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Colorectal cancer (CRC) is the fourth leading cause of cancer death worldwide,

and constitutive activation of the Wnt signaling pathway is universal in most CRC

cases. Wnt ligands (Wnts) are secreted glycoproteins and fundamentally essential for

the transduction of Wnt signaling pathway. However, the 19 members of Wnts in

humans imply a daunting complexity of Wnt signaling and biological effects, and our

understanding of their roles in CRC tumorigenesis is still quite rudimentary. This review

will give an overview of the structural characteristics and maturation process of Wnts.

The expression pattern of all human Wnts in CRC tissues, including Wnt1, Wnt2,

Wnt2b, Wnt3, Wnt3a, Wnt4, Wnt5a, Wnt5b, Wnt6, Wnt7a, Wnt7b, Wnt8a, Wnt8b,

Wnt9a, Wnt9b, Wnt10a, Wnt10b, Wnt11, and Wnt16, and their relationship with the

tumorigenesis and the progression of CRC will be specifically summarized separately.

Despite certain challenges, Wnt-based therapeutics for CRC emerge continuously and

some are now in clinical trials. In conclusion, a deep understanding of Wnts is very helpful

for a better management of this disease.

Keywords: colorectal cancer, Wnts, canonical Wnt signaling pathway, non-canonical Wnt signaling pathway,

Wnt-based therapeutics

INTRODUCTION

Colorectal cancer (CRC) is the third most common malignancy and the fourth leading cause of
cancer-related mortality worldwide, with more than 1.4 million new cases and 800,000 cancer-
related deaths annually. The occurrence of CRC can be attributed to multiple lifestyle risk factors,
such as diets high in fat and cholesterol, lack of exercise, excessive alcohol consumption and
smoking, and other uncontrollable risk factors, including aging, type 2 diabetes, personal history
of colonic polyps or inflammatory bowel disease, and some CRC-related hereditary syndromes.
The routine use of fecal occult blood test, colonoscopy, and image evaluation has significantly
improved the detection of CRC, and improved treatment options such as targeted therapy
and immunotherapy have raised the 5-year survival rate to 65% for patients with CRC (1).
Unfortunately, the tumor often reaches to the advanced stage or metastasizes without noticeable
symptoms, and about 25% of CRC patients have metastatic diseases at initial diagnosis and their
prognosis is still very poor (2). Therefore, an improved understanding of the underlying molecular
mechanisms will contribute to the diagnostic and the therapeutic management of CRC.
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ROLES OF WNT SIGNALING IN
TUMORIGENESIS AND THE
PROGRESSION OF CRC

CRC is a highly heterogeneous disease, which is attributed
to the complex interactions between genetic predisposition
and environmental factors, and abnormalities in several crucial
signal transduction pathways, such as Notch, TGFβ-Smads,
Hedgehog, JAK-STAT, Ras-MAPK, PI3K-Akt, Wnt, p53, and
DNA mismatch repair signaling pathways, play important roles
in the initiation and the progression of CRC (3). Among them,
Wnt signaling pathway attracts more attention due to its crucial
role in a variety of biological processes, such as embryogenesis
and tissue homeostasis. Abundant studies have proved that
excessive activation of Wnt signaling was a major culprit in
the carcinogenesis of most human malignancies, including CRC
(4, 5). A genome-scale analysis has identified that more than 90%
of CRC patients carried mutations of one or more downstream
components of the Wnt signaling pathway, especially the loss-of-
functionmutations of adenomatous polyposis coli (APC) and the
activating mutations of β-catenin or the extreme overexpression
of some members such as frizzled (Fzd) receptors (6). Moreover,
mutations of Wnt-dependent components, such as activating
mutations of R-spondin (RSPO) family members and secreted
Wnt agonists, occur in 10% of CRC cases carrying the wild-
type APC allele (7). Additionally, the loss-of-function mutations
of E3 ubiquitin ligases ring-finger protein 43 (RNF43), which
lead to the excessive activation of Wnt signaling by blocking
the ubiquitin-mediated degradation of Fzd receptors and LRP5/6
coreceptors, are dependent on Wnt secretion and frequently
detected in CRC cases (8).

The activation of the Wnt signaling pathway, depending
on the alteration of the Wnt pathway components and their
functions, is indispensable for the initiation, the progression,
and the metastasis of CRC. The Wnt signaling pathway
transduction may be interrupted or exceedingly activated when
the expression levels of crucial components change, especially
in tumorigenesis (9). Even though the majority of the Wnt
signaling pathway components have been determined, their
functions in a specific tumor type or microenvironment remain
intriguingly complicated and need to be understood deeply.
The Wnt signaling pathway is mainly divided into β-catenin-
dependent canonical signaling pathway, independent non-
canonical Wnt/planar cell polarity, and Wnt/Ca2+ signaling
pathways (Figure 1). It is still unclear by which mechanism
Wnts choose to activate one specific signaling. A reasonable
explanation is that the cell type and the signaling components
expressed in cells may dictate the specificity of the signaling
cascade and the downstream effectors (10). The identified
transduction processes of the canonical Wnt signaling mainly
include the secretion of Wnts, identification of Wnt coreceptors,
silencing of β-catenin destruction complex, translocation of β-
catenin into nucleus, recruitment of co-factors, and activation
of target genes. An aberrant regulation of any of the steps
mentioned above in canonical Wnt signaling could contribute
to the development of human malignancies, and several

studies have well-documented the impact of Wnt signaling
on the carcinogenesis of CRC (9, 11). Besides that, abnormal
feedback regulation of the Wnt pathway is also involved in the
carcinogenesis of CRC. For instance, AXIN2 andDKK1 are direct
targets and feedback inhibitors of the Wnt pathway in normal
cells, whereas their inhibitory effect on activated Wnt signaling
in CRC cells is invalid, and instead they become the promoters of
CRC metastasis by activating epithelial–mesenchymal transition
(EMT) pathways (12). Recently, Kang and colleagues found that
phopholipase D isozymes, the direct targets and positive feedback
regulators of the canonical Wnt pathway, could promote Wnt-
driven growth and invasion of CRC cells (13). Moreover,
complex interactions of Wnt pathways and many other signaling
pathways, such as NF-κB, RAS-extra-cellular signal regulated
kinase, and hypoxia-inducible factor-1α pathways, are commonly
observed in most tissue types, and the aberrations within these
pathways also contribute to the development of CRC, increasing
the difficulty of designing better interventions against it (14–
16). Overall, dysregulation of Wnt signaling is an important
pathogenetic basis of CRC, and revealing detailed mechanisms
of its action is critical for the treatment of this disease.

As key factors to initiate the activation of Wnt signaling
pathway, Wnts are expressed in all metazoan species, and
humans carry 19 independent members sharing 40–90% amino
acid sequence identity with each other. All Wnts are secreted
glycosylated lipid-modified molecules. However, little is known
regarding what determines the generation of various Wnts and
the subsequent Wnt signaling pathways. Although the aberrant
expression of Wnts is not the culprit for triggering majority of
CRC, elucidating their specific roles in colorectal carcinogenesis
is still beneficial for the diagnosis and the prevention of CRC. In
the following parts, we will discuss the current insights into the
characteristics of human Wnts and elaborate their roles in the
pathogenesis of CRC. In addition, we will summarize the latest
progress on the treatment of CRC by targeting Wnts.

THE STRUCTURAL CHARACTERISTICS OF
WNTS

The structure of Wnts has been elaborately summarized
previously (17, 18). In brief, Wnts consist of 350–400 amino
acid residues and are ∼40 kDa in size. The amino-terminal
signal sequences are mainly hydrophobic amino acids in different
lengths for secretion andmay be cleaved for maturation (19). The
amino terminus is predicted to determine which Wnt signaling
will be activated (20), whereas other hypothesis suggests thatWnt
signaling activity is perhaps conferred by specific cellular context
based on the observations that some non-canonical ligands, such
as Wnt5a and Wnt11, can activate the canonical Wnt/β-catenin
in a certain context (19). Wnts also contain about 22 conserved
cysteine residues which are postulated to form intramolecular
S–S bonding and maintain the secondary structure. The high-
resolution structural information of Wnts has puzzled scientists
for decades, and this problem was solved by Garcia and
colleagues. They crystallized the Xenopus Wnt8 (XWnt8) with
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FIGURE 1 | The canonical and the non-canonical Wnt signaling pathways. (A) In canonical Wnt signaling, β-catenin is phosphorylated by GSK-3β and CK1α in the

absence of Wnts, followed by ubiquitination by β-TrCP and targeting for proteasomal degradation, without nuclear β-catenin; a repressive complex containing

TCF/LEF and Groucho/TLE subsequently recruits HDACs to inhibit the transcriptional activation of β-catenin target genes. Conversely, the activation of canonical Wnt

signaling is initiated from the binding of Wnts to Fzd and co-receptor LDL receptor-related protein (LRP5 or LRP6); then, the DVL is phosphorylated by GSK-3β and

CK1α and begins to form a polymer that can inactivate the destruction complex through recruiting AXIN and GSK3β. Thereby, the accumulated β-catenin in the

cytoplasm localizes to the nucleus and forms complexes with co-regulators of transcription factors such as TCF/LEF by removing Groucho/TLE complexes and

recruiting transcriptional co-activators, including CBP/p300, BRG1, BCL9, and Pygopus. Next, downstream genes including cyclin D, MMPs, c-Myc, COX2, CD44,

etc., are activated and give rise to the changes of the series of cellular activities, such as excessive cell proliferation, motility, and polarity. (B) The

β-catenin-independent non-canonical Wnt signaling is initiated by binding certain Wnts and could regulate cellular polarity and migration-related signaling pathways. In

the Wnt/PCP pathway, Wnts bind to the ROR1/2-Fzd complex to activate DVL, DVL binds to small Rho GTPases such as RAC1 and RhoA, RhoA and RAC1 together

trigger JNK, and RhoA activates ROCK alone. This leads to the asymmetric cytoskeletal organization and/or coordination of cellular polarization via activating the

transcription factors, such as c-JUN and ATF2. The Wnt/Ca2+ signaling triggers PLC activity and subsequently induces calcium influx; then, elevated Ca2+ activates

several calcium-dependent signaling pathways, such as PKC and Ca2+/CAMKII, which finally leads to the accumulation of transcription factor NFAT in the nucleus.

ATF2, activating transcription factor 2; BCL9, B-cell CLL/lymphoma 9; BRG1, brahma-related gene 1; β-TRCP, β-transducin repeat-containing protein; CAMKII,

calmodulin-dependent protein kinase II; CK1α, casein kinase 1; COX2, cytochrome c oxidase subunit 2; DVL, disheveled; GSK-3β, glycogen synthase kinase;

HDACs, histone deacetylases; JNK, JUN N-terminal kinase; LEF, lymphoid enhancer-binding factor; MMPs, matrix metalloproteinases; NFAT, nuclear factor of

activated T cells; PCP, planar cell polarity; PKC, protein kinase C; PLC, phospholipase C; ROCK, rho kinase; ROR1/2, receptor tyrosine kinase-like orphan receptor

1/2; TCF, T-cell factor; TLE, transducin-like enhancer protein.

the cysteine-rich domain (CRD) of Fzd8 and revealed that the
amino-terminal domain (NTD) was composed of six α-helices
from residues 1–250 and two β-strand hairpins, with five pairs
of conserved cysteine residues to form disulfide bonds, and
the carboxyl-terminal domain (CTD) from residues 261–338
rich in cysteine residues and constructed from four α-helices
and two β-strand hairpins stabilized by six disulfide bonds. A

serine residue (Ser187 of XWnt8) attached to a lipid group in
NTD binds to a deep groove in Fzd8-CRD, and index finger
forms conserved hydrophobic residues in CTD that contacts
with a depressed region of Fzd8-CRD (21). Furthermore, a
recent structural analysis on human Fzd5 and Fzd7 CRD also
uncovered that the unsaturated fatty acyl group in Wnts was the
common molecular mechanism for the recognition of multiple
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Fzd receptors and the subsequent dimerization (22). However,
no structural information for human Wnts has been analyzed
because the complicated lipid modification and combination
with carrier proteins restrict their purification in natural form
(23, 24).

THE MATURATION OF WNTS

Upon translation, Wnts are targeted to the endoplasmic
reticulum where glycosylation and acylation take place. The
number of glycosylation attachment endows the diversity of
Wnts and controls over the subsequent acylation, folding, and
secretion. Acylation is essential for the activity of Wnts, and
nearly all Wnts are modified with unsaturated fatty acid such
as palmitic acid at a conserved serine residue by acyltransferase
called porcupine (PORCN) (67). Deletion or mutation in
any porcupine isoforms will block the whole Wnt signaling
transduction and lead to embryonic lethality in mice (68), and
mutations in X-linked PORCN could cause a developmental
disorder named focal dermal hypoplasia in human (69, 70).
Additionally, other modifications such as O-sulfation at specific
tyrosine residues are necessary for the hetero-oligomer of certain
Wnts and canonical Wnt signaling activity (71). In Golgi
apparatus, a conserved transmembrane protein Wntless (Wls)
binds to Wnts and accompanies them to the cell surface for
secretion (72, 73), and a conserved serine residue (inWg S239) in
Wnts is essential for their recognition by Wls (74). Coombs et al.
proposed that vacuolar acidification was also required to release
Wnts from Wls in secretory vesicles (75), and this anterograde
secretory process also relies on p24 proteins which function
as conserved cargo receptors (76). The release of Wnts from
cells also depends on a lipocalin family member of extracellular
transport proteins, which binds to Wnts with high affinity and
maintains their solubility and activity (23). Once reaching the
surface of receptor cells by autocrine or paracrine fashion, Wnts
encounter multiple interacting molecules such as polyanionic
compounds, glycans, and a myriad of protein-binding partners
including Wnt inhibitory factor (WIF) and Fzd receptors to
initiate theWnt pathways, whereasmassive questions concerning
the switch mechanism of Wnt pathways needed to be answered.

ROLES OF WNTS IN TUMORIGENESIS
AND THE PROGRESSION OF CRC

Although the function of Wnts varies in the initiation and the
progression of CRC, their expression pattern can serve as an
important diagnostic or prognostic indicator for patients with
CRC. In the following paragraphs, the biological functions of
each human Wnt in colorectal carcinogenesis will be discussed
separately (Table 1).

Wnt1 is one of the ligands whichmainly activate the canonical
Wnt signaling cascade. The transcriptional activation of the
Wnt1 (int-1) gene was firstly proved to be the initiating step
in mammary gland hyperplasia and adenocarcinomas in mice
(77). The transient or stable expression of Wnt1 could induce

TABLE 1 | Oncogenic and tumor suppressor Wnts regulating the canonical and

the non-canonical Wnt signaling pathways in the pathogenesis of colorectal

cancer (CRC).

Wnts Expression level Effect Type of Wnt

signaling

Wnt1 Decreased (25) Oncogene Canonical (26)

Increased (27) Non-canonical (28)

Wnt2 Increased (29–31) Oncogene Canonical (32)

Non-canonical (33)

Wnt2b Increased (34) Oncogene Canonical (34)

Wnt3 Increased (35) Oncogene Canonical (35)

Wnt3a Increased (36) Oncogene Canonical (37)

Tumor suppressor Canonical (38)

Wnt4 Increased (39) Oncogene Canonical (39, 40)

Wnt5a Decreased (41, 42) Tumor suppressor Canonical (43)

Non-canonical (44)

Increased (45, 46) Oncogene Canonical (47)

Non-canonical (48)

Wnt5b Increased (49, 50) Oncogene Non-canonical (50)

Wnt6 Increased (51, 52) Oncogene Canonical (53, 54)

Wnt7a Increased (49, 55) Oncogene No data in CRC

Tumor suppressor Canonical (56)

Wnt7b No data in CRC

Wnt8a No data in CRC

Wnt8b No data in CRC

Wnt9a Decreased (57) Tumor suppressor Canonical (58)

Wnt9b No data in CRC Oncogene (59) No data in CRC

Wnt10a Increased (60, 61) Oncogene Canonical (60, 61)

Decreased (62) No data in CRC

Wnt10b No data in CRC Oncogene Canonical (63)

Wnt11 Increased (64) Oncogene Non-canonical (65)

Wnt16 No data in CRC Oncogene (66) No data in CRC

the formation of β-catenin–LEF1 complex and the persistent
activation of canonical Wnt signaling in CRC cells (78). CRC
cells expressing Wnt1 are resistant to cancer chemotherapy, and
Wnt1 could inhibit the apoptosis by activating β-catenin/TCF
transcription (26). Intriguingly, a latest study reported that
exosomal Wnt1 could largely enhance the proliferation and the
migration of CRC cells through activating the non-canonical
Wnt signaling (28). Blockade of Wnt1 by WIF-1 or its antibody
induced a significant apoptosis of human CRC cells containing
mutations of APC, CTNNB1, and AXIN2 (79). Moreover, the
ectopic expression of microRNA (miR)-200b-3p and miR-185
could significantly inhibit the proliferation and induce the
apoptosis of CRC cells by targeting the canonicalWnt1/β-catenin
signaling (80, 81). However, researches on the Wnt1 expression
in human CRC tissues have yielded some conflicting results that
the decrease or the increase of Wnt1 expression was detected in
CRC tissues compared with normal colorectal mucosa (25, 27),
and a study even found that the expression level of Wnt1 was
decreased in human CRC tissues and CRC mice, whereas Wnt1
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knockdown could still dramatically decrease the cell migration
and the invasion of human CRC cells, and β-catenin expression
was also enhanced in the tumors, indicating thatWnt1 expression
could be regulated by more complicated mechanisms during
CRC tumorigenesis (82).

Wnt2 is also an oncogene with a potential to activate
the canonical Wnt signaling during CRC tumorigenesis (83).
Cancer-associated fibroblasts were identified as the main source
of Wnt2, and Wnt2 could enhance the tumor growth and
the invasion of CRC in a paracrine fashion (32). Meanwhile,
the invasive activity of CRC cells was also induced by Wnt2
through a non-canonical Wnt pathway coupled to GSK-3β
and c-Jun/AP-1 signaling (33). Wnt2 was expressed at high
levels in all CRC tissue samples at different stages, including
premalignant colorectal polyps and liver metastasis, and high
Wnt2 expression levels indicated poor prognosis in human CRC,
although this upregulation was not due to the mutation in its
coding region (29–32). Another analysis demonstrated thatWnt2
was upregulated in the progression from colorectal adenoma
to carcinoma, and in situ hybridization showed that Wnt2
was expressed predominantly in macrophages in the lamina
propria/stroma regions (84). Depletion of endogenous Wnt2 or
neutralizing secreted Wnt2 could suppress the proliferation of
CRC cells by targeting the canonical Wnt signaling. Galectin-3
(Gal-3) is a multifunctional carbohydrate-binding protein and
proven to interact with β-catenin (83). The combined inhibition
of Wnt2 and Gal-3 has synergistic effects on destabilizing β-
catenin and induce the apoptosis of human CRC cells (85).
Wnt2 and Fzd7 are key players in CRC progression. In a recent
study, Kalhor and colleagues assessed the three-dimensional
structure of humanWnt2-Fzd7 CRD complex via bioinformatics
approaches, and the data demonstrated a unique dynamic
behavior of Wnt2 upon binding to Fzd7, which is highly useful
in targeted therapy for Wnt2-related cancers (86). Wnt2b is a
paralogue of Wnt2, with amino acid identity of 70%, and Wnt2b
shows a different expression pattern in humanmalignancies (87).
However, the role of Wnt2b in CRC development has been
rarely reported; only a recent study demonstrated that Wnt2b
was significantly increased in colon cancer cells compared with
normal colon epithelial cells, and inhibiting the activity of a CRC-
promoting nuclear factor, estrogen receptor, could significantly
decrease the Wnt2b/β-catenin signaling in colon cells (34).

Wnt3 and Wnt3a are highly homologous proteins with
85% amino acid sequence identity. However, 15% of difference
exerts a great influence on protein structure and dynamics
under the same condition, which eventually leads to different
biological functions (88). Wnt3 was highly expressed in colon
cancer tissues, and autocrine Wnt3 secretion via Evi/Wls was
required to maintain the Wnt activity in colon cancer cells.
Interfering with the secretion of Wnt3 could impair the growth
of colon cancer cells in vitro and in vivo (35). We previously
reported that gastric tumors also expressed elevated levels of
Wnt3, and silencing Wnt3 in gastric cancer cells could block
cell proliferation and induce apoptosis through targeting the
canonical Wnt pathway (89). Recently, we found that the
upregulation of Wnt3 in human CRC cell lines was essential
for CRC progression. The knockdown of Wnt3 in CRC cells

suppressed the proliferation but enhanced the sensitivity to
chemotherapeutics by inhibiting the canonical Wnt pathway
and glycolytic pathway (90). A83-01 is a selective inhibitor
of TGF-β receptor; it was shown to inhibit EMT in HER2-
overexpressing breast cancer cells by interfering the TGF-β-
induced upregulation of Wnt3 (91), whereas its application in
treating CRC has not been reported.

The expression of Wnt3a was also elevated in CRC tissues
and associated with EMT, for advanced stages as well as poor
prognosis (36). Moreover, the expression of Wnt3a was higher
in the primary sites than that in the metastatic sites of CRC
tissues, suggesting that the expression of Wnt3a was induced in
the initial period of CRC rather than emerging as the cancer
progressed. The expression level of Wnt3a in primary tumors
was positively correlated with lymph node involvement and the
expression of certain metastatic related genes (92). Consistently,
Schinzari et al. demonstrated that the concentration of secreted
Wnt3a was much higher in conditioned medium from normal or
tumor tissues obtained fromCRC patients than that from healthy
donors (93). Therefore, approaches to inhibit Wnt3a expression
have been proposed to suppress CRC, andmetformin was proved
to attenuate the cell stemness and EMT in CRC cells by inhibiting
the Wnt3a/β-catenin pathway (37). However, some exceptions
revealed that the role of Wnt3a in CRC was not coupled. In a
more recent study, Wnt3a was found to inhibit the proliferation
and the migration capacities of human colon myofibroblasts, the
latter of which has been recognized to promote CRC progression
(38). Thus, the variable role of Wnt3a is probably due to the
specific molecular and cellular characteristics of different CRC
subgroups and its context-dependent nature.

Wnt4 regulates many crucial embryonic and developmental
pathways through activating the canonical Wnt signaling and
non-canonical mechanisms (94, 95). Dysregulation or variants
of Wnt4 gene may disturb these host networks, leading to
the malignant transformation of cells and the occurrence of
many cancers. For example, Al-Tassan et al. have identified
novel risk variants for CRC near Wnt4 gene (96). Interestingly,
exosomes derived from hypoxic CRC cells could transfer Wnt4
to normoxic CRC cells to enhance pro-metastatic behaviors
and promote angiogenesis in endothelial cells by activating
the canonical Wnt signaling (39, 40), which demonstrates a
novel mechanism for the development of CRC. Excitingly, the
structural dynamic behavior of Wnt4 protein was analyzed
by a comparative computational study, and a foundation for
designing new Wnt4 inhibitors to combat its irregularities
was established (97). Recently, tetramethylthiuram disulfide, an
important pesticide extensively used in agriculture, was proved
to reduce the growth performance of chickens by inhibiting
the expression of Wnt4, whereas its application and efficacy in
treating human malignancies have not been reported (98).

Wnt5a and Wnt5b are highly homologous proteins with
82% amino acid sequence identity. The orthologs of Wnt5a
are evolutionarily conserved, whereas those of Wnt5b are
significantly divergent (99). Traditionally, Wnt5a is believed
to be the non-canonical Wnt ligand and activates Ca2+-
dependent effectors and other non-canonical pathways through
small Rho-GTPases and c-Jun-NH2-kinase (100). However, its
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role in the progression of CRC is complicated and seems
to be contradictory. Several studies proved that Wnt5a was
silenced in most CRC cell lines and specimens due to frequent
methylation in its promoter region (41, 42), and Wnt5a acts
as a tumor suppressor in human CRC by interfering with
the canonical β-catenin signaling but activating the non-
canonical signaling pathways (43, 44). The expression of
Wnt5a was negatively correlated with the degree of tumor
differentiation and the aggressive behavior (41, 101). Meanwhile,
promoter methylation of Wnt5a was strongly associated with
the microsatellite instability status of patients with CRC, and
multiple histone modifications of Wnt5a were involved in
Wnt5a silencing and might promote colon cancer metastasis,
providing evidence that epigenetic events may promote Wnt5a-
mediated signaling in CRC (102, 103). On the contrary, other
studies demonstrated that Wnt5a was upregulated consistently
in intestinal polyps and tumor samples, and increased Wnt5a
expression predicted the early recurrence or metastasis in
colon cancer patients (45, 46). Wnt5a could also promote
the migration of CRC cells by activating Fzd7-driven non-
canonical Wnt signaling and enhance the cell stemness of
CRC through activating the canonical Wnt signaling (47, 48).
Furthermore, Jiang et al. demonstrated that a higher Wnt5a
methylation status could predict a better drug response and
longer progression-free survival in 5-fluorouracil-treated CRC
patients (104). Until recently, Bauer et al. found two isoforms
of Wnt5a protein with opposite functions in cancers (105), and
a subsequent study proved that the simultaneous reactivation of
the downregulated Wnt5a-long mRNA isoform and knockdown
of the upregulated Wnt5a-short mRNA isoform could induce
the apoptosis of CRC cells by silencing the expression of β-
catenin, providing a reasonable explanation for the obscure role
of Wnt5a in CRC previously (106). Wnt5b plays a pivotal role
during embryonic gut development (51), and its expression
level is increased significantly in ulcerative colitis and CRC
samples (49, 50). Moreover, theWnt5b rs2010851 polymorphism
predicts a high risk of tumor recurrence in patients with
advance-stage colon cancer (107). Overexpression of Wnt5b
increased the proliferation, migration, and invasion of CRC
cells through activating the non-canonical Wnt/JNK signaling
(50). Meanwhile, Wnt5b exosome released from CRC cells could
stimulate the migration and the proliferation of other cancer cells
in a paracrine manner (108). In contrast, downregulating Wnt5b
signaling pathway by the knockdown of fatty acid synthase could
contribute to the decrease in invasion and metastasis of CRC
cells, indicating that targeting Wnt5b is a promising approach to
treat CRC.

Wnt6 is most homologous to Wnt1, with 43% amino acid
sequence identity. It is apparently upregulated during intestinal
development and regeneration as well as in CRC cells (51,
52). Overexpression or activation of Wnt6 could promote CRC
development via activating the canonical Wnt signaling (53, 54).
Moreover, a significant upregulation of methylation in Wnt6
gene was also detected in CRC samples (109), and the Wnt6
rs6747776 polymorphismmay participate in the increased risk of
CRC associated with excessive saturated fat intake (110). These
findings indicate that Wnt6 mainly functions as a carcinogenic

factor in CRC progression and could be utilized as a potential
therapeutic target.

Wnt7a and Wnt7b share 78% amino acid sequence identity.
Wnt7a is considered to be a crucial ligand for the canonical Wnt
signaling, whereas its role in tumorigenesis is also controversial.
Wnt7a promotes the progression of bladder, ovarian, tongue,
and pancreatic cancers. However, it inhibits the growth of lung,
breast, endometrial, renal, and gastric cancers, and there are
few studies about its effect on CRC development. A significant
increase of Wnt7a expression was detected in ulcerative colitis
specimens and CRC cells, implying a potential carcinogenic effect
(49, 55), whereas Becer et al. found that Colchicum pusillum
exerted anticancer activities through activating the Wnt7a/β-
catenin pathway, and another study also proved that the loss
of Wnt7a expression contributed to tumor progression and
predicted a poor prognosis of CRC, which indicates a protective
role of Wnt7a during CRC carcinogenesis (56, 111). Thus,
the exact role of Wnt7a in CRC progression still needs to
be studied further. Wnt7b is weakly expressed in adult lung,
brain, and prostate. Several studies have documented that the
upregulation of Wnt7b was necessary for the growth, invasion,
and metastasis of breast cancer and pancreatic adenocarcinoma
through activating the canonical Wnt signaling (112, 113).
Additionally, Wnt7b could promote the growth of prostate
cancer through activating the non-canonical pathways (114).
However, there has not been any report about the role of
Wnt7b in the tumorigenesis of CRC, except a recent study which
claimed thatWnt7b was highly expressed in CRC tissues by using
bioinformatics analysis.

Wnt8a and Wnt8b are also secreted proteins with 63% amino
acid sequence identity (115). At present, there is no report
about the role of Wnt8a in cancer; only one study indirectly
demonstrated that clofibrate could abrogate the binding of
nuclear factor-κB to the Wnt8a promoter and downregulate the
expression ofWnt8a andWnt/β-catenin signaling activity, which
ultimately sensitized pancreatic cancer cells to radiation (116).
Compared with Wnt8a, Wnt8b attracts a little more attention
due to its more conserved orthologs. However, more researches
are focused on its indispensable role in the formation of certain
organs (117, 118), and only one study showed that Wnt8b was
significantly upregulated in gastric cancer cell lines and most
primary gastric cancer tissues (119). Therefore, whether the
upregulation of Wnt8a and Wnt8b also promote the progression
of CRC remains an intriguing question.

Wnt9a and Wnt9b share 63% amino acid sequence
identity. Wnt9a, known as Wnt14 formerly, is required for
chondrogenesis and aortic amplification and identified as the
ligand for both canonical and non-canonical Wnt signaling
pathways (120, 121). Wnt9a is considered to be a tumor
suppressor gene during CRC development. Ali et al. found that
the LiCl-mediated induction of Wnt9a could suppress CRC
proliferation and promote apoptosis through inhibiting the
expression and the active form of β-catenin (58). Furthermore,
hypermethylation and the resultant low expression of Wnt9a
occur frequently in primary colon cancer and corresponding
cell lines (57), suggesting that activating the Wnt9a-mediated
pathway may have a therapeutic effect on colorectal cancer.
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Wnt9b was known as Wnt14b previously, and the Wnt9b-
mediated activation of canonical and non-canonical Wnt
pathways is required for the organogenesis of the mammalian
urogenital system and nasal and maxillary processes (122–
124). However, little is known about the role of Wnt9b in
tumorigenesis, and only one study indirectly reported that
the expression of Wnt9b was downregulated by a cancer-
preventing glycoconjugate in CRC cells (59), indicating a
potential carcinogenic property of Wnt9b.

Wnt10a and Wnt10b are closely related Wnts with 62%
amino acid sequence identity. It is believed that they are
notably expressed in various tissues for their formation through
a β-catenin-dependent pathway (125, 126). Several studies
demonstrated that Wnt10a was highly expressed in CRC tissues
and several corresponding cell lines, and a higher Wnt10a
expression level was associated with an advanced tumor stage.
Hence, it is not surprising that the knockdown of Wnt10a
could suppress the proliferation and the invasiveness of CRC
cells through inactivating the canonical Wnt signaling (60, 61).
However, a recent result was counter to previous findings
which demonstrated a reduced expression of Wnt10a and a
negative correlation between its expression and methylation
in CRC tissues. Moreover, a higher Wnt10a methylation level
was detected in CRC patients with advanced age, with distant
metastasis, and diagnosed with mucinous adenocarcinoma (62).
An explanation for this contradictory observation could be
the different types of tissues collected in different groups.
Additionally, polymorphisms of Wnt10a gene were strongly
associated with the upper tertile of saturated fat intake and
the resulting increase in CRC adenoma risk (110). Wnt10b
also takes part in the progression of several digestive system
malignancies, such as gastric, liver, and colon cancers (127–129).
In human CRC cells, overexpression of the antineoplastic miR-
148a could suppress cellular invasion and migration as well as
tumor growth in vivo via blocking Wnt10b expression and β-
catenin signaling activities (63). However, the precise role of
Wnt10b in oncogenesis is not completely consistent. In the study
of Yoshikawa et al., upregulated Wnt10b was found to activate
the β-catenin/TCF pathway. Unexpectedly, it also suppressed
the growth rate of HCC cells and tumorigenicity in nude mice
through a β-catenin-independent mechanism, and the authors
finally found that the fibroblast growth factor family proteins
were the crucial factors to switch Wnt10b from its growth-
suppressive effects to growth-stimulatory ones (127). These
observations suggest that the role of Wnt10b remains obscure
and still needs to be elucidated by further studies.

Wnt11 is most homologous to Wnt4, with 41% amino
acid sequence identity. Initially, it was identified as a non-
canonical Wnt ligand, and its characteristics and function have
been summarized elaborately by Onganer et al. (130). The
role of Wnt11 in CRC was firstly documented due to its
high expression levels in some colorectal adenocarcinomas (64).
Then, Wnt11 was found to stimulate the proliferation and the
transformation abilities of intestinal epithelial cells by activating
the non-canonical Wnt signaling pathway (65). Consistently,
the expression of Wnt11 was obviously upregulated in patients
with recurrence than those without, andWnt11-transfected CRC

cells showed increased phenotypes of tumors (131). Furthermore,
Wnt11 was identified as a target of estrogen-related receptor α/β-
catenin complex and increased the migratory capacity of CRC
cells in an autocrine manner (132). On the contrary, Wnt11
was also involved in the maintenance of intestinal homeostasis
by protecting intestinal epithelial cells from the invasion of
pathogenic bacteria and suppressing the inflammation and the
consequent apoptosis (133). In general, these findings indicate
that Wnt11 may act as a tumor promoter in CRC progression
and can be used as a cancer drug target.

Wnt16 shows no homology to any other Wnts but generates
two mRNA isoforms, Wnt16a and Wnt16b. They are only
different in the sequences of 5′-untranslational region and
the first exons. Wnt16a is only expressed highly in pancreas,
whereas Wnt16b is widely distributed in many organs such
as kidney, brain, and heart (134). Therefore, most reports
about Wnt16 mainly refer to Wnt16b. It is now accepted that
Wnt16 contributes to skeletal development and postnatal bone
homeostasis via activating the canonical and the non-canonical
Wnt signaling cascades (135). Wnt16 is overexpressed in gastric
adenocarcinoma, leiomyoma, and head and neck squamous cell
carcinoma tissues (136, 137). Upregulation of Wnt16 induced by
estrogen and progesterone treatment in uterine leiomyoma stem
cells could promote the growth of uterine leiomyomas through
activating the canonical Wnt pathway in a paracrine manner
(138), and the enhanced β-catenin activities initiated by Wnt16
in prostate cancer cells could promote the malignant phenotypes
and chemoresistance through preventing cell death (139). On
the contrary, silencing Wnt16 by miR-374b could suppress the
cellular proliferation and promote the chemotherapeutic agent-
induced apoptosis in T-cell lymphoblastic lymphoma (140).
However, there is still no direct evidence about the role of
Wnt16 in colorectal carcinogenesis, except that a study indirectly
reported that an ellagic acid derivative performed an antitumor
action in CRC cells by downregulating the expression of
Wnt16 in a dose-dependent manner (66), indicating a potential
carcinogenic role of Wnt16 during tumorigenesis. Therefore,
in-depth studies are still required to elucidate its role in
CRC progression.

OPPORTUNITIES AND CHALLENGES IN
DEVELOPING WNT-BASED
THERAPEUTICS FOR CRC

According to the above information, most Wnts serve as primary
determinants of colorectal carcinogenesis, and targeting the Wnt
signaling pathway could be a promising therapeutic approach for
CRC. For detailed information of targeting the Wnt signaling
pathway in CRC, please refer to reviews by Sawa et al. and
Bahrami et al. (141, 142). Herein we only give an overview of the
current strategies to develop drugs directed at oncogenic Wnts
for CRC treatment.

As mentioned earlier, porcupine is essential for the
palmitoylation, secretion, and biological activity of Wnts.
Theoretically, inhibiting its enzymatic activity could block all
Wnt-driven cancers, and several small molecular inhibitors
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targeting porcupine have been developed for cancer treatment,
including LGK974 (WNT974), Wnt-C59, ETC-159, IWP-O1,
and GNF-6231 (143). Wnt-C59 and GNF-6231 are highly
potent and orally available porcupine inhibitors capable of
preventing the progression of mammary tumors in mice by
downregulating Wnt1-mediated canonical signaling (144, 145).
The pharmacological inhibition of the canonical Wnt signaling
by Wnt-C59 and LGK974 could augment the cytotoxic effects
of DNA-alkylating drug in CRC cells (146). It has been
shown that Wnts secreted by fibroblast-exosomes protected
differentiated CRC cells against chemotherapy, and their
expression levels were correlated with the poor prognosis
of patients with CRC. Therefore, blocking Wnt secretion by
LGK974 treatment could diminish the clonogenic capacity
and drug resistance of CRC cells in vitro and in vivo through
decreasing the proportion of exosome Wnts (147). A phrase
I trial of LGK974 is strikingly ongoing in patients with
malignancies dependent on Wnts (NCT01351103), including
BRAF mutant CRC. In addition, an orally available ETC-159
was proved to have a robust activity in CRC with RSPO
mutations (148).

Furthermore, competitive receptors for Wnts were also
explored to bind and sequester the free Wnts. Ipafricept
(OMP-54F28) is a fusion protein that competes with native
Fzd8 receptor for Wnts binding and blocks tumor growth
in Wnt1-induced mice through antagonizing Wnt signaling.
Moreover, ipafricept also impeded the growth of several solid
tumors and selectively reduced the frequency of cancer stem
cells (149). Intriguingly, in a phase I trial (NCT01608867)
in patients with advanced solid tumors, ipafricept was well-
tolerated with manageable toxicities, and a prolonged survival
time was observed in a germ cell cancer and two desmoid
tumor patients (150). Moreover, three phrase Ib clinical trials
of ipafricept have just completed assessing its curative effect
combined with different chemotherapeutic drugs in pancreatic
cancer, ovarian cancer, and hepatocellular cancer. Additionally,
some antibody-based inhibitors against specific Wnts have
been produced to sequester the free Wnts. In the study of
He et al., a monoclonal anti-Wnt1 antibody induced the
apoptosis of human CRC cells expressing Wnt1 and showed
great efficacy in treating primary tissue samples from patients
with advanced CRC (79). Furthermore, the Wnt1 antibody
also demonstrated an inhibitory effect on mesothelioma cells
and the tumor growth of nude mice implanted with non-
small cell lung cancer (NSCLC) cells. The inhibition of Wnt2
signaling by Wnt2 monoclonal antibody also similarly induced
cell apoptosis and inhibited the tumor growth of several
malignancies including melanoma, pleural mesothelioma, and
NSCLC (151).

In another approach, some natural compounds targeting
Wnt signaling have shown potential application values in
cancer treatment, and several reviews have made elegant
descriptions (149). Flavonoids deserve more attention due to
the efficiently protective role against CRC through modulating
the Wnt signaling pathways (152). For example, taxifolin was
shown to induce cell cycle arrest and tumor regression in
CRC cells by targeting the canonical Wnt signaling (153).

By the same token, as another extensively studied flavonoid,
(-)-epigallocatechin-3-gallate (EGCG) is abundantly distributed
in green tea and exerts a preventive and therapeutic effect
on CRC by promoting the degradation of intracellular β-
catenin and the subsequent silence of Wnt/β-catenin-dependent
genes (154). Interestingly, the effect of EGCG on CRC
could be attributed to the inhibition on CRC stem cells by
suppressing the canonical Wnt signaling (155). Furthermore,
other natural compounds such as calycosin, isobavachalcone,
resveratrol, etc., were also proved to suppress the malignant
phenotypes of CRC via inhibiting the Wnt signaling pathways
(156–158), providing more feasible therapeutic options for
CRC treatment. However, few natural compounds have been
proven to suppress the development of CRC by directly
targeting Wnts, and none of them is currently undergoing
clinical testing.

Despite the great advantages of the abovementioned
approaches targeting Wnts, several potential pitfalls are still
blocking their clinical application in cancer treatment. For
instance, the ubiquitous Wnt signaling networks and numerous
effects complicate the blockade of Wnt signaling. Different
Wnts may exert opposite functions during CRC development,
and inhibition of a specific Wnt alone is insufficient to curb
CRC progression. Moreover, data on the pharmacokinetic
parameters and efficacy of most reported natural compounds
are far from sufficient. Additionally, a potential off-target
effect of the manipulation of Wnt signaling is common for
some therapeutic drugs. For example, inhibitors or antibodies
targeting Wnt-dependent components in canonical Wnt
signaling, such as Fzd receptors, may have no ability to
block non-canonical Wnt signaling. Although porcupine
inhibitors offer an approach to overcome this limitation,
they have potential toxicity to the gastrointestinal tract
and could lead to alteration in bone remodeling due to
the essential role of Wnts for the maintenance of normal
tissue homeostasis (150). More importantly, most of CRC
attributed to the mutations of downstream components
in Wnt signaling, such as APC and β-catenin, might be
insensitive to porcupine inhibitors (159). Therefore, only
therapies with the combination of drugs targeting Wnts,
mutated downstream components in Wnt signaling, and
conventional chemotherapeutics could result in a cooperative
inhibition of CRC progression. Fortunately, all these obstacles
are being overcome with great efforts of scientists and the
in-depth understanding of the Wnt signaling pathways, and
Wnt-based therapeutics are still promising and will definitely
provide therapeutic benefits for patients with CRC and
other cancers.

CONCLUSION

The Wnt signaling pathway is essential for the regulation of
embryogenesis and tissue homeostasis. However, dysregulation
of the Wnt signaling pathway has been identified as the
pathological basis of many human malignancies including
CRC. Therefore, modulating this pathway is always a hotspot
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in the tumor field, and numerous approaches have been
explored in preclinical and early clinical studies. In this
review, we specifically described the recent findings on the
structure and the maturation process of Wnts, discussed their
functions during the tumorigenesis of human CRC separately,
and summarized the current therapeutics targeting Wnts in
CRC treatment and the existing challenges. We hope that
the discussion of this topic will increase the knowledge
of Wnts in CRC development and arouse the interest of
researchers to design novel Wnt-based therapeutic strategies
for CRC.
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