the Energy 4.0 era, the adoption of “Internet + artificial intelligence”
systems will enable the transformation and upgrading of the traditional energy industry. This will
alleviate the energy and environmental problems that China is currently facing. The integrated devel-
opment of artificial intelligence and the energy industry has become inevitable in the development of
future energy systems. This study applied a comprehensive evaluation index to the energy industry
to calculate the comprehensive development index of the energy industry in 30 provinces of China
from 2000 to 2017. Then, taking Guangdong and Jiangsu as examples, the synthetic control method
was used to explore the direction and intensity of the integrated development of artificial intelligence
and the energy industry on the comprehensive development level of the local energy industry. The
results showed that when artificial intelligence (AI) and the energy industry achieved a stable coupled
development without the need to move to the coordination stage, the coupling effect promoted the
development of the regional energy industry, and the annual growth rate of the comprehensive
development index was above 20%. This coupling effect passed the placebo test and ranking test and
was significant at the 10% level, indicating the robustness and validity of the experimental results,
which strongly confirmed the great potential of AI in re-empowering traditional industries from the
data perspective. Based on the findings, corresponding policy recommendations were proposed
on how to promote the development of inter-regional AI, how the government, enterprises, and
universities could cooperate to promote the coordinated development of AI and energy, and how
to guide the integration process of regional AI and energy industries according to local conditions,
in order to maximize the technological dividend of AI and help the construction of smart energy
in China.

Keywords: artificial intelligence; energy industry; synthetic control method; integrated development

1. Introduction

As a pillar industry of the national economy, the development and planning of energy
generation will shape the future development and trends of the national economy, society,
and livelihoods. With the rapid development of industrial technology and information
technology, a new energy utilization system will deeply integrate new energy technology
and information technology, enabling the development of the energy system to be clean
and intelligent. The fourth industrial revolution, with the energy Internet as the core
feature, will finally arrive, and the energy system will enter the Energy 4.0 era [1,2]. Energy
4.0 is not only the use of the Internet system to transmit energy, but also the use of Internet
technology to coordinate the use and efficiency of various energy sources, forming a multi-
level correlation system that includes information space, physical space, energy space, and
social space, so that the differences between different energy sources can be balanced and
the advantages of different energy sources can be maximized to form a cumulative effect [3].
The entropy increase tendency of energy leads to less and less energy use. Therefore, it is
necessary to make full use of various energy sources with the help of advanced industrial
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technologies and to adopt a multi-energy complementary model in order to achieve a
secure energy supply. In turn, Energy 4.0 reshapes the economic structure and provides
clean, environmentally friendly, low-consumption green energy for the fourth industrial
revolution [4–6].

Artificial intelligence (AI) being a method of simulating the biological human brain in
order to complete tasks in a more effective manner could be used in various applications.
By simulating the cognitive abilities of the human brain, AI could be used to respond
to input in a manner similar to that of humans [7]. A White Paper on the application
of artificial intelligence in China, jointly published by the Chinese artificial intelligence
society and Roland Berger in 2017, provided an in-depth analysis of the concept of artificial
intelligence [8]. Artificial intelligence is defined as the science of simulating a series
of human intelligent behaviors, such as autonomous learning, decision making, and
judgments. The “Internet + artificial intelligence” may become a key breakthrough for
China’s energy system to achieve optimization, transformation, and upgrading and help
the construction of smart energy, effectively solve the problem of resource scheduling
and optimal allocation on the wide-area energy network, alleviating China’s energy and
environmental problems. The integrated development of artificial intelligence and the
energy industry has become an inevitable trend in the development of future energy
systems. The development of artificial intelligence in China is extremely geographically
uneven, with large differences across the country in the integration and development of
artificial intelligence in the energy industry. An in-depth understanding and objective
analysis of the development status and integration process of AI and energy industry at
the regional level is a prerequisite for accelerating the effective integration of AI and energy
industry. Theoretically, technological innovation can promote industrial development, but
it is still unknown whether the integration of AI and energy industry at this stage can
promote the transformation and upgrading of the local energy industry and inject fresh
development momentum into the local energy industry. There is no quantitative scientific
research on whether the integration of artificial intelligence, an emerging field with high
risks and high opportunities, is necessary with the traditional energy industry. This paper
will try to answer these questions from the perspective of data. Only by clarifying the
correctness and necessity of the integration and development of AI and energy industry
and putting forward targeted policy recommendations and action measures according to
the actual development status of each region can we effectively promote the construction
of smart energy in China.

Most of the existing literature on AI and smart energy are separate and independent
within each field or focused on the application and development of AI in the traditional
energy industry, with more emphasis on the technical aspects [9,10]. There is a gap in
academic research on the relationship between AI and energy industry from a macro
perspective, and lack of quantitative analysis to measure the relationship between them.
This paper explores the degree of influence of the integration development of AI and energy
industry on the comprehensive development level of regional energy industry in the regions
where the coupling development of AI and energy industry has been achieved during the
sample period. The main contributions are as follows: (1) some regions have achieved
the coupling and coordinated development of AI and energy industry, but whether this
integration development has a positive promoting effect or a negative inhibiting effect on
the local energy industry is unknown. It is also unknown when this coupling effect starts
to work and how much it affects the local energy industry, but this paper can quantify
this coupling effect. (2) This paper uses the synthetic control method to compare the
synthesized energy industry comprehensive development index with the actual value,
which is beneficial to a more intuitive and profound understanding of the coupling effect
and strength of the integration for AI and energy industry. (3) The placebo test and
ranking test are applied to verify the robustness and validity of the results of the synthetic
control method and demonstrate the huge potential of artificial intelligence in empowering
traditional industries.
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This study proceeds as follows. Section 2 is the literature review that presents the
research on AI, smart energy in “Internet+” mode, and the theoretical foundation of the
synthetic control method. Section 3 displays the model construction, and the details of our
data and variables. Empirical results and analysis are presented in Section 4. Section 5
concludes and gives some relevant policy recommendations.

2. Literature Review
2.1. Research on AI

As an important branch of computer science, the core purpose of artificial intelligence
is to use machines to simulate the thinking process of human beings, and then replace
human beings to complete the corresponding work and realize the automation of intelligent
behavior [11]. In practical applications, artificial intelligence refers to changes in the
environment where a machine perceives text, sound, images, and definable symbols for
input, and according to pre-set rules, the target task is automatically executed by the
relevant algorithm [12]. With the establishment and sharing of large-scale data platforms,
data mining technologies and deep learning algorithms have improved computing power,
and sensor system technologies, such as processors, sensors, and chips have developed
rapidly [13]. The theory and industrial application of artificial intelligence have developed
rapidly in the past 30 years.

Artificial intelligence has fully entered the machine learning era and has made break-
throughs in applications such as intelligent robots, intelligent drones, automatic driving,
intelligent interactions, natural language processing, and computer vision and images. It
has realized technological upgrades in many traditional industries such as finance, culture
and education, medical treatment, electric power, petrochemicals, and mining [14], which
has triggered innovation in the digital transformation of traditional industries and the
real economy, the optimization of industrial chain structure, information processing, and
personnel arrangement efficiency. Artificial intelligence has passed from the theoretical
research era to the commercial stage. Studies using industry panel data in 17 countries
around the world over the past 15 years have shown that industrial robots can greatly
improve labor productivity and economic growth [15]. In the financial field, artificial
intelligence has enabled a number of financial services to subvert the traditional form of
financial services to help the financial industry achieve high-precision financial product
marketing and low-cost risk control. A rule-based expert system was established to help
financial institutions make quick and accurate judgments on the authorization of enterprise
credit loans [16]. Using a model based on the back propagation (BP) neural network algo-
rithm, the credit rating of China’s Taiwan market and the US market were analyzed [17].
The accuracy of credit risk classification in Australia and the United Kingdom has been
improved by applying a fuzzy approximate support vector machine model for the risk
assessment of credit data sets [18]. Whiting et al. studied financial fraud detection based on
machine learning and deep learning [19]. A new cost forecasting model based on artificial
intelligence technology was built, which improved the accuracy of cost forecasting by
95% [20].

Artificial intelligence has also had a revolutionary impact on the medical and health
field, promoting the reform and innovation of medical technology, as well as the opti-
mization and upgrading of the medical service mode. Through machine learning, natural
language processing, and other technologies, an intelligent diagnosis of medical conditions
can be made, and personalized diagnosis and treatment schemes can be provided. Patients
will receive an intelligent diagnosis and be given a personalized diagnosis and treatment
plan, which will substantially shorten their treatment time, improve their satisfaction with
the medical treatment, and reduce potential conflicts between doctors and patients [21,22].
At the same time, artificial intelligence also has great potential in disease prevention and
drug research and development [23–29]. Educational artificial intelligence is an emerging
field combining artificial intelligence with learning science [30]. It aims to observe and
explain the learning process and the mechanisms by which external factors interfere with
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the learning process from a micro perspective through the application of artificial intelli-
gence technology [31]. The application of artificial intelligence in the education industry
is still within the auxiliary function of the learning process. The integration of artificial
intelligence and the manufacturing industry is mainly manifested in three application
scenarios: intelligent product development and design, intelligent quality inspection, and
the predictive maintenance of production equipment. In the field of government services,
AI-related technologies such as natural language processing, facial recognition, and ma-
chine learning can provide unmanned government services such as intelligent identity
authentication, accurate information retrieval, and online intelligent customer service [32].

2.2. Research on Smart Energy in “Internet+” Mode

Although China only officially proposed the development goal of “Internet+” intelli-
gent energy in 2015, the research of energy system intelligence has been long-standing. The
development and improvement of artificial intelligence-related technologies and industries
have continuously promoted the integration of artificial intelligence with energy systems,
and its research and application in coal mines, petroleum, and electric power are becoming
increasingly mature.

In the coal field, the traditional production and operation mode and safety hazards
have seriously restricted the survival and development of the coal industry, and it has
become imperative to realize the intelligence of the coal industry. Wang et al. studied
the intelligent mining technology, safe and efficient coal general mining technology, and
intelligent working face technology in the coal industry, and proposed the concept of
“smart mine” in 2018, which pointed out the direction for the intelligent development of the
coal industry in the future [33–35]. Yan et al. [36] proposed a hybrid artificial intelligence
model combining a BP neural network (BPNN), genetic algorithm (GA), and adaptive
boosting algorithm (AdaBoost), which could better evaluate the strength alteration of coal
during CO2 geological sequestration. In addition, artificial intelligence algorithms such as
support vector machines and neural networks are often used by experts and scholars in
the coal field for the deep mining of coal data information and training models [37,38].

The application of artificial intelligence in the oil industry involves oil and gas explo-
ration, transmission, mining, sales, and the operating processes that link all these stages. It
provides intelligent services for related scenarios, such as the use and maintenance of oil
extraction equipment, intelligent diagnosis, security and early warning of oil transmission
equipment failure, prediction, and optimization of oil extraction schemes, and prediction of
oil resources. Based on downhole and production data, an intelligent decision-making plat-
form for evaluating the development value of oil and gas resources was constructed [39].
Using natural language processing technology, an automatic question-and-answer system
was developed to provide relevant training to oil and gas developers 24 h a day [40].
Khan et al. used deep learning, a neural network, and other technologies to predict the
oil recovery rate of artificial gas lift wells, with an accuracy of up to 99% [41]. Some of
the advantages of using neural network models are that it does not require any a priori
assumptions about the dependence of the functional form of the underlying process and
can also be used to establish relationships between complex nonlinear data problems by
providing numerical models and can reduce noise in the data [42].

The smart grid is the latest trend in the development and reform of the world’s power
system, and its effectiveness relies on the in-depth and extensive application of artificial
intelligence technology in the power system. A migration learning algorithm is introduced
into the power dispatching system, and the automatic dynamic distribution of power
generation control power is realized through the analysis of historical data [43]. To avoid
power consumption and latency, Qaisar [44] proposed a new approach that combined
signal-guided acquisition, adaptive rate segmentation, and time-domain feature extraction
with machine learning tools to reduce the computational cost and latency of the classifier.
The structure of power grids has become increasingly complex, with many uncertain factors
having increasing effects on grid systems. Therefore, when developing a smart grid, it is
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of great significance to develop an effective risk assessment method for the transmission
system to ensure its safety and stability.

2.3. The Synthetic Control Method

The synthetic control method is developed based on a counterfactual estimation
framework. Abadie and Gardeazab [45] first proposed the synthetic control method by
applying it to identify the economic costs of terrorist activities in the Basque Country
of Spain. Abadie [46] applied the synthetic control method to evaluate the effects of
the California tobacco control law enacted in 1998. Abadie [47] again used the method
to estimate the economic impact of German reunification in 1990 on Western Germany.
Synthetic controls provide many practical benefits for estimating the impact of policy
interventions and other related events [48].

Synthetic control methods have been used to identify the effects of a policy. The
synthetic control method was used to study the impact of Arizona’s 2007 Legal Arizona
Workers Act on illegal immigration to the state, and the results indicated that the Act had a
significant impact on illegal immigration [49]. The methodology was also used to study the
impact of economic liberalization on real GDP in countries around the world. Liberalization
was found to have an impact in most regions [50]. The synthetic control method confirms
the significant economic boosting effect of the establishment of the Shanghai Free Trade
Zone [51]. Liu and Lv [52] conducted a comparative analysis of the agglomeration effects
of the four early FTAs established in China, and the synthetic control method showed that
the establishment of the FTAs all produced positive economic effects and showed obvious
differentiation characteristics. Li and Li [53] explored the economic effects of economic
zone planning on the western region of China through the synthetic control method.

Some regions have achieved coupled and coordinated development of AI and energy
industries. However, it is still unknown whether and when this convergent development
has a positive or negative effect on the local energy industry and the exact magnitude of
this coupling effect. This paper addresses these questions using a synthetic control method
popular in the field of evaluating policy effects.

3. Model Construction and Variable Selection
3.1. Model Construction

The synthetic control method is a newly emerged method of analysis based on natural
experiments in comparative case analysis, proposed by Abadie and Gardeazabal [45]. In
recent years, the method has been continuously improved [46–48]. The synthetic control
method is mainly used to identify the implementation effect of a certain policy. The basic
idea is that due to the heterogeneity of each economy, it is difficult to find an economy with
essentially the same attributes and characteristics as the experimental group as a reference
group in a realistic scenario, but several known reference groups can be linearly combined
into a “composite group” that can better match the basic characteristics of the experimental
group. This synthetic control object is the “counterfactual reference group” of the exper-
imental group to be studied without policy interference simulated by the experiment.
By comparing the difference between the actual experimental group and the synthetic
experimental group, it is possible to know whether the policy under study is effective. This
study used the synthetic control method, which is commonly used to evaluate the effects
of policy. A comparative experimental study was conducted by considering a region where
the coupling of artificial intelligence and energy had been achieved. The development
of the local energy industry was considered under two scenarios by comparing a system
in which artificial intelligence and the energy industry had been adopted to achieve the
coordinated development of coupling with a system without coupling and coordinated
development. The result of the comparison revealed the impact of the coupling of the two
systems on the development of the energy industry in the study region.

It was assumed that the comprehensive development level of the energy industry
in N + 1 provinces could be observed within statistical time [1, T]. The first province
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(experimental group) in the T0 stage achieved the coupling of artificial intelligence and
the energy industry, while the other N provinces did not realize the coupling of artificial
intelligence and the energy industry, or local artificial intelligence did not develop during
the statistical period. Then, N provinces could be used as a potential reference group for
experimental province 1.

Y1it represents the comprehensive development index of the energy industry in
province i when regional artificial intelligence and the energy industry are coupled in
period t. Y0it represents the observation result of the comprehensive development level
of the regional energy industry in province i without realizing the coupling of artificial
intelligence and the energy industry in period t. Therefore, the effect in region i was caused
by the coordinated development of artificial intelligence and the energy industry during
the period t: τit = Y1it − Y0it, where i = 1, ···, N + 1; t = 1, ···, T. According to the above
formula, the comprehensive development level of the regional energy industry observed in
i province during t period can be expressed as: Yit = DitY1it + (1− Dit)Y0it = Y0it + τitDit.
Among them, Dit is a dummy variable, representing the integrated development state of
artificial intelligence and the energy industry of province i in period t. If province i realized
the coupling of artificial intelligence and the energy industry in period t, the value of Dit
was 1, and vice versa.

Only the first province realized a coupling between artificial intelligence and the
energy industry after T0, while the other N provinces did not realize the coupling and
coordinated development of regional artificial intelligence and the energy industry at any
time in the statistical period. For t > T0 period, the coupling effect of the coordinated
development of the two systems in the first province on the comprehensive development
level of the regional energy industry can be expressed as: τ1t = Y11t − Y01t = Y1t − Y01t.
The aim of this study was to solve τ1t. Because the first region realized the coupling and
coordinated development of the two systems, Y11t could be observed in the t > T0 period.
The comprehensive development level Y01t of the energy industry in the first province
without the coupling of the two systems was not observed. The model (1) below was used
to calculate the “counterfactual”result Y01t [46]. The comprehensive development level of
the local energy industry in the first province was estimated before the coupling of artificial
intelligence and the energy industry has been achieved:

Y0it = δt + θtZi + λtµi + εit (1)

where δt is the time fixed effect that affects the development of the energy industry in
all provinces. The Zi(K × 1) dimension covariable means that the observable control
variable was not affected by the coupling effect between artificial intelligence and the
energy industry. θt is a (1 × K)-dimensional unknown parameter vector. λt is a common
factor vector with (1 × F) dimensions that cannot be observed. µi is a (F × 1)-dimensional
coefficient vector, representing the unobservable regional fixed effect. The error term εit
is a short-term shock that cannot be observed in every province. It was assumed that the
mean value of εit was 0 at the regional level. This model does not require independence
between Zi, µi, and εit.

When λt is a fixed constant—i.e., when the effect of unobservable influencing factors
does not change over time—Equation (1) becomes a difference in difference (DID) model.
The synthetic control method allows the influence of unobservable factors to change with
time, i.e., λt is a function of time t, rather than a constant term.

To calculate the effect of coupling artificial intelligence and the energy industry on
the comprehensive development level of the energy industry, it is necessary to deter-
mine if the first province reached the comprehensive development level Y01t of the en-
ergy industry under the two-system coupling scenario. An (N × 1) dimensional weight
vector W = (w2, ···, wN+1) was introduced, wj ≥ 0, j = 2, ···, N + 1, which satisfied
w2 + ···+ wN+1 = 1. When wj ≥ 0, a convex combination of reference group provinces
was used to synthesize a “counterfactual reference group” to avoid a possible deviation.
Each specific value of the vector W, which is an average weighting of all the regions within
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the reference group, represented a synthetic control over the first region. When the variable
values of each reference group region were weighted, we obtained:

N+1

∑
j=2

wjYjt = δt + θt

N+1

∑
j=2

wjZj + λt

N+1

∑
j=2

wjµj+
N+1

∑
j=2

wjε jt (2)

Assuming that there is a weight vector W∗ = (w2
∗, ···, wN+1

∗), this satisfies:

N+1

∑
j=2

wj ∗Yj1 = Y11,
N+1

∑
j=2

wj ∗Yj2 =Y12, ···,
N+1

∑
j=2

wj ∗YjT0 =Y1T0 ,
N+1

∑
j=2

wj ∗ Zj =Z1 (3)

Abadie et al. [46] proved that if ∑T0
t=1 λ′tλt is a nonsingular matrix, then:

Y01t −
N+1

∑
j=2

wj ∗Ykt =
N+1

∑
j=2

wj∗
T0

∑
s=2

λt

(
T0

∑
n=1

λ′nλn

)−1

λ′s(ε js − ε1s)−
N+1

∑
j=2

wj ∗ (ε jt − ε1t) (4)

Abadie et al. [46] proved that under general conditions, Equation (4) approaches 0.
Therefore, for T0 < t ≤ T, the unbiased estimate of the counterfactual result for the first
province could be approximated by the synthetic control group, i.e., Ŷ01t = ∑N+1

j=2 wj ∗Yjt.
The estimated value of the coupling effect on the comprehensive development level of the
local energy industry was obtained when artificial intelligence and the energy industry
were coupled:

τ̂1t = Y1t−
N+1

∑
j=2

wj ∗Yjt, t ∈ [T0+1, ···, T] (5)

The key to solving τ̂1t was to find the synthetic control vector W∗ = (w2
∗, ···, wN+1

∗)
that makes Equation (3) true. The weight vector W* was determined by minimizing the
distance |X1 − X0W| between X1 and X0W. The distance function between X1 and X0W is

expressed as ‖X1 − X0W‖v =
√
(X1 − X0W)′V(X1 − X0W). X1 is the (m× 1)-dimensional

feature vector of the first province before the coupling between artificial intelligence and the
energy industry was realized. X0 is an (m × N)-dimensional matrix, and the j-th column of
X0 is the feature vector before the coupling of artificial intelligence and the energy industry
in region j. V is a positive semidefinite matrix with (m × n) dimensional symmetry. To
avoid the influence of V selection on the estimated mean square error of the model, the
program developed by Abadie et al. [46] was used to calculate V, which resulted in the
comprehensive development level of the energy industry in a synthetic area approximate
to the comprehensive development level of the local energy industry when the coupling
of the two systems was not realized. The comprehensive development level of the energy
industry in the synthetic control area, which was obtained by weighting, could be used as
an unbiased estimate of the comprehensive development level of the energy industry in a
hypothetical area without the coupling of artificial intelligence and the energy industry.
The difference in the comprehensive development level of the energy industry between
the regions where artificial intelligence and the energy industry were coupled and the
synthetic regions that were derived from the calculation reflected the coupling effect of the
two systems on the comprehensive development level of the local energy industry.

3.2. Variable Selection
3.2.1. Variable Descriptions and Data Sources

In this study, the comprehensive development index of the energy industry in
30 provinces of China from 2000 to 2017 was calculated using a comprehensive devel-
opment index of the energy industry. This enabled changes in the comprehensive devel-
opment of the regional energy industry to be measured. This value was then used as the
prediction result variable in the synthetic control method. The comprehensive development
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index of the energy industry and artificial intelligence is shown in Tables 1 and 2, and the
comprehensive development index of the energy industry for the 30 provinces is shown in
Table A1 of the Appendix A.

Table 1. Energy comprehensive evaluation index system.

First Level Indicator Second Level
Indicator Third Level Indicator Unit Type

Energy comprehensive
evaluation

index system

Total amount index
Energy industry investment Billion Positive index

Total energy production 10,000 tons standard coal Positive index
Total energy consumption 10,000 tons standard coal Negative index

Structural index

Proportion of investment in
power, steam, and hot water

production and
supply industries

% Positive index

Proportion of investment in
petroleum processing and

coking industry
% Positive index

Proportion of investment in coal
mining and selection, oil and

gas extraction
% Positive index

Quality index

Coefficient of elasticity of
energy consumption – Negative index

Energy consumption per unit
of GDP

10,000 tons of standard
coal/100 million yuan Negative index

Energy consumption per unit of
industrial value added

10,000 tons of standard
coal/100 million yuan Negative index

Conversion rate of power
energy processing % Positive index

Table 2. Artificial intelligence comprehensive evaluation index system.

First Level Indicator Second Level
Indicator Third Level Indicator Unit Type

Artificial intelligence
comprehensive

evaluation index
system

Public attention Baidu Index / Positive index

Science and
education level

Number of patent applications Number Positive index
Number of research projects Number Positive index
Number of high-level papers Number Positive index

Number of high-level scholars people Positive index
Market attention investment amount 100 million yuan Positive index

This paper mainly adopts the method of literature analysis to establish the evaluation
index system of energy industry. The frequency analysis is carried out for the literature
about the comprehensive index system of energy industry in China Knowledge Network,
and the relevant evaluation indexes of energy industry used in recent years with high
frequency and the structure division way of index system are selected. Combined with data
availability, the following 10 indicators were finally selected to construct a comprehensive
evaluation index system of China’ energy industry from three levels: total, structure and
quality of the energy industry. Although the automation index can reflect the development
of energy industry, it is difficult to obtain data, so it cannot be included in this index. China’
energy industry includes five sub-sectors: coal mining and processing, oil and natural
gas extraction, petroleum processing and coking, electricity and steam, and hot water
production and supply. Some provinces lack industrial investment data; therefore, the coal
mining and washing industry and the oil and natural gas mining industry were combined
into one indicator, referred to as the coal and oil mining industry. The unit industrial added
value was calculated from the ratio of the terminal energy consumption to the industrial
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added value, and the power processing conversion rate was calculated from the input and
output data of thermal power in the energy balance sheet.

No scientific research paper has yet measured the comprehensive development status
of AI through the method of constructing an evaluation index system. With reference to
the data analysis reports related to AI released by major consulting firms and consider-
ing the extremely low availability of AI-related data, the preliminary construction of a
comprehensive evaluation index system for the development status of AI is revised. The
comprehensive development status of AI in China is measured from three levels: public
attention, technology and science education level, and market attention. Among them, the
number of high-level papers refers to the geometric mean number of papers presented at
top international academic conferences in AI, which eliminates the influence of the size
of the number of paper co-authors on the average level of published high-level papers,
and the number of pages must be greater than or equal to 6 pages to be counted. The
number of high-level scholars is defined as scholars who have presented at least one high-
level paper at a top academic conference in AI. The investment amount metric is derived
from statistical analysis of data related to financing events obtained by AI companies.
The investment amount of US dollar funds is converted using the average value of the
exchange rate of US dollar to RMB in the current year. The known investment amounts of
the investment rounds were weighted and averaged to obtain the weighted average of the
amount invested in each round, which was used as the financing amount of undisclosed
information. The final amount of investment received by AI companies was obtained.

The economic indicators mentioned above were all converted by the GDP deflator
to eliminate the impact of inflation. The standard coal reference coefficients of various
energy sources involved in the calculation process were determined with reference to the
standards given in the China Energy Statistics Yearbook. The conversion coefficients of coal,
oil, and natural gas were 0.7143 kg of standard coal/kg, 1.45 kg of standard coal/kg, and
1.33 kg of standard coal/m3, respectively. The data related to the energy industry covered
in this paper were obtained from the National Bureau of Statistics, the China Energy
Statistical Yearbook from 2001–2018, and the regional statistical yearbooks of provinces
and cities from 2001–2018. The data related to artificial intelligence are obtained from
Baidu, INNOJOY patent search engine, CSRankings website, Hit Database, and Enterprise
database of IT oranges.

To guarantee the fitting effect of the synthetic control object and the robustness of the
result, several key factors that affected the development of the regional energy industry
were included as predictive control variables, i.e., per capita GDP (pgdp), level of education
per capita (pedu), fiscal spending as a share of GDP (gov), foreign investment as a share
of GDP (fi), industrial structure (ind), and the level of science and technology (tec). The
per capita GDP was used to measure the level of economic development of a region [54].
The level of education per capita was represented by the proportion of employed people
with college level or higher education in the region [55], which reflected both the regional
educational level and the quality of human resources. The ratio of fiscal expenditure to
GDP was used to measure the government’s support for the market [56]. The ratio of
foreign investment to GDP was used to reflect the impact of foreign technology on Chinese
enterprises [57], and the industrial structure was expressed as the ratio of the added value
of the regional secondary industry to GDP [58]. The level of science and technology was
expressed by the number of regional patent applications granted [59]. To improve the
fitting effect of the synthetic control method and the accuracy of the model, the lagged term
of the comprehensive development index of the regional energy industry was considered
part of the control variable by referring to Delaney and Kearney [60].

The entropy method was used to calculate the comprehensive development index
of the energy industry. A comprehensive evaluation model of the energy industry was
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constructed based on the comprehensive evaluation index of the energy industry shown in
Table 1. The detailed calculation formula was as follows:

E(x) =
7

∑
i=1

10

∑
j=1

wj ∗ X′ij i = 1, · · · , 7; j = 1, · · · , 10 (6)

where E(x) represents the comprehensive development index of the energy industry, wj
is the weight of the j-th index calculated by the entropy weight method, and X′ij is the
normalized value of a sample used in the entropy weight method.

The index data standardization method was as follows. Positive indexes refer to
evaluation indexes where larger values are considered better. For positive indicators, the
standardized treatment formula (7) was used:

X′ij =
Xij −min

{
X1j, · · · , Xnj

}
max

{
X1j, · · · , Xnj

}
−min

{
X1j, · · · , Xnj

} + 0.001 (7)

Reverse indexes refer to evaluation indexes where smaller values are considered better.
The standardized processing formula (8) was adopted for the reverse indexes:

X′ij =
max

{
X1j, · · · , Xnj

}
− Xij

max
{

X1j, · · · , Xnj
}
−min

{
X1j, · · · , Xnj

} + 0.001 (8)

Because the entropy method contains the calculation link of the logarithm in the
solution process, a value of 0.001 was added to the data obtained after standardization to
avoid a 0 value in the standardized data.

The evaluation index data related to the energy industry of all provinces in China
from 2000 to 2017 were calculated from the China Energy Statistical Yearbook from 2001 to
2018 and the regional statistical yearbooks released by all provinces. The relevant data for
the six predictive control variables were obtained from the National Bureau of Statistics,
China Statistical Yearbook, China Population and Employment Statistical Yearbook, and
China Labor Statistical Yearbook from 2001 to 2018.

3.2.2. Selection of Cities in the Experimental Group

According to the comprehensive development index of the energy industry of
30 provinces in China from 2000 to 2017, among the five representative provinces where
artificial intelligence is concentrated Guangdong has the highest level of comprehensive
development in the energy industry, while Jiangsu was ranked second. The comprehensive
development level of the energy industry in Beijing and Shanghai was the lowest level
among the 30 provinces, which was consistent with their geographical location, resource
endowment, and economic development plan. The comprehensive development level of
the energy industry in Zhejiang was in the middle to lower level among the 30 provinces,
with a small improvement over the 18 years.

In summary, Guangdong and Jiangsu were selected as the experimental group provin-
ces to test the effect of the coupled development of artificial intelligence and the energy
industry on the local energy industry, and the results obtained were then considered
convincing. Beijing, Shanghai, and Zhejiang, whose energy industries have been af-
fected by the local development of artificial intelligence to varying degrees, were removed
from the reference group of Guangdong and Jiangsu. The final reference group included
26 other regions, excluding Beijing, Shanghai, Zhejiang, and Xizang.

3.2.3. Selection of Time Points

The coupled development of artificial intelligence and the energy industry had two
levels: coupling and coupling coordination. To determine whether the two systems of
artificial intelligence and the energy industry could be coupled to the development of the
local energy industry after the coupling or the coupling and coordinated development
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were achieved, time points for both the coupling of the two systems and the coupling
coordination of the two systems were selected.

The coupling degree, coordination degree, and stage distribution of artificial intelli-
gence and the energy industry in China are shown in Table 3. A value of 0.5 was taken as
the threshold value of both the coupling degree and coupling coordination degree. When
the coupling degree of regional artificial intelligence and the energy industry exceeded 0.5,
it was considered that the development of the two systems has reached a stable coupling
stage. Similarly, when the coupling coordination degree of the two systems exceeded 0.5, it
was considered that the two systems had reached a stable coupling and coordination stage.
According to the coupling degree measurements presented in Table 1 of the Appendix A,
the coupling degree of artificial intelligence and the energy industry in Guangdong ex-
ceeded the threshold value of 0.5 for the first time in 2012, and the coupling coordination
degree of the two systems exceeded the threshold value of 0.5 in 2015. Therefore, the
selected time points for the coupling effect in Guangdong were 2012 and 2015, respectively.
The coupling effect on the energy industry could only be evaluated when the degree of
integration between artificial intelligence and the energy industry was determined by
comparing the synthetic results.

Table 3. The coupling degree, coordination degree, and stage distribution of artificial intelligence and energy industry in China.

Year E I Degree of
Coupling

Comprehensive
Evaluation

Index

Coupling
Coordination Coupling Level Coupling

Coordination Level
Comprehensive

Evaluation

2011 0.28 0.04 0.64 0.16 0.32 Moderate
running-in stage

Initial coordination
stage

Initial coordination
and moderate

running-in stage

2012 0.43 0.18 0.91 0.30 0.53 High coupling stage Low coordination
stage

Low coordination
coupling stage

2013 0.54 0.12 0.78 0.33 0.51 Deep running-in stage Low coordination
stage

Low coordination
depth running-in

stage

2014 0.62 0.18 0.83 0.40 0.58 High coupling stage Low coordination
stage

Low coordination
coupling stage

2015 0.61 0.37 0.97 0.49 0.69 High coupling stage Mid-coordination
stage

Coordination and
coupling phase

2016 0.59 0.48 1.00 0.54 0.73 High coupling stage Deep coordination
stage

Deep coordination
and coupling stage

2017 0.65 1.00 0.98 0.83 0.90 High coupling stage Extremely
coordinated stage

Extremely
coordinated

coupling stage

Notes: E represents energy industry composite index. I represents artificial intelligence composite index.

From 2011 to 2017, the coupling degree of artificial intelligence and the energy industry
in Jiangsu was higher than 0.5. However, according to the analysis, the coupling degree
of the two systems in Jiangsu fluctuated, with an initial decrease and then an increase,
with 2013 being a turning point. Therefore, 2013 was selected as the time point for a
stable coupling between artificial intelligence and the energy industry in Jiangsu. Similarly,
although the coupling coordination degree between artificial intelligence and the energy
industry in Jiangsu exceeded the threshold value of 0.5 in 2011, eventually reaching 0.55,
the coordination level only remained stable for one year, i.e., 2011. After four years, the
coupling coordination degree improved steadily and exceeded 0.5 again in 2016. The trend
of continuous improvement continued in 2017. In summary, 2016 was selected as the time
point for the two systems to achieve stable coupling and coordinated development.

4. Analysis of the Empirical Results

In this study, the synthetic control method was used to assess what kind of influence
the development of artificial intelligence has on the comprehensive development level of
the local energy industry. The study considered whether the scientific and technological
changes resulting from the development of artificial intelligence after the coupling of artifi-
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cial intelligence and the energy industry in specific regions will affect the comprehensive
development level of the local energy industry and the degree of the coupling effect on the
comprehensive development level of the regional energy industry.

4.1. Impact of the Coupling of Artificial Intelligence and the Energy Industry on the Integrated
Development of the Energy Industry in Guangdong

Taking Guangdong as an example, this section uses the synthetic control method to
explore the direction and intensity of the integrated development of artificial intelligence
and energy industry on the comprehensive development level of local energy industry.

4.1.1. Empirical Analysis of the Synthetic Control Method

Two different experimental results were obtained by the synthetic control method
for 2012 and 2015 below. Table 4 presents the weight of each region in the synthetic
Guangdong group. Table 5 shows the comparison between the fitting value and the true
value of Guangdong predictive variables.

Table 4. The weight of each region in synthetic Guangdong.

Province Ningxia Henan Anhui Fujian Hainan Jilin Xinjiang Shanxi -

2012 0.353 0.235 0.157 0.104 0.069 0.067 0.009 0.007 -
Province Chongqing Shandong Ningxia Fujian Hainan Neimenggu Gansu Xinjiang Anhui

2015 0.222 0.181 0.154 0.128 0.121 0.069 0.067 0.05 0.008

Table 5. The comparison between the fitting value and the actual value of Guangdong predictive variables.

2012 2015

Guangdong Synthetic Guangdong Guangdong Synthetic Guangdong

RMSPE 0.003077 0.008373
lnpgdp 10.1485 9.4597 10.3148 9.8198
lnedu 2.0182 1.8939 2.1402 2.0591
lnind 3.8868 3.8139 3.8798 3.7991
lntec 10.6760 7.3484 10.9467 7.9889
lnfi −0.0163 −1.2304 −0.1446 −1.1845

lngov 2.3653 2.8503 2.4098 2.8266
eicdi in 2000 0.1047 0.1095 0.1047 0.1154
eicdi in 2004 0.1124 0.1120 0.1124 0.1026
eicdi in 2008 0.205 0.1997 0.205 0.1952
eicdi in 2010 0.1987 0.2004 0.1987 0.2050
eicdi in 2011 0.2071 0.2109 0.2071 0.2196
eicdi in 2012 – – 0.2193 0.2325
eicdi in 2014 – – 0.2611 0.2456

Note: eicdi represents the comprehensive development index of energy industry. The table below is the same.

In the synthetic control method, the weight of provinces indicates the degree of
contribution of each reference group province in the synthetic control group. The greater
the weight, the greater the contribution of the reference group to the synthetic control object,
and the more similar the characteristics of the synthetic group. A weight of 0 means that
the similarity of the feature attributes between the reference group and the experimental
group province is very low [47]. It can be seen from Table 4 that when the coupling effect
occurred in 2012, the provinces with a relatively large weight in the synthetic Guangdong
group were Ningxia, Henan, and Anhui. When 2015 was taken as the time point at which
the coupling effect occurred, the provinces with a relatively large weight in the synthetic
Guangdong group were Chongqing, Shandong, and Ningxia.

The root mean square percentage error (RMSPE) was used to measure the degree of
fitting between a region and its synthetic control object. If the RMSPE value of a region was
large before the coupling effect occurred, the fitting effect was not good [48]. It can be seen
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from Table 5 that when the coupling effect occurred in 2012, the RMSPE of the synthetic
control method was 0.003077, and in 2015 it was 0.008373. In terms of RMSPE, 2012 was a
better time point than 2015 for the coupling effects to take effect.

When 2012 was set as the time point when the coupling effect occurred, a comparison
of the comprehensive development index of the energy industry of actual and synthetic
Guangdong from 2000 to 2017 was conducted and is shown in Figure 1. Before 2012, the
difference between the actual and synthetic values was 1.58%. The changes in the actual
and synthetic values of the comprehensive development index of the energy industry in
Guangdong almost completely coincided, indicating that the synthetic control method
effectively replicated the growth path of the Guangdong energy industry comprehensive
development index before the coupling effect occurred. When 2015 was used as the
time point when the coupling effect occurred, the difference between the comprehensive
development index of the energy industry in actual and synthetic Guangdong increased to
3.12%. With reference to Figure 1, the fitting effect of the synthetic control method was poor
at this time. Before 2015, there was a certain deviation between the actual and synthetic
Guangdong, and Figure 1 indicates that 2015 was not the exact time when the actual and
synthetic values began to diverge.

Figure 1. Comparison of actual and synthetic energy industry composite index growth in Guangdong in 2012 (a) and
2015 (b).

In conclusion, the fitting effect was better when the coupling effect occurred in 2012.
With these results more perfectly replicating the development path of the comprehensive
development index of the energy industry in Guangdong before the coupling effect oc-
curred. This result also shows that as long as artificial intelligence and the energy industry
reach a stable coupling stage, the coupling effect can play a role in the development of the
local energy industry. It is not necessary to realize the coordinated development of the two
systems. Therefore, the further analysis focused on 2012 only.

4.1.2. The Influence of the Coupling of Artificial Intelligence and the Energy Industry on
the Energy Industry in Guangdong

The effect of the coupling of artificial intelligence and the energy industry on the
local energy industry, as estimated by the synthetic control method, was expressed by
the degree of increase or decrease in Guangdong’s comprehensive development index of
the energy industry relative to its synthetic control object after the coupling of the two
systems was achieved. As shown in Figure 1a, when artificial intelligence and the energy
industry in Guangdong reached a stable coupling in 2012, the development path of the
actual and synthetic values of the comprehensive development index of the energy industry
in Guangdong began to diverge. The actual value of the comprehensive development index
of the energy industry in Guangdong became higher than the synthetic value, and the
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gap continued to widen. From 2013 to 2017, the comprehensive development index of the
energy industry in Guangdong was 0.0005, 0.0268, 0.0634, 0.0686, 0.0903, and 0.0789 higher
than that of synthetic Guangdong, representing increases of 0.24%, 12.74%, 32.04%, 36.76%,
51.57%, and 40.92%, respectively. From 2012 to 2017, compared with the synthetic value, the
average annual growth rate of the actual value of the comprehensive development index
of the energy industry in Guangdong was 29.05%. This result shows that after regional
artificial intelligence and the energy industry reached a stable coupling stage, the coupling
effect of the integration of the two systems substantially improved the comprehensive
development level of the energy industry, with an average annual increase of 29.05%.

4.1.3. Validity Test

Although the empirical results of the synthesis control method showed that there
were significant differences between the actual and synthetic values of the comprehensive
development index of Guangdong’s energy industry, it was not clear whether this difference
was caused by the coupling effect of the two systems or whether the difference was
accidental. The following proof was used to test the validity of the result.

Placebo Test

With reference to the placebo test method in the robustness test proposed by Abadie
and Gardeazabai [45] and Abadie et al. [46], the following methodology was adopted.
Regions in the sample period that had not realized the coupling of artificial intelligence and
the energy industry were selected for analysis alongside Guangdong. If the comprehensive
development index of the energy industry in an area was the same as the development
trend of Guangdong, the results obtained by the synthetic control method for Guangdong
were not considered reliable. Therefore, it could not be proven that the coupling of artificial
intelligence and the energy industry promoted the development of the regional energy
industry. In contrast, if the comprehensive development index of the energy industry in
this region after 2012 differed from, or was even the opposite of, the development trend
of Guangdong, the results were considered to be robust. A placebo test was conducted in
the provinces with the largest weight and provinces with a weight of 0 in the synthetic
Guangdong group. If these two extreme cases showed different development trends from
that of Guangdong, the robustness of the results were proven.

A placebo test was conducted for Ningxia with the highest weight and Hubei with a
weight of 0 in the synthetic Guangdong group, and the results are shown in Figure 2. It
can be seen that after 2012, the actual value of the comprehensive development index of
the energy industry in Ningxia displayed a contrasting trend to that of Guangdong. The
actual value of the comprehensive development index of the energy industry in Hubei
was similar to the trend observed for the synthetic control object. According to the above
placebo test, when the two systems were coupled in 2012, the coupled artificial intelligence
and energy industry in Guangdong played a significant role in promoting the development
of the local energy industry, and this result was robust.

Ranking Test

To prove that the results of Guangdong’s synthetic control method were statistically
significant, the ranking test method proposed by Abadie et al. [46] was applied. The ranking
test was used to determine the probability of the same situation as that in Guangdong
occurring in other provinces. The basic concept was as follows. It was assumed that the
artificial intelligence and energy industries of all provinces in the reference group realized
the coupled development of the two systems in 2012. The synthetic control method was
then used to construct the synthetic control objects of the reference group provinces. By
comparing the degree of difference between the coupling effect of the two systems when
coupled development was realized and the actual coupling effect of Guangdong, if the
coupling effect of the two systems in Guangdong was large enough, it was reasonable to
accept that the results of the synthetic control in Guangdong were not accidental and were
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statistically significant. The coupling of artificial intelligence and the energy industry in
Guangdong had a coupling effect on the development of the local energy industry.

Figure 2. Placebo test in Guangdong. (a) The comprehensive development index of energy industry in Ningxia and
synthetic Ningxia; (b) The comprehensive development index of energy industry in Hubei and synthetic Hubei.

According to the treatment method of Abadie et al. [46], provinces with a poor fitting
effect before 2012 should be excluded to prove the effectiveness of the synthetic control
method. Provinces with an RMSPE more than five times that of Guangdong before 2012
were removed, leaving a total of 19 provinces. The reason for this was that before 2012,
the synthetic control objects did not fit the trend of the comprehensive development index
of the energy industry in the region, and the difference between the actual value of the
comprehensive development index of the energy industry in the region and the predicted
value after 2012 was probably caused by a bad fitting effect. It was not likely that this was
related to the coupling of artificial intelligence and the energy industry. Figure 3 shows
the distribution of the differences between the actual and synthetic values of the reference
provinces, which were five times lower than the RMSE of Guangdong.

Figure 3 shows that before 2012, the difference between the actual and synthetic
values of the comprehensive development index of the energy industry in Guangdong
was smaller than the differences based on the comprehensive development index values of
the energy industry in other provinces. However, since 2012, the difference between the
actual and synthetic values in Guangdong has increased significantly, and the gap between
the difference in Guangdong and the difference in other provinces has gradually widened.
The gap between the difference in Guangdong was larger than the range of differences in
other provinces. The difference between the actual and synthetic values in Guangdong
was much larger than the gap between the actual and synthetic values in other provinces.
The comprehensive development level of the energy industry in Guangdong has therefore
significantly improved due to the impact of the coupled development of local artificial
intelligence and the energy industry. There was only a 5.26% probability that there would
be such a large difference between the comprehensive development index of the energy
industry of actual and synthetic Guangdong. Due to the coupling of artificial intelligence
and the energy industry in Guangdong, the substantial increase in the comprehensive
development index of the energy industry in Guangdong was significant at the 10% level
and the synthetic control method produced effective results.
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Figure 3. Difference distribution of the comprehensive development index of energy industry of
the provinces in the Guangdong’s reference group. Note: The red solid line represents Guangdong,
and the gray dotted line represents the provinces where the RMSPE value is 5 times lower than the
Guangdong RMSPE value.

4.2. The Impact of the Coupling of Artificial Intelligence and the Energy Industry on the Energy
Industry in Jiangsu

Taking Jiangsu as an example, this section uses the synthetic control method to explore
the direction and intensity of the integrated development of artificial intelligence and
energy industry on the comprehensive development level of local energy industry.

4.2.1. Empirical Analysis of the Synthetic Control Method

The results obtained by two different synthetic control methods in 2013 and 2016 are
presented below.

According to the weight of each region in synthetic Jiangsu in Table 6, when 2013 was
taken as the time point for the coupling effect to occur, the provinces with a relatively large
weight in the synthetic Jiangsu group were Hunan, Qinghai, and Anhui. When 2016 was
taken as the time point for the coupling effect to occur, the provinces with a relatively large
weight in the synthetic Jiangsu group were Qinghai, Chongqing, and Shaanxi.

Table 6. The weight of each region in synthetic Jiangsu.

Province Hunan Qinghai Anhui Shanxi Fujian Gansu Hainan Guangxi Hubei

2013 0.317 0.273 0.101 0.098 0.056 0.046 0.046 0.038 0.025
Province Qinghai Chongqing Shaanxi Sichuan Hainan Shandong Fujian

2016 0.325 0.325 0.177 0.103 0.064 0.003 0.002

According to the comparison between the fitting value and the actual value of the
predictive variables in Jiangsu in Table 7, when 2013 was taken as the time point for
when the coupling effect in the synthetic control method occurred, the RMSPE value was
0.0026114. When 2016 was taken as the time point when the coupling effect in the synthetic
control method occurred, the RMSPE value was 0.0065547. In terms of the RMSPE, the
fitting effect was better when 2013 was used as the time point of the coupling effect in the
synthetic control method.
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Table 7. The comparison between the fitting value and the true value of Jiangsu predictive variables.

2013 2016

Jiangsu Synthetic Jiangsu Jiangsu Synthetic Jiangsu

RMSPE 0.0026114 0.0065547
lnpgdp 10.2462 9.4492 10.4455 9.6837
lnedu 1.9997 1.9134 2.1791 2.0526
lnind 3.9837 3.7848 3.9596 3.8380
lntec 10.2569 7.3522 10.6477 7.5161
lnfi −0.0607 −1.5502 −0.1186 −1.4735

lngov 2.2661 2.9852 2.3263 3.1700
eicdi in 2000 0.1141 0.1133 0.1141 0.1148
eicdi in 2004 0.1126 0.1095 0.1126 0.1039
eicdi in 2008 0.1649 0.1633 0.1649 0.1665
eicdi in 2010 0.1913 0.1911 0.1913 0.1884
eicdi in 2012 0.2115 0.2067 0.2115 0.2085
eicdi in 2014 – – 0.2227 0.2258
eicdi in 2015 – – 0.2369 0.2196

Figure 4 shows a comparison between the growth of the synthetic and actual values
of the comprehensive development index for Jiangsu’s energy industry from 2000 to 2017,
taking 2013 as the time point when the coupling effect occurred. The results obtained by
the synthetic control method better fitted the comprehensive development index of the
energy industry in Jiangsu before the coupling effect occurred. The difference between
the actual and synthetic values was only 1.25%, and the trend of the comprehensive
development index of the energy industry in synthetic Jiangsu and actual Jiangsu were
almost completely the same. The synthetic control method perfectly replicated the growth
path of the comprehensive development index of the energy industry in Jiangsu before
the coupling of the two systems. Taking 2016 as the time point when the coupling effect
occurred, before 2016 the difference in the comprehensive development index of the energy
industry between actual and synthetic Jiangsu was 2.96%, which was more than twice the
difference in 2013. There was a deviation in the trend of the comprehensive development
index of the energy industry between the actual and synthetic Jiangsu before 2016. The
actual and synthetic values began to separate significantly before 2016. It can be seen that
the time point of 2016 as the occurrence of the coupling of artificial intelligence and the
energy industry was not accurate, with 2013 being more realistic. This was consistent
with the conclusion obtained from the synthetic control method of Guangdong, i.e., once
artificial intelligence and the energy industry reached a stable coupling stage, the coupling
effect of the two systems on the development of the regional energy industry was exerted.
Therefore, further analysis focused only on 2012.

4.2.2. The Impact of the Coupling of Artificial Intelligence and the Energy Industry on the
Energy Industry in Jiangsu

As shown in Figure 4, when artificial intelligence and the energy industry in Jiangsu
reached a stable coupled stage in 2013, the actual value of the comprehensive development
index of the energy industry in Jiangsu began to separate from the synthetic value. The
actual value of the comprehensive development index of energy industry in Jiangsu became
higher than the synthetic value, and the gap between the actual and synthetic values
increased gradually. From 2014 to 2017, the actual value of comprehensive development
index of the energy industry in Jiangsu was higher than the synthetic value. After the
two systems achieved a stable coupling, the comprehensive development level of the
energy industry in Jiangsu increased by 9.11% (2014), 20.24% (2015), 27.70% (2016), and
27.16% (2017). Since 2013, the comprehensive development level of Jiangsu’s energy
industry has increased by 21.05% annually. Therefore, achieving a stable and coupled
development between regional artificial intelligence and the energy industry could boost
the comprehensive development level of the regional energy industry by 21.05% every year.
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Figure 4. Comparison of actual and synthetic energy industry synthetic index growth in Jiangsu in 2013 (a) and 2016 (b).

4.2.3. Validity Test

To ensure the robustness and validity of the empirical results of the synthetic control
method, the same robustness and validity tests were conducted in Jiangsu and Guangdong.

Placebo Test

Placebo tests were conducted for Hunan, which had the highest weight in the syn-
thetic Jiangsu group, and Liaoning, which had a weight of 0. The results are shown in
Figure 5. It can be seen that the changes in the comprehensive development index of
the energy industry in Hunan and Liaoning did not follow the same trend as in Jiangsu
after 2013. In Hunan, there was a divergence between the actual and synthetic values
of the comprehensive development index of the energy industry before 2013, with the
actual value being lower than the synthetic value. This trend differed from the trend in
Jiangsu. The actual and synthetic values of the comprehensive development index of
the energy industry in Liaoning changed in a similar way, with no significant separation
phenomenon. The placebo test results showed that artificial intelligence and the energy
industry in Jiangsu achieved a stable coupling in 2013 and had a coupling effect on the
local energy industry. This was an important reason for the significant increase in the
comprehensive development level of the energy industry in Jiangsu after 2013.

Ranking Test

The provinces whose RMSPE exceeded that of Jiangsu by five times before 2013
were excluded from the analysis, leaving 14 provinces. Figure 6 shows the difference in
the distribution between the actual and synthetic values for provinces in the reference
group that were less than five times the RMSPE of Jiangsu. It can be seen that before
2013, including Jiangsu, the difference between the actual and synthetic values of the
comprehensive development index of the energy industry in all the provinces that met the
requirements was very small. Since 2013, the difference between the actual and synthetic
values in Jiangsu has increased significantly, and differences have begun to appear in
other provinces. The differences in Jiangsu were of a different magnitude to those in
other provinces. This indicates that the difference between the actual and synthetic values
in Jiangsu was much larger than that between the actual and synthetic values in other
provinces. Therefore, because the local artificial intelligence and energy industry achieved
a stable coupling, the comprehensive development level of the energy industry in Jiangsu
has significantly improved. There was only a 7.14% probability that there would be such a
large gap between the actual and synthetic values of the comprehensive development index
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of the energy industry of Jiangsu. The results showed that because a coupling of artificial
intelligence and the energy industry occurred, the improvement of the comprehensive
development index of energy industry in Jiangsu was significant at the 10% level, and the
results obtained using the synthetic control method were valid.

Figure 5. Placebo test in Jiangsu; (a) The comprehensive development index of energy industry in Hunan and synthetic
Hunan. (b) The comprehensive development index of energy industry in Liaoning and synthetic Liaoning.

Figure 6. Difference distribution of the comprehensive development index of energy industry of
the provinces in Jiangsu’s reference group; Note: The red solid line represents Jiangsu, and the
gray dotted line represents the provinces where the RMSPE value is 5 times lower than the Jiangsu
RMSPE value.

5. Conclusions and Policy Implications
5.1. Conclusions

In order to scientifically and rigorously measure the comprehensive development
level of AI and energy industry in China and the regions, and to explore the degree of
influence of the integrated development of AI and energy industry on the comprehensive
development level of regional energy industry, this paper firstly calculated the compre-
hensive development index of energy industry in 30 provinces and cities across China
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during 2000–2017 using the comprehensive evaluation index system of energy industry,
and took Guangdong and Jiangsu as examples. The synthetic control method was used to
explore the direction and impact intensity of the integration development of two systems
of artificial intelligence and energy industry on the comprehensive development level of
local energy industry, and the robustness and validity of the empirical results were verified
by placebo and ranking tests. We eventually drew the following conclusions:

(1) When a stable coupling development relationship between regional AI and energy
industry was achieved without the need to reach a coordination relationship, the coupling
effect began to contribute to the improvement of the comprehensive development level of
the local energy industry.

(2) After the stable coupling development between regional AI and energy industry,
the comprehensive development level of energy industry in Guangdong and Jiangsu grew
at more than 20% per year, and this empirical result was significant at 10% level.

(3) The placebo test results showed that the coupling development of the two systems
between AI and energy industry in Guangdong Province was achieved in 2012, which
promoted the development of local energy industry; The stable coupling development of
the two systems between AI and energy industry in Jiangsu Province was achieved in 2013
and had a coupling effect on local energy industry, which was an important reason for the
significant increase of the comprehensive development level of energy industry in Jiangsu
Province after 2013.

5.2. Policy Implications

The synthetic control method predicted the values of the regional energy industry
comprehensive development index when not affected by the coupling effect of the two
systems, and quantified the magnitude of the coupling effect of the integral development
of AI and energy industry in Guangdong and Jiangsu provinces on the comprehensive
development level of the local energy industry by comparing the differences between the
synthetic and actual values, which more concretely illustrated the far-reaching impact
of the development of AI on the development of the energy industry and provided data
support and theoretical basis for the regional practice of empowering traditional industries
through AI.

Based on the model constructed and empirical findings of this paper, the following
policy measures need to be improved to maximize the technological dividends of artificial
intelligence and help China’s smart energy construction goals:

(1) Promote the development of the artificial intelligence industry in each region ac-
cording to local conditions. According to the comprehensive development index accounted
for in this paper, it can be seen that, currently, China’s artificial intelligence is generally at
the stage of technology first, commercial implementation lags behind, and the development
of serious imbalance between regions, artificial intelligence enterprises are more concen-
trated in many Internet enterprises and economically developed regions. The development
of artificial intelligence has far-reaching significance in accelerating the structural change
of traditional industrial chain, improving the depth of information mining, information
utilization and production operation efficiency. To use artificial intelligence as an important
engine of economic growth, local governments at all levels should actively respond to
the national strategic goal of encouraging, supporting, and guiding the development of
local artificial intelligence technology and enterprises. Combining the advantages of the
local economy, science and technology, regional conditions, and environmental resources,
the government should introduce preferential tax policies for artificial intelligence enter-
prises, policies to attract artificial intelligence professionals, and policies to develop the
required skills.

(2) The government, enterprises, and universities should cooperate to promote the
coordinated development of artificial intelligence and the energy industry. The government
and enterprises should work together to guide, establish, and improve the data ecosystem,
and accelerate the innovation and upgrading of AI-related technologies and their applica-
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tion in the field of energy industry. Local enterprises should understand the development
plans and strategic goals of national and local governments, grasp the development trend
of artificial intelligence and energy industry, combine their own advantages, and find
their deep field and future development direction. By conducting industry–university–
research cooperation activities with universities and communicating with successful local
and international artificial intelligence companies, enterprises can acquire the latest devel-
opment trends, cutting-edge theories of artificial intelligence, and implement technology
and business models to improve their own strengths.

(3) Formulate measures for the differentiated integration of artificial intelligence and
the energy industry between regions. Due to the heterogeneity of the economic develop-
ment level, geographical location, and resource endowment in different regions of China,
there are significant differences in the integration of artificial intelligence and the energy
industry in different provinces. In order to accelerate the integration of artificial intel-
ligence with the regional energy industry, local governments at all levels and regional
enterprises should identify their own advantages, determine a suitable positioning, and
formulate goals and directions in line with their own development conditions and artificial
intelligence development. Combining the key strengths and challenges of the local en-
ergy industry will increase innovation in the development of artificial intelligence-related
technologies, product research and development, and the introduction of technology and
skills. This will promote the integration of artificial intelligence and the energy industry,
ease the consumption of energy resources, and solve the development dilemma in the
energy industry.
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Appendix A

Table A1. Comprehensive development index of the energy industry in 30 provinces across the country from 2000 to 2017.

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

Shanxi 0.20 0.23 0.28 0.32 0.27 0.38 0.39 0.41 0.44 0.44 0.52 0.59 0.61 0.57 0.56 0.58 0.50 0.46
Shaanxi 0.12 0.15 0.16 0.20 0.19 0.23 0.24 0.25 0.29 0.33 0.36 0.41 0.43 0.46 0.44 0.44 0.41 0.43

Shandong 0.22 0.24 0.24 0.27 0.18 0.29 0.28 0.32 0.33 0.33 0.34 0.36 0.37 0.36 0.38 0.38 0.39 0.41
Hebei 0.13 0.13 0.15 0.15 0.12 0.20 0.20 0.22 0.23 0.23 0.25 0.26 0.28 0.28 0.27 0.27 0.28 0.29

Neimenggu 0.09 0.10 0.10 0.14 0.14 0.21 0.27 0.32 0.38 0.40 0.44 0.48 0.50 0.51 0.53 0.45 0.44 0.29
Xinjiang 0.23 0.31 0.22 0.24 0.09 0.27 0.28 0.29 0.28 0.28 0.29 0.29 0.31 0.33 0.37 0.35 0.29 0.29

Guangdong 0.10 0.12 0.12 0.13 0.11 0.16 0.18 0.19 0.20 0.20 0.20 0.21 0.22 0.24 0.26 0.26 0.27 0.27
Henan 0.16 0.18 0.19 0.18 0.17 0.23 0.24 0.27 0.28 0.30 0.30 0.31 0.29 0.26 0.25 0.24 0.24 0.26

Sichuan 0.10 0.10 0.11 0.12 0.11 0.14 0.16 0.17 0.18 0.20 0.22 0.26 0.26 0.24 0.25 0.26 0.25 0.26
Heilongjiang 0.25 0.24 0.25 0.25 0.12 0.26 0.27 0.27 0.28 0.28 0.29 0.30 0.29 0.28 0.26 0.26 0.24 0.25
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Table A1. Cont.

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

Jiangsu 0.11 0.12 0.11 0.12 0.11 0.14 0.15 0.15 0.16 0.17 0.19 0.19 0.21 0.21 0.22 0.24 0.24 0.24
Guizhou 0.08 0.08 0.08 0.10 0.10 0.13 0.14 0.14 0.17 0.19 0.21 0.26 0.25 0.24 0.22 0.24 0.26 0.23
Liaoning 0.20 0.22 0.21 0.21 0.13 0.23 0.24 0.23 0.23 0.22 0.26 0.25 0.25 0.24 0.23 0.22 0.22 0.22
Yunnan 0.07 0.07 0.08 0.09 0.07 0.12 0.12 0.13 0.14 0.15 0.16 0.18 0.20 0.22 0.21 0.22 0.21 0.20
Tianjing 0.18 0.20 0.19 0.21 0.08 0.22 0.22 0.20 0.23 0.24 0.24 0.21 0.19 0.22 0.23 0.21 0.17 0.18
Anhui 0.11 0.16 0.13 0.17 0.15 0.18 0.19 0.19 0.20 0.22 0.21 0.22 0.23 0.20 0.19 0.19 0.18 0.18
Hunan 0.09 0.10 0.09 0.09 0.09 0.13 0.12 0.14 0.16 0.18 0.21 0.22 0.23 0.23 0.22 0.20 0.19 0.18

Zhejiang 0.08 0.09 0.10 0.10 0.08 0.11 0.11 0.12 0.12 0.12 0.13 0.13 0.14 0.15 0.16 0.17 0.18 0.18
Hubei 0.09 0.09 0.09 0.09 0.08 0.11 0.12 0.14 0.14 0.15 0.17 0.20 0.20 0.18 0.17 0.17 0.17 0.17
Jilin 0.12 0.15 0.16 0.17 0.06 0.17 0.20 0.19 0.18 0.20 0.20 0.20 0.22 0.19 0.20 0.21 0.19 0.17

Fujian 0.07 0.08 0.12 0.08 0.06 0.09 0.11 0.15 0.16 0.15 0.17 0.16 0.17 0.18 0.17 0.17 0.17 0.17
Ningxia 0.08 0.07 0.07 0.10 0.07 0.12 0.13 0.17 0.18 0.16 0.16 0.18 0.19 0.19 0.17 0.14 0.12 0.16

Chongqing 0.07 0.07 0.08 0.08 0.05 0.11 0.11 0.12 0.14 0.15 0.15 0.17 0.17 0.18 0.21 0.20 0.16 0.15
Gansu 0.10 0.10 0.11 0.12 0.11 0.14 0.14 0.13 0.13 0.15 0.15 0.16 0.18 0.20 0.19 0.19 0.16 0.15

Guangxi 0.06 0.06 0.06 0.07 0.05 0.08 0.09 0.10 0.13 0.12 0.13 0.14 0.13 0.14 0.13 0.14 0.13 0.14
Jiangxi 0.07 0.07 0.08 0.09 0.06 0.10 0.09 0.10 0.13 0.13 0.12 0.15 0.15 0.15 0.14 0.12 0.13 0.12

Qinghai 0.16 0.12 0.12 0.13 0.10 0.14 0.13 0.13 0.14 0.12 0.15 0.12 0.13 0.14 0.14 0.13 0.12 0.12
Shanghai 0.09 0.12 0.11 0.09 0.09 0.08 0.09 0.12 0.13 0.11 0.11 0.12 0.13 0.09 0.09 0.09 0.09 0.10

Beijing 0.08 0.07 0.06 0.06 0.07 0.09 0.09 0.09 0.11 0.10 0.09 0.09 0.09 0.09 0.09 0.08 0.08 0.09
Hainan 0.11 0.11 0.09 0.06 0.13 0.18 0.17 0.07 0.06 0.08 0.06 0.08 0.10 0.11 0.11 0.10 0.10 0.09
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