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Abstract

Computer Assisted Structure Elucidation has been used for decades to discover the chemical structure of unknown
compounds. In this work we introduce the first open source structure generator, Open Molecule Generator (OMG),
which for a given elemental composition produces all non-isomorphic chemical structures that match that
elemental composition. Furthermore, this structure generator can accept as additional input one or multiple
non-overlapping prescribed substructures to drastically reduce the number of possible chemical structures. Being
open source allows for customization and future extension of its functionality. OMG relies on a modified version of
the Canonical Augmentation Path, which grows intermediate chemical structures by adding bonds and checks that
at each step only unique molecules are produced. In order to benchmark the tool, we generated chemical
structures for the elemental formulas and substructures of different metabolites and compared the results with a
commercially available structure generator. The results obtained, i.e. the number of molecules generated, were
identical for elemental compositions having only C, O and H. For elemental compositions containing C, O, H, N, P
and S, OMG produces all the chemically valid molecules while the other generator produces more, yet chemically
impossible, molecules. The chemical completeness of the OMG results comes at the expense of being slower than
the commercial generator. In addition to being open source, OMG clearly showed the added value of constraining
the solution space by using multiple prescribed substructures as input. We expect this structure generator to be
useful in many fields, but to be especially of great importance for metabolomics, where identifying unknown
metabolites is still a major bottleneck.
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Background
Computer Assisted Structure Elucidation (CASE) of che-
mical compounds is one of the classical problems posi-
tioned at the intersection of informatics, chemistry, and
mathematics. CASE tools have been employed during de-
cades to elucidate the chemical structure of small organic
molecules. In its most general definition, a structure eluci-
dation system receives experimental chemistry data of an
unknown molecule as input, and outputs a list of possible
chemical structures. The input can be the elemental
composition of the elusive molecule, nuclear magnetic
resonance (NMR) and/or mass spectrometry (MS) spectra
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(provided the generator can simulate spectra and match it
to the experimental ones) or information of prescribed sub-
structures. The output is a list of candidate structures
matching these conditions, ideally containing all possible
structures without duplications. A small list of candidates is
dependent on the number of constraints derived from ex-
perimental data; the higher the number of constraints we
use the smaller the candidate list will be. The ultimate goal
for such a system being fully automated and returning only
one and correct molecule is not yet at our reach, despite
decades of research [1].
The DENDRAL [2] project is widely regarded as the

initiator of the use of these methods to provide a system
for Computer Assisted Structure Elucidation (CASE).
It involved the development of artificial intelligence
algorithms that would extract heuristics from MS and
NMR data and use them to constrain the output of a
structure generator. CONGEN was the structure generator
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developed within DENDRAL, which preceded a more
advanced generator known as GENOA [3]. Many commer-
cial structure generators were developed later, most re-
nowned ones being CHEMICS [4], ASSEMBLE [5], SMOG
[6], and the most widely used of all of them, the general
purpose structure generator MOLGEN [7]. These closed
source software tools work like a black box, where the user
cannot, on the one hand, understand the functioning of the
software and on the other hand, customize the tool to his
needs. These drawbacks of closed source software (where
the source code is not provided) can be circumvented by
open source tools. Two open source structure generators
have been developed that work with NMR data, the deter-
ministic LSD [8] and the stochastic SENECA [9]. Imple-
mentation of open source stochastic and deterministic
structure generators have been explored within the
Chemistry Development Kit (CDK) [10,11]. Unfortunately,
these generators failed to generate all chemical structures
possible and were discontinued in recent releases of CDK.
Despite these efforts, no general purpose deterministic
structure generator has been developed in an open source
format so far.
The advance of “omics” sciences in the last decade, in

particular of metabolomics [12], has renewed the inte-
rest of researchers in developing better structure genera-
tors. Metabolomics aims at detecting and identifying
metabolites in an organism and has resulted in a large
list of potential biomarkers for which the chemical struc-
ture is unknown [1,13]. When trying to identify the
structure of unknown molecules, scientists first perform
an identity search by querying reference databases using
their experimental information [1,14-16]. In such case,
they use the elemental composition of the metabolite
derived from mass spectrometry (MS) or the spectra of
nuclear magnetic resonance (NMR). When the metabol-
ite is a real unknown it is not present in any database,
therefore the query returns no results. This forces scien-
tists to propose candidate structures using a different
approach, one of them is using a structure generator
[17,18], which produces all possible molecules given an
elemental composition and optional, other constraints.
Examples of constraints are prescribed substructures
that each output molecules should contain and that are
derived from experimental NMR, MS2, or MSn data.
Hence, the need for deterministic and flexible structure
generators in the field of metabolomics presents should
be met with new algorithms [1].
The majority of structure generators rely on graph the-

ory to produce their desired output. Interestingly, com-
pounds can be represented as molecular graphs where
atoms and bonds are translated into vertices and edges, re-
spectively, to which theorems and algorithms proposed by
graph theory can be applied. This ensures that the output
is correct, exhaustive, and free of isomorphs. Such
methods can be the orderly enumeration proposed by
Read [19] and Faradzev [20], a stochastic generator [21],
the homomorphism principle [22] used by MOLGEN, or
the “canonical augmentation path” proposed by McKay
[23]. This last method, originally intended to generate sim-
ple graphs by adding vertices, has been applied to the
generation of some families of graphs and also to generate
the chemical universe of molecules up to 11 atoms [24]
and recently to 13 atoms [25]. Despite the goal was to gen-
erate molecules, these two approaches initially employed
canonical path augmentation to generate all possible sim-
ple graphs up to 11 and 13 vertices, respectively. Posterior
topological and ring system filter were used to remove un-
wanted graphs. Lastly, the vertices were colored with
chemical elements and the edges with a bond order, which
turned the graphs into molecules. Simple chemical con-
straints like connectivity and atom valence were applied to
reduce the list of final molecules. This process, which re-
lies on generating simple graph, is necessarily limited on
the size of the molecules that can be generated because a
linear increase in the number of atoms produces an expo-
nential increase of both the number of graphs and mole-
cules. Here we present the Open Molecule Generator
(OMG), a structure generator based too on McKay aug-
mentation algorithms, but rather than first generating
graphs and secondly transforming these graphs into mole-
cules, our implementation of McKay technique directly
constructs molecules. In this way we can generate chemical
structures much greater than 13 atoms. Essential concepts
of graph theory will be introduced in the methods section.
Chen mentioned two future challenges facing CASE

systems [26]. The first challenge for elucidating struc-
tures is to have a knowledge system of previously identi-
fied compounds, as well as mining tools for such data.
In this direction, Rojas-Chertó et al. [27] developed a
system to store spectral data and mine the database to
extract substructure information that can be used as
prescribed substructures in our structure generator. The
second challenge is the need for filtering and selecting
candidate structures. This is often performed by predict-
ing a property of the candidate structures that is related
to the field of research, for instance, predicting the spec-
tra in analytical chemistry, the bioactivity in ligand
design, or the Metabolite-Likeness [28] in metabolomics
studies, to name a few. Furthermore, the need of a struc-
ture generator tool that can be adapted to the require-
ments of the field in which it is going to be applied,
demonstrates the usefulness of open source tools com-
pared to commercial "black box" generators.
In this paper we present the first general purpose open

source structure generator, Open Molecule Generator.
OMG adapts methodologies from the field of graph theory
and deterministic graph enumeration to the classical prob-
lem of chemical structure generation. In this sense, we
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have used the approach of “canonical path augmentation”
to ensure that we exhaustively generate non-isomorphic
chemical structures for a given elemental composition.
This generation tool has been implemented using CDK
[10,11], a widely used open source library for the develop-
ment of chemoinformatics software. It allowed the repre-
sentation of entities such as molecules, atoms, and bonds
in our program and the use of functions like removing
hydrogen atoms, checking the saturation of a molecule,
removing a bond, and many more. The resulting tool ge-
nerates all possible non-duplicate chemical structures for
a given elemental composition, with the option to generate
only those that contain one or multiple non-overlapping
substructures, which is the most important constrain to
reduce the number of resulting candidate structures when
a knowledge system is not available [18]. We have used
OMG to generate molecules for the elemental compos-
ition of well known metabolites, also including one or
more prescribed substructures as input. These results are
compared to those obtained by MOLGEN.

Materials and methods
Chemical elements and atom types
We would like to describe some concepts related to atoms
that are necessary to understand the theory and algorithm
behind OMG and the use of CDK to handle chemistry.
In nature, atoms of different chemical elements (car-

bon, nitrogen, oxygen, and others) are connected to each
other by bonds in order to form molecules. The valence,
to which we will also refer as degree, of these chemical
elements determine how many bonds each element can
have. Carbon has a valence of 4, oxygen of 2, nitrogen of
3 or 5, sulfur of 2,4 or 6, phosphor of 3 or 5. Thus a
carbon atom becomes saturated when it has 4 bonds,
where a single bond counts as one bond, a double as
two bonds, and a triple as three bonds. Regarding mole-
cules, we consider a molecule to be saturated when all its
atoms are saturated. In some special occasions, atoms are
charged, which makes them having a different valence. In
the case of OMG, we only use neutral atoms and as a con-
sequence only neutral molecules are produced, therefore
all finished molecules will contain atoms with the valences
mentioned before.
A chemical element can have multiple atom types, also

for the same valence of an element, as defined by the dic-
tionary of atom types in CDK. This dictionary defines for
each atom the number of neighbors, pi bonds, charges, lone
electron pairs, and hybridizations, in order to accommodate
the different states a chemical element can have due to dif-
ferent bonds, number of neighboring atoms, charges and
hybridizations. These atom types are based on the chemical
elements that have been observed in nature for saturated
molecules. This is why we use the CDK atom dictionary to
validate the atoms of our finished molecules.
OMG will output only molecules that are saturated
and that contain the atoms specified in the elemental
composition. Apart from finished molecules, OMG has
to represent during the generation process intermediate
chemical structures that are not finished yet. These
might contain disconnected fragments and atoms that
are not saturated. CDK atom types are not designed to
represent atom types of unsaturated chemical elements;
therefore we opted for implementing a simple atom dic-
tionary. For each chemical element, this dictionary
defines its valence, in other words, the maximum degree.
Hence for intermediate chemical structures we only
check that the current degree of each atom does not ex-
ceed the maximum degree.
MOLGEN can also produce molecules with multiple

valences, but it handles them in a different way. While
with OMG only the elemental composition needs to be
provided to generate molecules with multiple valences,
MOLGEN requires knowing a priori which one of the
multiple valences has to be used. It uses by default the
lowest valence, this is, N valence 3, P valence 3, and S
valence 2, unless a different valence is specified. In
Table 1 the atom types produced by OMG and MOLGEN
for non-default valences are presented. Using sulfur as an
example, OMG will output molecules with containing sul-
fur valence 2, 4 and 6. For the same chemical element,
MOLGEN will produce by default molecules with sulfur
valence 2. If one sets the valence of sulfur to 6, it will only
produce sulfur valence 6 and not valence 2 and valence 4.
MOLGEN cannot generate molecules with atoms of dif-
ferent valences for the same chemical element, this is, if
molecule has two sulfur atoms, one will not be of valence
4 and the other of valence 6, both will be either valence 2,
4 or 6.
The principle followed by CDK to build its atom

dictionary is to allow atom types with valences for which
there is a consensus agreement on their existence, this
is, for which known molecules exist with such valences.
Conversely, MOLGEN produces all theoretically possible
combinations of bond orders for a given valence, as it
can be observed in Table 1. For example, as it can be
seen for P valence 5 OMG only produces one atom
type with one double bond and three single bonds. In
comparison, MOLGEN produces all the combinations
of single, double, and triple bonds that add to 5. As a
consequence, when the desired valence is unknown,
which is usually the case in metabolite identification,
molecules need to be generated with all possible
valences. As a result, the number of output molecules
by both generators is different for elemental composi-
tions that contain chemical elements with multiple
valences. This deterministic generation of valences in
MOLGEN comes at the expense of generating mole-
cules having unrealistic structures.



Table 1 Atom types produced by OMG and MOLGEN for non-default valences of N(5), P(5) and S(4 and 6)

Valence MOLGEN OMG

N valence 5

P valence 5

S valencee 4

S valence 6

By default OMG outputs molecules with valences N(3 and 5), P(3 and 5), and S (2,4 and 6). By default MOLGEN outputs molecules with valences N(3), P(3),
and S(2).
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Graph theory and chemistry
The chemical structure of molecules can be represented
as a graph, where atoms and bonds in molecules corres-
pond to vertices and edges, respectively, in graphs. In
molecules, bonds connecting two atoms can have a de-
gree depending on the number of electrons they share.
Such a degree can also be assigned to the edges of a
graph, which is called a multigraph. The different chem-
ical elements present in the periodic table are repre-
sented in graphs as colors assigned to the vertices. We
define a non-directed colored multigraph G = (V, E) as
where V is a set of vertices and E is a multiset of edges,
where each edge is an unordered pair of vertices, and a
function Col :V→ colors. In this multigraph, we say that
a, b ∈V are n-connected if there are exactly n edges
(a, b) ∈V. Apart from the color function, a multigraph is
characterized by the function d :V × V→N which
returns the degree of the edge connecting each couple of
vertices. From now on we will indistinctively refer to
graphs and multigraphs.
In chemistry, the valence rule determines the maximum

number of bonds each chemical element has. In order to
take this into account, we define dv :V→N which returns
the number of edges of a given vertex and a max-degree
function md :V→M, which returns the maximum num-
ber of edges of a given vertex. We say that a multigraph is
under-saturated if ∀ v ∈V, dv(v) ≤md(v) there is at least
one vertex such that dv(v

0) <md(v0). A multigraph is satu-
rated if the equality dv = md holds for every vertex. In
chemistry, molecules correspond to saturated colored
multigraphs and max-degree depends on the color, which
is the chemical element. For instance, for a carbon elem-
ent, md(C) = 4 and for an oxygen element, md(O) = 2.
We consider a multigraph to be connected if ∀ v,w ∈
V, ∃ S{V,W} = {v1,⋯, vm} such that v, v1 and vm,w are con-
nected and for each i <m, vi is connected to vi + 1.. In
other words, a multigraph is connected if for all pair of
vertices, there exists at least one path S{V,W} connecting
both vertices. This condition is necessary for chemistry,
since intermediate chemical structures in the generation
process can be composed of disconnected fragments, it
ensures that the generated molecules are one fully
connected structure and not made of disconnected sub-
structures. Notice that hydrogen atoms (the most fre-
quently found chemical elements with degree 1) are not
considered in the generation process, since they are ter-
minal elements of the molecule and they cannot connect
two disconnected elements of the molecule. Hydrogen
atoms are only used to validate the completeness of
finished molecules. Halogen atoms like fluorine, chlo-
rine, and iodine, also of degree 1, are considered during
the generation process.

Graph labeling
An isomorphism π is a function that for each vertex v ∈
V, Col(π(v)) = Col(v) and for each pair of vertices v ∈ V,
v 0 ∈ V 0, d(π(v), π(v0)) = d(v, v0). A labeling function
σ : V→ {1,⋯, n} is a bijective map from the vertices of a
colored multigraph to an ordered list labels with a
cardinality equal to the number of vertices. Put simple
σ, assigns to each vertex a label. Let σ− 1 be the inverse
function of σ, which returns the vertex corresponding
to a label. We say a labeling function is canonical if given
any two isomorphic colored multigraphs G = (V, E) and
G 0 = (V 0, E 0), the bijective function π :V→V 0 defined as
π(a) = σ− 1(σ(a)) is an isomorphism of V in V 0. Therefore,
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a canonically labeled multigraph is a multigraph whose
vertices are associated to an ordered list through a canon-
ical labeling function. Furthermore, a canonical hash of
the labeling is a bijective function between the space of
the canonically labeled multigraphs and the value space
and it is represented as a string of integers. It is interesting
to note here that two isomorphic graphs have the same ca-
nonical hash, a fact that will be used to remove duplicated
molecules during the generation process.

Using fragments
A fragment or substructure of a molecule is equivalent
to a fragment or subgraph of a graph. We define a frag-
ment as a subset of a graph and it is characterized by
the function df :V ×V→N where N is the number of
edges connecting each pair of vertices in the subgraph.
Such df has to fulfill the condition df(a, b) ≤ d(a, b), ∀ a,
b ∈V and at least for one edge df < d, this is, the frag-
ment should have fewer edges than the graph.

Canonical augmentation
An augmentation of a multigraph G = (V, E) is a multi-
graph G0 = (V0, E0), defined on the same set of vertices, such
that ∀a; b∈V ; dG a; bð Þ ¼ dG0 a; bð Þ , except for one and
only one pair where dG 0(a, b) = dG(a, b) + 1. Let e 0 ∈ E 0 be
the edge which degree has been increased, d(e0) = d(e) + 1.
Let ec 0 be the last edge of σ(G0) and ac 0, bc 0 ∈V the ver-

tices of ec 0. Consider σ− 1(ac 0, bc 0) = a 0 0, b 0 0 to vertices of
G 0 0, a copy of G0, to which a bond order decrease is per-
formed d(a0 0, b0 0) = d(a0 0, b0 0) − 1. The resulting multigraph
G0 0 after this decrease in bond order, can be seen as the re-
sult of a canonical deletion on G0, the reverse operation of
a canonical augmentation. In our definition of canonical
augmentation we consider a multigraph G0 = (V0, E0) to be
canonically augmented from G = (V, E) if it is an augmen-
tation and σ(G0 0) = σ(G). In other words, we consider G0 to
be a canonical augmentation of G if a canonical deletion
in G0 results in G.

Description of the algorithm
The generation of structures can be seen as a tree of
intermediate chemical structures that our tool explores.
At the root of the tree we find a collection of fully iso-
lated/disconnected atoms. One bond is added at each
level of the tree, resulting in fully connected/finished
molecules at the leaves. The canonical augmentation
path is a depth-first backtracking algorithm, where the
recursive function generate described in Algorithm 1,
implements the addition of one bond in all possible ways
for a given intermediate chemical structure, and evalu-
ates for each extended molecule that this extension has
been performed in a canonical way, as described before.
Here adding one bond means increasing the degree of
the bond between two atoms, hence a single bond
becomes a double bond and a double bond becomes a
triple bond. If there is no bond between two atoms, a
single bond is created.
Between lines 2 and 9 of Algorithm 1, the molecule is

stored if it is finished, which occurs when the molecule
is saturated and all the atoms of the elemental compos-
ition, including the hydrogen atoms, have been used, all
the atoms are validated by the CDK atom dictionary and
are connected forming one single structure and not mul-
tiple disconnected fragments.
In the case the molecule is not finished, it would be

extended in all possible ways by adding one bond. If
there exists a bond between a pair of atoms function
extend, in line 12 of Algorithm 1, will increase the multi-
plicity. The generation of new bonds is controlled by
OMG atom type definitions for intermediate chemical
structures, which guarantee that the degree of the atoms
does not exceed the maximum degree allowed for its
chemical element.
Function canonize, in line 15 of Algorithm 1, returns

the canonical version of the molecule. We modified the
graph canonizer Nauty [23,29] in order to allow multi-
graphs and not only simple graphs. Other canonizers for
graphs exist like MOLGEN-CID [30] or the Signature
Canonizer [31], but Nauty has been the most widely
used for graphs as well as for chemistry problems, like
InChI [32] codes. Nauty is the canonizer of choice be-
cause it is the fastest of all available canonizers for
bounded valence graphs below 100 vertices [33] (mole-
cules are examples of this class of graphs). Firstly, the
function canonize translates the molecule into a colored
multigraph. Secondly, it utilizes Nauty to calculate the
canonical labeling of the multigraph. Thirdly, this canon-
ical labeling is used to construct the canonical version of
the input molecule. Lastly, the canonical hash string of
each augmented molecule is stored in a hash map, lines
16 and 17, in order to remove duplicated extensions at
each level of the tree. Each unique extension is checked
for canonical augmentation, line 18, using Algorithm 2,
or Algorithm 3 in case prescribed substructures were
provided. If this extension is successful, the function
generate is called, line 19 of Algorithm 1, and the mol-
ecule we want to continue extending is passed as a par-
ameter. When a molecule cannot be extended any
further, the recursion is terminated and the program
backtracks in the search tree.

Input and output
The minimum input required is the elemental compo-
sition of the structures that have to be generated. Option-
ally, a structure-data file (SDF) can be provided containing
one or more prescribed substructures that we want our
output molecules to contain. Since OMG does not take
hydrogen atoms into account during the generation of
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intermediate chemical structures, the hydrogen atoms
present in the substructures will be removed before the
generation process begins. These substructures should be
non-overlapping, i.e. they should not share any atoms.
This limitation is due to the fact that our algorithm grows
molecules by adding bonds and, if two atoms in different
fragments were in fact the same atom, our algorithm
would create bonds between those atoms, which would
clearly lead to incorrect results.
In practice, multiple substructures can be available,

but the user does not know if they overlap. This limita-
tion can be circumvented by using the largest substruc-
ture as constraint for the generation and the remaining
substructures as a posterior filtering, only keeping the
molecules with those substructures.
By default, the structure generator returns the count

of molecules it generated. Optionally, it can store all the
molecules in an SDF file. If prescribed fragments are
provided, OMG outputs only the molecules containing
such fragments. We have opted to use SDF as our input
and output format, but via CDK, other formats can
easily be implemented in OMG.
Data
As mentioned in the introduction, the identification of the
chemical structure of metabolites is one of the current
bottlenecks of metabolomics. In this sense, a structure
generator can contribute to overcome this bottleneck,
since it can provide candidate structures for an unknown
metabolite. Therefore, metabolites appear to be a relevant
family of compounds to test our structure generator. A list
of metabolites was selected and their elemental compos-
ition was compiled to evaluate the performance of our
structure generator on different inputs. The source of the
compounds employed was the Human Metabolome Data-
base (HMDB) [34], which contains almost 8,000 metabo-
lites and is the most comprehensive database of human
metabolites. A study of the human metabolite space and
the properties of the metabolites that occupy it, has been
previously reported [28]. The selection criteria were to in-
clude cyclic and acyclic compounds, of different molecular
weights, and containing different chemical elements like
C, O, N, P, and S. A first test set included metabolites with
C, O, and H, chemical elements with one valence. A sec-
ond test set included metabolites with C,O,H and also
chemical elements with multiple valences, like N, P, and S.
Furthermore, for some of these metabolites, several sub-
structures were drawn and provided to the structure gen-
erator as additional input. These substructures are easily
identified by an expert from direct inspection of MS2 or
MSn experimental data. The aim was to assess the import-
ance of having fragment information to reduce the list of
generated structures.
Results and discussion
Structure generation from elemental formula
The algorithm presented in this work, the Open Mo-
lecule Generator, was tested and compared with the
commercial structure generator, MOLGEN. Both gen-
erators take resonance into account producing all the
contributing structures. As a result, the two resonant
forms of benzene will be considered as different mole-
cules. Both OMG and MOLGEN are not limited to
acyclic structures [35,36],thus the two structure gene-
rators tested can generate molecules with rings. Fur-
thermore, both tools generate molecules containing
common chemical elements present in metabolites, like
C, O, N, H, P, and S, and are not limited to only 4 che-
mical elements [36]. Both structure generators generate
molecules for a given elemental composition by ex-
haustively producing all non-redundant chemical
structures.
The number of molecules produced after using the

elemental compositions of a diverse selection of meta-
bolites containing only C, O and H, is presented in
Table 2. For all these metabolites, the same number of
molecules is generated by both generators. While both
generators produce complete results, MOLGEN does
it in less time. The time between initialization and
finalization was measured using time functions in
JAVA for OMG and equivalent functions in python for
MOLGEN. We can observe in Table 2 the time in seconds
to generate all the candidate structures and the time to
generate each molecule in milliseconds. If we look at time
per molecule, MOLGEN is 4 times faster than OMG
for small molecules like pyruvic acid. For larger mole-
cules MOLGEN obtains a constant time per molecule
between 0.008 and 0.009 milliseconds, while OMG ranges
from 18 to 45 milliseconds depending on the elemental
composition. Lightweight profiling of OMG was per-
formed using VisualVM (version 1.3.4), in order to have
an understanding of the limiting points in the perform-
ance of OMG. The most relevant finding was that the
canonization process, which uses Nauty, took half of the
total running time.
We observed that MOLGEN stops the generation of

molecules after two billion molecules, as it can be
observed for a large molecule like cholic acid (Table 2).
Since both generators produce the same molecules for
elemental composition with C, O and H, we can only
assume that more than two billion molecules could be
generated. In the case of phenyllactic acid, MOLGEN
produces more than 48 million molecules in 404 sec-
onds. Due to excessive computational time, no results
for this elemental composition are reported for OMG,
though the same number of molecules is expected (if
executed for enough time) as is the case for all the other
elemental compositions in this subset.



Table 2 Number of chemical structures generated by OMG and MOLGEN using as input only the elemental
compositions of metabolites containing C,O and H elements

Structure
Name HMDB ID

elemental
composition

MOLGEN OMG

# Candidate
structures Time (s)

Time per
molecule

(ms)

# Candidate
structures Time (s)

Time per
molecule

(ms)

Pyruvic acid
HMDB00243 C3H4O3

152 0.129 0.849 152 0.509 3.349

Malic acid HMDB00156
C4H6O5

8,070 0.222 0.028 8,070 27.074 3.355

D-Xylose HMDB00098
C5H10O5

18,092 0.332 0.018 18,092 125.783 6.952

D-Fructose
HMDB00660 C6H12O6

267,258 2.381 0.009 267,258 5,035.371 18.841

Sedoheptulose
HMDB03219 C7H14O7

4,106,823 38.945 0.009 4,106,823 186,248.085 45.351

Pectin HMDB03402
C6H10O7

3,183,337 26.512 0.008 3,183,337 46,320.522 14.551

Galactonic acid
HMDB00565 C6H12O7

767,569 6.957 0.009 767,569 22,475.987 29.282

Galactaric acid
HMDB00639 C6H10O8

8,568,129 78.354 0.009 8,568,129 186,730.365 21.794

Cholic acid
HMDB00619
C24H40O5

* More than
2,147,483,646

* not
available

* not available
* More than
2,147,483,646

* not
available

* not available

Phenyllactic acid
HMDB00779 C9H10O3

48,496,265 404.052 0.008
** More than
48,496,265

** not
available

** not
available

*Results were not generated due to excessive computational time needed to generate all the candidate structures. However, we expect OMG to generate more
molecules than MOLGEN, due to the larger amount of atom types produced by OMG.
**Results were not generated due to excessive computational time needed to generate all the candidate structures.
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As stated in Methods, both generators treat atoms
having multiple valences in different ways, this is the
reason to use a second set of molecules containing also
N, P and S. The default valences used by MOLGEN for
N is 3, for P is 3, and for S is 2, unless stated otherwise.
The results for these molecules are presented in Table 3.
As expected, the number of candidate structures differs
between both generators. For the elemental composition
of glycine, MOLGEN produces 84 molecules only with
N valence 3 and 162 molecules only with N valence 5.
For the same elemental composition, OMG produces 97
molecules with valence 3 and 5 for N, which include the
84 of MOLGEN N valence 3 and 13 additional mole-
cules with valence 5, containing N with the atom types
depicted in Table 1 for OMG-CDK. The difference in
the number of candidate structures is larger for elemen-
tal compositions containing many atoms with multiple
valences, as is the case of creatinine. For this metabolite,
MOLGEN generates 93,323 candidate structures with
the default valence 3 for N. On the contrary, OMG pro-
duces 303,601 candidate structures, containing N valence
3 and 5.
In the case of phosphoenolpyruvic acid, we require P

valence 5 to be considered. On the one hand, running
MOLGEN with the default valence for P yields 51,323
candidate structures but the correct molecule is missing.
On the other hand, forcing the valence of P to be 5,
returns 129,421 candidate structures, with the correct
molecule also produced but also an excessive quantity of
unrealistic molecules due to unrealistic atom types for P.
Alternatively, OMG generates 83,977 candidate struc-
tures with P valence 3 and 5, including the desired mol-
ecule, where all of them are valid molecules as defined
by the CDK atom dictionary.
We observe in Table 3 that the running time per ge-

nerated molecule now ranges between 0.008 and 0.041
milliseconds, while OMG requires between 4.8 and 26.6
milliseconds. Such difference in execution speed be-
tween MOLGEN and OMG makes that for some large
elemental compositions, only results are reported for
MOLGEN. This is the case of phenylalanine, uric acid
and p-cresol sulfate. However, for these metabolites, we
assume that the number of candidate structures would
have been higher with OMG than the one reported by
MOLGEN using the default valences.

Structure generation from elemental formula and
prescribed substructures
Structure generation is a combinatorial problem where
the number of output molecules grows exponentially
with to the number of input atoms. When using one or
more prescribed substructures as input to the generators
in addition to elemental composition, less candidate
structures are obtained (Table 4). Whereas MOLGEN
can only accept one substructure, OMG can accept mul-
tiple substructures as input with the constraint that
these do not overlap, i.e., they should not share any
atom. Phenylalanine is a good example how the number
of generated structures can be reduced by using more
prescribed substructures, as will be discussed below in
more detail.
Substructure information is of great relevance for meta-

bolomics experiments involving MSn data, where often
the only information available of an unknown metabolite
that needs to be identified is the elemental composition
and in some cases substructures. Provided that no data-
base entries exist for this experimental information, one is
forced to generate the structures via CASE. The inclusion
of substructure information brings the list of candidate
structures to a manageable size. For p-cresol sulfate, using
the sulfate group with both generators as prescribed sub-
structure, produces 13,177 molecules. When benzene is
the prescribed substructure, OMG generates 17,232 can-
didate structures and MOLGEN 70,330, all containing
sulfur with valence 6, hence the difference between both
generators.
Whereas only the elemental composition of phenylala-

nine as input generates 277 million structures with
MOLGEN and for OMG an even higher number of candi-
date structures is expected as both nitrogen valences of
3 and 5 are taken into account (Table 3), using benzene as
a substructure provides only 107,155 (OMG) and 76,247
(MOLGEN) candidate structures (Table 4). The number
of generated molecules for the elemental composition of
phenylalanine is even further reduced by prescribing mul-
tiple fragments as input: OMG outputs 595 molecules
when provided with two fragments and 289 molecules for
three fragments (Table 4). The use of large fragments
yields the larger reduction in output molecules, as it can
be seen for the last example of phenylalanine, where two
big fragments describe most of its structure and return
only 26 chemical structures.
For larger molecules containing ten or more carbon

atoms, which is a common situation in chemistry, it is
not practical for the identification of metabolites to ex-
haustively generate candidate structures without using
substructure constraints, with MOLGEN and OMG, due
to the large number of results. Using the elemental com-
position of a large metabolite like cholic acid, both struc-
ture generators cannot produce all possible candidate
structures, which are expected in the order of billions.
This was only possible using substructure information to
reduce the size of the search tree: when providing a sub-
structure that describes a large part of the molecule,
OMG generates only 334 structures (Table 4). When
using two substructures, OMG returned 2,505 candidate
structures. However, MOLGEN was unable to return
results using the same large substructure or two



Table 3 Number of chemical structures generated by OMG and MOLGEN using as input only the elemental
compositions of metabolites containing C, O, H, N, P and S elements

Structure Name HMDB ID elemental
composition

MOLGEN OMG

# Candidate
structures Time (s) Time per

molecule (ms)
# Candidate
structures Time (s) Time per

molecule (ms)

Glycine HMDB00123
C2H5NO2

N_3 84 0.118 1.405
97 0.452 4.660

N_5 162 0.120 0.741

Acetyl-glycine HMDB00532
C4H7NO3

18,469 0.282 0.015 26,530 126.117 4.754

Phenylalanine HMDB00159
C9H11NO2

277,810,163 2227.796 0.008
* More than
277,810,163

* not
available

* not available

Glutamic acid HMDB00148
C5H9NO4

440,821 2.945 0.007 685,392 12,348.456 18.017

Phosphoenolpyruvic acid
HMDB00263 C3H5O6P

P_3 51,323 0.562 0.011

83,977 761.378 9.067
P_5 129,421 1.398 0.011

 

Creatinine HMDB00562
C4H7N3O

93,323 0.933 0.010 303,601 3,921.157 12.915

Guanidinoacetic acid
HMDB00128 C3H7N3O2

45,626 0.585 0.013 124,808 1,962.532 15.724

 

Cytosine HMDB00630
C4H5N3O

108,769 1.149 0.011 491,299 3,952.098 8.044

 

Uric acid HMDB00289
C5H4N4O3

464,899,034 3488.097 0.008
* More than
464,899,034

* not
available

* not available

Histamine HMDB00870
C5H9N3

46,125 0.631 0.014 134,278 3,566.544 26.561

D-Cysteine HMDB03417
C3H7NO2S

3,838 0.156 0.041 15,978 131.004 8.199

p-Cresol sulfate HMDB11635
C7H8O4S

S_6

5078.132 0.009
* More than
82,000,000

* not
available

* not available592,625,133

* Results were not generated due to excessive computational time needed to generate all the candidate structures. We expect OMG to generate more molecules
than MOLGEN, due to the larger amount of atom types produced by OMG.
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Table 4 Number of chemical structures generated by OMG and MOLGEN using as input an elemental composition and
one or more prescribed and non-overlapping fragments

Structure Name HMDB
ID elemental
composition

Prescribed
substructure(s)

MOLGEN OMG

#
Candidate
structures

Time (s) Time per
molecule

(ms)

#
Candidate
structures

Time (s) Time per
molecule

(ms)

Glycine

 6 0.167 27.833 6 0.539 89.833HMDB00123
C2H5NO2

D-Cysteine
100 0.193 1.930 210 3.177 15.129HMDB03417

C3H7NO2S

Phenylalanine

76,247 52.774 0.692 107,155 19386.019 180.916
HMDB00159
C9H11NO2

* not
possible

* not
possible

* not
possible

595 271.809 456.822

* not
possible

* not
possible

* not
possible

289 172.655 597.422

* not
possible

* not
possible

* not
possible

26 25.147 967.192

Cholic acid

** not
possible

** not
possible

* not
possible

334 120.519 360.835
HMDB00619
C24H40O5

* not
possible

* not
possible

* not
possible

2,505 119.418 47.672

Malic acid

1,436 0.229 0.159 1,436 4.688 3.265
HMDB00156
C4H6O5

Uric acid

150,114 962.016 6.409 6,069,863 155828.437 25.672
HMDB00289
C5H4N4O3
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Table 4 Number of chemical structures generated by OMG and MOLGEN using as input an elemental composition and
one or more prescribed and non-overlapping fragments (Continued)

Phenyllactic acid

21,040 15.674 0.745 26,164 163.904 6.264
HMDB00779
C9H10O3

* not
possible

* not
possible

* not
possible

525 3.973 7.568

p-Cresol sulfate

S_6 13,177 65.667 4.983 13,177 63.047 4.785HMDB11635
C7H8O4S

S_6 70,330 94.898 1.349 17,232 1204.357 69.891

*MOLGEN can only accept one prescribed substructure, while OMG accepts multiple substructures, provided that these do not overlap, this is, they do not share
any atom.
**MOLGEN is not able to generate molecules using this large substructure as input. The reason could not be found.
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substructures as an input and the reason could not be
found by us.
The use of prescribed substructures affected the run-

ning time of both generators. For MOLGEN, the time
per molecule ranged between 0.16 and 27.8 milliseconds,
which represents in some cases a 10,000-fold increase in
computation time compared to using only elemental
compositions. Concerning OMG, the time per molecule
ranged between 3.3 and 967. 2 milliseconds, a 100-fold
increase in running time. Despite this deterioration of
execution time, the advantage of using one or ideally
multiple prescribed substructures is clear: the number of
candidate substructures is significantly reduced and the
total time to calculate candidate structures is also
reduced compared to not using any substructure.
The results here presented show that if we want

MOLGEN to generate the correct molecule when the
valence of some atoms is not the default one, like phos-
phoenolpyruvic acid or p-cresol sulfate, we need to know
the valence in advance. Otherwise, MOLGEN should be
executed using all possible valences for all atoms. This
limitation is not present in OMG, which can produce dif-
ferent valences in the same execution. Unfortunately, the
atom dictionary provided by CDK is not comprehensive
concerning non-standard valences. On the positive side,
the dynamic open source community of CDK keeps add-
ing new atom types with each release of the library and we
expect that this will improve the capabilities of OMG.
This open source nature of CDK allows users to suggest
or implement new atom types.
The generation of the molecules in the Open Molecule
Generator has the shape of a tree. As stated by McKay
[23], the check for canonical augmentation is branch-
independent, which would allow to process branches of
the generation trees in parallel. Theoretically the algorithm
allows for parallelization, in practice this has not been
implemented but it is one future extension of this work.
However, we have observed that OMG is in most of

the cases slower than MOLGEN and this fact was more
noticeable when generating millions of candidate mole-
cules. The speed of OMG could be improved and we see
several possibilities to achieve this, i.e. the use of a dif-
ferent canonizer or a less computationally demanding
canonicity test for intermediate chemical structures,
could significantly speed up the execution. Actually,
obtaining millions of molecules as a result, quickly or
slowly, is not desirable, but ideally, the goal of metabolite
identification is to obtain a list of candidate structures
that is short in order to examine it and find the structure
belonging to the unknown metabolite. Exhaustive profil-
ing, covering both on execution time and memory use,
would be beneficial to discover improvement points
for OMG. Fortunately, OMG allows multiple prescribed
substructures and can handle large fragments, which
reduced the number of generated molecules signifi-
cantly. Handling multiple substructures allows OMG to
provide a short list of candidate structures and addition-
ally, its open source nature permits users to implement
specific constraints to further reduce the candidate list,
both during and after the generation process. Examples
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of such constraints would reject intermediate chemical
structures with high steric energy values or other physi-
cochemical properties. Therefore we expect OMG to be
useful in different application areas and its functionality
to be extended in the near future.
Conclusion
In this work we have presented the Open Molecule Gene-
rator, to the best of our knowledge, the first implementation
to chemical structure generation of the Canonical Path
Augmentation approach, originally designed for simple
graph enumeration adding vertices. We have adapted it to
generate organic chemical structures and extended so that
(i) it grows molecules by adding bonds, (ii) it can handle
multigraphs, and (iii) accepts one or multiple non overla-
pping prescribed substructures. In addition, this is the first
open source implementation of a deterministic structure
generator. This will enable future developments like
parallelization or the inclusion of constraints that are spe-
cific to the class of compounds being generated.
Our results show that the implementation of our algo-

rithm generates all possible and valid chemical struc-
tures for a given elemental composition and optionally
prescribed substructures. It is as complete as the best
commercially available generator. Moreover, the current
implementation of the OMG program presents an extra
advantage over existing generators when large or mul-
tiple fragments are available to be used as constraints:
we have demonstrated the benefit of incorporating
constraints to reduce the number of output molecules
significantly. The ability of OMG to generate multiple
valences for an atom has proven to be useful as often no
prior information is known on the desired chemical
elements and multiple valences of an element can be
present in a molecule. When compared to MOLGEN,
the only disadvantage of OMG is its speed, which is
more severe when using only elemental compositions
and less when including prescribed substructures. This
issue will be addressed in future improvements of the
program. We expect this tool to be used in various
fields, one of them being metabolomics, where there is a
clear need for flexible structure generators. We have
successfully used OMG to propose candidate structures
using prescribed substructures, in several on-going me-
tabolite identification projects in our lab.
Availability and requirements
Project name: openmg
Project home page: http://sourceforge.net/p/openmg
Operating system: Linux 64bits, Linux 32bits, Mac OS X
Programming languages: Java, C
Other requirements (if compiling):
License: GNU AGPL v3
Any restrictions to use by non-academics: None other
than those specified by the license

Algorithms
1: generate(M)
2: If saturated(M) AND are_all_H_used(M)
3: If connected_fragments(M) == 1
4: store_to_file(M)
5: Nmols = Nmols + 1
6: If degree(M) <max_degree(M)
7: generate(M)
8: Endif
9: Endif
10: Else
11: New Map
12: List_of_bonds = extend(M)
13: Foreach bond in list_of_bonds
14: M’ = add_bond(bond,M)
15: canonM’ = canonize(M’)
16: If not is_present(map,canonM’)
17: add(map,canonM’)
18: If is_canonical_augmentation

(canonM’,M’,M)
19: generate(M’)
20: EndIf
21: EndIf
22: End
23: EndIf
24: End
Algorithm 1
1: Is_canonical_augmentation(canonM’, M’, M)
2: last_bond = get_last_bond(canonM’)
3: M” = remove_bond(M’, last_bond)
4: return are_the_same(M”, M)
5: End
Algorithm 2
1: Is_canonical_augmentation_fragments(canonM’,

M’, M)
2: last_bond = get_last_bond(canonM’)
3: While bond_belongs_to_fragment(last_bond,

canonM’)
4: last_bond = get_previous_bond(canonM’)
5: Endwhile
6: M” = remove_bond(M’, last_bond)
7: return are_the_same(M”, M)
8: End
Algorithm 3
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