
����������
�������

Citation: Yang, X.; Feng, J.; Zhu, Q.;

Hong, R.; Li, L. A Relation between

Exopolysaccharide from Lactic Acid

Bacteria and Properties of

Fermentation Induced Soybean

Protein Gels. Polymers 2022, 14, 90.

https://doi.org/10.3390/

polym14010090

Academic Editor: Christine Wandrey

Received: 14 November 2021

Accepted: 16 December 2021

Published: 27 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

polymers

Article

A Relation between Exopolysaccharide from Lactic Acid
Bacteria and Properties of Fermentation Induced Soybean
Protein Gels

Xiaoyu Yang, Jiao Feng, Qianqian Zhu, Rui Hong * and Liang Li *

College of Food Science, Northeast Agricultural University, Harbin 150030, China; 15127415162@163.com (X.Y.);
feng235246@163.com (J.F.); Qianqianzhu1029@163.com (Q.Z.)
* Correspondence: hongrui3610@163.com (R.H.); liliangneau@163.com (L.L.); Tel.: +86(0)-451-55190477 (R.H.);

Fax: +86(0)-451-55190577 (R.H.)

Abstract: Exopolysaccharide (EPS) producing lactic acid bacteria (LAB) is considered to be an effective
texture improver. The effect of LAB strains (different EPS production capacity) on physicochemical
properties (texture profile, water distribution, rheological properties, and microstructure), protein
conformation, and chemical forces of soybean protein gel was investigated. Correlations between
EPS yield and gel properties were established. Large masses of EPS were isolated from L. casei
fermentation gel (L. casei-G, 677.01 ± 19.82 mg/kg). Gel with the highest hardness (319.74 ± 9.98 g)
and water holding capacity (WHC, 87.74 ± 2.00%) was also formed with L. casei. The conversion of β-
sheet to α-helix, the increased hydrophobic interaction and ionic bond helped to form an ordered gel
network. The yield was positively correlated with hardness, WHC, A22, viscoelasticity, and viscosity,
but negatively correlated with A23 (p < 0.05). The macromolecular properties of EPS (especially the
yield) and its incompatibility with proteins could be explained as the main reason for improving gel
properties. In conclusion, the EPS producing LAB, especially L. casei used in our study, is the best
ordinary coagulate replacement in soybean-based products.

Keywords: exopolysaccharides; lactic acid bacteria; soybean protein; gel properties; correlation

1. Introduction

Soybean protein is a representative plant protein and plays a decisive role in a variety
of food systems: (1) increase protein content and maintain amino acid content; (2) provide
beneficial physiological components; and (3) provide good processing properties [1]. In
the processing properties, more and more concerns are focused on the gelation of soy
protein, which not only has a positive effect on the texture of food, but also improves the
sensory and flavor by providing the spatial three-dimensional (3D) network structure for
preserving food ingredients [1].

Coagulation is considered to be a key step in the formation of soy protein gel. Fermen-
tation by lactic acid bacteria (LAB) stands out from the many solidification methods, except
the role of LAB fermentation itself (e.g., extended shelf life, improved sensory properties,
and increased nutritional value), EPS produced by LAB plays an indispensable role [2,3].
Li, Li, Chen, Feng, Rui, Jiang, and Dong [4] investigated the in-situ EPS produced by
Lactobacillus plantarum 70,810 could be used to modify water holding capacity, textural
properties, viscosity and flavor of the products. Surber, Spiegel, Dang, Wolfschoon Pombo,
Rohm, and Jaros [5] studied the physicochemical and functional properties of cream cheese
prepared by three Lactococcus lactis strains with different EPS production. The effect of EPS
concentration produced by different strains on the texture of the gel is still controversial, as
reported by Surber, Mende, Jaros, and Rohm [6], so the influence of EPS characteristics on
the hardness of the gel is still valuable.

EPS-producing LAB fermentation induced gel (ELFG) can be considered as a novel
hydrogel. According to previous reports, the gels can be classified into water-based
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hydrogels and oil-based organogels [7]. Organogels are materials composed of structural
agents and a non-polar liquid phase (organic compounds) [8]. A series of organogels
have been developed and classified based on the nature of organogelators such as lecithin
organogels (LOs) [9]. Organogels or LOs could replace solid/hydrogenated fats in the food
industry, transfer hydrophobic bioactive substances, nutritional drugs, or model bioactive
compounds with medicinal or cosmetic interest [10–12].

Hydrogels are also materials that are usually composed of polysaccharides or proteins,
but are hydrophilic polymer networks that have the ability to take up large amounts of wa-
ter molecules because the polymer chain is rich in hydrophilic functional groups [13]. It can
be seen that the composition of organogels and hydrogels is different. It is interesting that
they can both deliver substances, but the solubilities of the delivery materials also differ.

As a novel hydrogel, ELFGs are prepared by water phase and soybean protein, which
are different from organogels and are more effective for the delivery of hydrophilic sub-
stances, whether in the food or pharmaceutical industries. The formation process of ELFGs
involves acidification, protein hydrolysis, flavor formation, and metabolite production,
which is conducive to improving intestinal health, providing active ingredients, improving
flavor, and prolonging shelf life [4]. ELFGs should be also applied as food ingredients such
as thickeners, stabilizers, and nutritional fortifiers.

The mechanism of improving the properties of fermentation induced soybean protein
gels (FSGs) is not clear, especially the effects of EPS properties on gelation properties. Thus,
we compared the effects of four LAB strains (with different EPS production ability) on
the physicochemical of FSGs as the purpose of this work. The protein conformation and
chemical forces were also tested to understand the changes in gel properties. Furthermore,
we related the properties of the gel to EPS yield and drew a final heatmap. Based on the
results, the most promising LAB strain for the application in soybean protein foods could
be identified.

2. Materials and Methods
2.1. Strains

LAB strains with EPS production ability were sponsored by the College of Food
Science, Northeast Agricultural University (Harbin, Heilongjiang, China).

2.2. Preparation of Fermentation Induced Gel (FG) and EPS Isolation

A mixed solution was prepared by dissolving 10% SPI and 2% glucose (w/v) in deion-
ized water and sterilized (121 ◦C, 15 min). LAB (4%) was then added into the mixed
solution and cultured at 37 ◦C for a period of time until pH reached 4.5. The fermented
soybean protein gel was transferred to a refrigerator (4 ◦C) and stored for 12 h after fermen-
tation [14]. The fermentation induced gels (FGs) prepared with the “strain” is expressed as
“strain-G”. For example, FG made with L. acidophilus is shown as “L. acidophilus-G”.

The isolation process of EPS is based on our previous study [15]. The EPS yield
coefficient (mg/kg) was calculated according to the following formula:

Yield coefficientEPS(mg/kg) =
Dry EPS weight*EPS content

Gel weight

2.3. Texture Profile Analysis (TPA) and Water Distribution

A texture analyzer (Stable Micro Systems Ltd., Surrey, UK) equipped with a P/36R
probe was used to determine the parameters and measured with the compression strain of
30%.

The water holding capacity (WHC) of gel was determined by centrifugation (1000× g,
15 min, 4 ◦C) and calculated according to the following formula:

WHC(%) =
Weight of gel after centrifugation

Weight of intial gel
× 100%
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Transverse relaxation time (T2) measurements were carried out with a NMR spectrom-
eter (Niumag Co. Ltd., Shanghai, China) at 25 ◦C [16].

2.4. Rheological Analysis

The rheological properties were measured with an AR2000ex rheometer (TA Instru-
ments Ltd., New Castle, DE, USA) equipped with 40 mm diameter stainless steel parallel
plates. The effect of EPS producing LAB strains on the rheological properties (includ-
ing) were investigated. Frequency sweep was carried out and apparent viscosity (η) was
also recorded. Storage modulus (G′) during cooling (lowered from 37 to 4 ◦C) was also
monitored. G′ and G′′ dependence of f was fitted by power law model equations as follows:

G = K× f n

where K stands power law constants (Pa sn), and n stands exponents.

2.5. Scanning Electron Microscopy (SEM)

A S3400 SEM (Hitachi, Tokyo, Japan) was used to observe the microstructure of
fermented soybean gels that were cut, fixed, dehydrated, and sprayed before observation.

2.6. Raman Spectroscopy

All spectra were recorded from 400 to 2800 cm−1 using a DXR2 Raman spectrometer
(Thermo Nicolet Inc, Waltham, MA, USA) at 25 ◦C. Spectral resolution was 1 cm−1, laser
power was 100 mW, and exposure time was 30 s.

2.7. Chemical Forces of Gel

The gel samples were mixed with different denaturing solvents to acquire correspond-
ing chemical forces. The results were expressed by the protein content in denatured solvent.

2.8. Statistical Analysis

The data were measured at least three times. The results were evaluated by analysis
of variance (ANOVA) using SPSS software version 22 (IBM software, Armonk, NY, USA).
Post hoc tests were conducted by Tukey’s test (p < 0.05). A Pearson correlation test was
performed to explore the relationship between the yield of EPS and the gel properties.

3. Results and Discussion
3.1. Acidification and EPS Yield

Acidification rate is an important factor affecting the texture of gel, and increased
acidification rate could reduce gel hardness by reducing the arrangement and aggregation
time of soybean protein [17]. The acidification rate (dpH/dt) of the SPI gel is shown
in Figure 1a. No significant difference in acidification rate between strains was found
(p < 0.05). In addition, the fermentation time (t(pH4.5)), defined as the time for the soy
protein to reach the pH of 4.5, was approximately 7 h for all strains (Figure 1a). Large
masses of EPS were isolated from L. casei-G (677.01 ± 19.82 mg/kg) compared with those
from L. acidophilus (564.21 ± 15.51 mg/kg), L. mesenteroides (340.38 ± 20.67 mg/kg), and
L. lactis (453.36 ± 30.60 mg/kg), respectively (Figure 1b). The structure of EPS has been
characterized in our previous studies [15,18].

3.2. Texture Characteristics

Texture characteristics have an important impact on the acceptability of the gel and
are shown in Table 1. No obvious differences among gels in cohesiveness were found
(p < 0.05). Pang, Xu, Zhu, Li, Bansal, and Liu [19] also found that cohesiveness was not
affected by the EPS yield. The springiness, gumminess, and chewiness of MEPS were the
lowest. The lowest springiness in L. mesenteroides-G may be attributed to the lowest WHC,
which is shown in Table 1. The relationship between springiness and WHC was supported
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by the results of Ayyash, Abu-Jdayil, Hamed, and Shaker [20]. EPS yield could improve the
hardness of the soy protein gels, which may be attributed to the compact network caused
by EPS and soy protein. This could explain why L. casei-G had significantly higher hardness
than those of the other gels.
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Table 1. Texture profile analysis parameters and WHC of gels.

L. acidophilus L. casei L. mesenteroides L. lactis

Hardness (g) 278.60 ± 8.93 b 319.74 ± 9.98 a 200.99 ± 6.41 d 242.29 ± 8.74 c

Springiness 0.76 ± 0.03 ab 0.80 ± 0.01 a 0.65 ± 0.02 c 0.74 ± 0.01 b

Cohesiveness 0.46 ± 0.02 a 0.48 ± 0.02 a 0.47 ± 0.03 a 0.48 ± 0.02 a

Gumminess 114.15 ± 12.34 b 108.45 ± 2.20 b 66.41 ± 5.59 c 140.87 ± 7.90 a

Chewiness 89.58 ± 12.52 b 77.07 ± 3.88 b 46.85 ± 13.62 c 116.35 ± 6.31 a

WHC (%) 79.26 ± 3.75 b 87.74 ± 2.00 a 58.99 ± 0.81 d 69.29 ± 1.88 c

Values with a different superscript letter (a–d) were significantly different (p < 0.05).

3.3. WHC and LF-NMR

WHC stands for the capability of the gel to held all or part of its own moisture. The
WHC of L. casei-G (87.74 ± 2.00%) was the highest (p < 0.05) compared with L. acidophilus-G
(79.26 ± 3.75%), L. mesenteroides-G (69.29 ± 1.88%), and L. lactis-G (58.99 ± 0.81%), which
was linked with the EPS production ability. EPS could positively influence the texture and
WHC via the “filler effect” [19].

The transversal relaxation time curve is often used to assess differences in water
exchange and could reflect denaturation and aggregation [21]. In Figure 2a, T2 distribution
curves had three peaks, which were also observed in emulsion gels stabilized by SPI and
pectin [22]. T21 in 1–4 ms stands for binding moisture, T22 in 10–200 ms represents fixed
water, and T23 in 200–400 ms means unbound water. Furthermore, the A refers to the
area of the individual peak in T2 distribution curves, as shown in Figure 2c. According
to Figure 2b,c, there was no significant difference in T21 and A21 between samples, which
showed that the binding moisture’s properties was not dependent on the strains. The trends
of T22 were similar to that of T23. Yang, Zhou, Guo, Feng, Wang, Wang, Ma, and Sun [23]
reported that shorter relaxation times were conducive to the combination between water
and proteins, so the lowest T22 in L. casei-G reflected that more free water was retained in
the gel structure caused by the binding of water to SPI promoted by EPS. It is worth noting
that the A22 value was highest, but the A23 value was the lowest when the fermentation
strain was L. casei. The conversion of unbound water to fixed water in the soybean protein
gel network resulted in increased WHC of L. casei-G (Table 1).
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3.4. Rheological Properties

Rheological properties of ELFG were studied. Frequency sweep is usually used as
an indicator of gel deformation over time. G′ and loss modulus (G′′) of FGs rose with
increasing frequency (f), and G′ was higher than G′′ (tan δ < 1) during the tested frequency
range (Figure 3a,b). All gels exhibited viscoelastic characteristics and strong frequency
dependency. L. casei-G had the highest G′ at 1 Hz (2434.22 ± 14.33 Pa, p < 0.05) (Table 2),
which indicated the largest crosslinking degree in the L. casei-G. However, no significant
change in the tan δ was observed, indicating similar viscoelastic network properties within
the LVR of all FGs. The slope of log (G′) vs. log (f) and slope of log (G′′) vs. log (f)
were found to be higher in the L. casei-G than that in L. mesenteroides-G, indicating that
modulus for the former was more sensitive to frequency. Furthermore, values of slope
were in line with values reported for fermentation induced pea protein gel [24]. Good fits
were found for the variation trends of G′ and G” with f (R2 > 0.974). Furthermore, the
L. casei-G had significantly higher K′ (2487.70 ± 15.43 Pa) than those of the others, which
was in agreement with the K′′ (129.34 ± 1.19 Pa). Figure 2c shows that FGs showed the
shear thinning phenomenon. Li, Li, Chen, Feng, Rui, Jiang, and Dong [4] also found this
result in fermentation induced soymilk gels, where the decrease in gel viscosity was due to
decreased water holding capacity. The L. casei-G exhibited higher apparent viscosity than
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those of the other gels (η0 = 6793.57 ± 35.49 mPa s; η50 = 2.00 ± 0.08 mPa s), which was in
agreement with the WHC results (Table. 1).
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Figure 3. Rheological properties of fermentation induced gels. (a) Storage modulus (G′) and (b) loss
modulus (G′′) with frequency, (c) viscosity, and (d) storage modulus during cooling.

Table 2. Rheological parameters from flow curve and frequency sweep of gels.

L. acidophilus L. casei L. mesenteroides L. lactis

G′, at 1 Hz 2344.97 ± 18.06 b 2434.22 ± 14.33 a 2205.23 ± 17.74 d 2278.50 ± 25.43 c

G′′, at 1 Hz 574.28 ± 15.05 ab 586.24 ± 11.64 a 540.40 ± 10.41 c 552.92 ± 13.12 bc

Tan δ, at 1 Hz 0.250 ± 0.015 a 0.240 ± 0.013 a 0.265 ± 0.013 a 0.256 ± 0.005 a

Slope of log (G′) vs. log (f) 0.130 ± 0.004 a 0.160 ± 0.008 a 0.124 ± 0.005 b 0.139 ± 0.005 a

Slope of log (G′′) vs. log (f) 0.139 ± 0.009 ab 0.146 ± 0.007 a 0.110 ± 0.005 b 0.139 ± 0.003 ab

K′ 2316.02 ± 8.74 b 2487.70 ± 15.43 a 2197.95 ± 10.08 d 2257.28 ± 19.49 c

n′ 0.138 ± 0.012 a 0.142 ± 0.011 a 0.123 ± 0.009 a 0.138 ± 0.002 a

R′2 0.999 0.996 0.996 0.999
K′′ 118.32 ± 1.31 b 129.34 ± 1.19 a 90.81 ± 0.95 d 99.73 ± 0.62 c

n′′ 0.224 ± 0.023 ab 0.25 ± 0.009 a 0.198 ± 0.007 b 0.216 ± 0.015 ab

R′′2 0.995 0.997 0.974 0.997
η0 (mPa s) 5419.14 ± 73.19 b 6793.57 ± 35.49 a 2265.62 ± 57.63 d 3577.73 ± 67.86 c

η50 (mPa s) 1.66 ± 0.10 b 2.00 ± 0.08 a 0.80 ± 0.01 d 1.10 ± 0.00 c

Values with a different superscript letter (a–d) are significantly different (p < 0.05).
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The G′ values of the gel increased during the cooling process (Figure 3d), where
a similar result was reported [19]. The rising G’ is on account of the drop in the number or
strength of the hydrophobic bonds inside each protein particle during the cooling period.
The highest G′ was found in L. casei-G, which could be due to the EPS produced by L. casei
forming a denser network via van der Waals forces and electrostatic repulsion between
EPS and protein [25]. This agreed with the results obtained during the frequency range
(Figure 2a,b).

3.5. Microstructure

L. casei-G has a dense, uniform, and smooth 3D network structure with smaller holes
(Figure 4). However, the microstructure of L. mesenteroides-G was crisscrossed by water
channels, which would impede the aggregation of protein and lead to the breakdown in
the gel network, and larger irregular pores could be found in the coarse and loose 3D
network. Water distribution was determined by microstructures; the fluidity of water was
restricted by small pores in the 3D network, and vice versa. Larger pores in the coarse
gel network structure of L. mesenteroides-G increased the water loss depicted in Table 1,
which was in accordance with the findings in [26]. The compact structure may be caused
by the larger cross-linking of EPS and protein [27]. However, this was inconsistent with the
results of [28], who reported that EPS-producing cultures might induce an open structure.
According to Pang, Xu, Zhu, Li, Bansal, and Liu [19], the phase separation stage and “filler
effect” stage was found. Higher gel hardness (Table 1), smaller water loss (Table 1 and
Figure 2), and compact structure (Figure 4) were the main features in the later stage.
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3.6. Raman Spectral Analysis

Raman spectroscopy is a powerful tool to explore secondary structure and local environ-
ments of soybean protein. The amide I characteristic peak of the gels (except L. mesenteroides-G)
was at 1672–1665 cm−1. It was found that β-sheet was the main secondary structure in FGs
due to the characteristic peak located in the β-sheet range (1680–1665 cm−1). In addition, the
amide I regions are often used to assess secondary structure changes as they contain charac-
teristic peaks of 1658–1650 cm−1 (α-helix), 1680–1665 cm−1 (β-sheet), and 1665–1660 cm−1

(random coil). Figure 5b shows the quantitative analysis results of the amide I band. No
significant variation for β-turn proportion in all groups was found, and the similar in-
difference for random coil was also observed in L. casei-G and L. acidophilus-G. However,
significant changes in the α-helix and β-sheet among groups were found. Our studies
found that the enhancement in texture properties and WHC were correlated with decreased
α-helix content but increased β-sheet proportion, which had been also observed by Zhuang,
Wang, Jiang, Chen, and Zhou [29].
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Exposure of tryptophan (Trp) residues in hidden or lyophobic microenvironments to
polar aqueous solvents may lead to the reduction of 760 cm−1 intensity [29]. Compared
with the L. mesenteroides-G and L. lactis-G, the I760/1003 intensity of L. casei-G significantly
decreased (p < 0.05). The doublet bands located near 830 and 850 cm−1 are used to
monitor the local environment around tyrosine residues and reflect the changes in hydrogen
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bonds [30]. The intensity of I850/830 ranged from 1.00 to 1.07. In Figure 5c, the strength of
I1453/1003 of L. mesenteroides-G had a maximum value (p < 0.05), which might be due to
the decreased hydrophobic interaction caused by the aliphatic residues embedded in the
hydrophobic environment.

3.7. Chemical Force Analysis

The changes in protein structure inevitably affect the interaction between protein
molecules and the interactions have important effects on gelation properties. Usually,
NaCl is used to destroy electrostatic interaction, urea can destroy hydrogen bonds and
hydrophobic interactions, and β-ME is a disulfide bond breaker [31].

Molecular forces in gels induced by fermentation with different strains are shown
in Table 3. The solubility in (S4-S3) was significantly higher than that in the other three
adjacent solvents (p < 0.05), indicating that the major force to hold the gel structure was
hydrophobic interaction. The chemical forces of ELFGs are hydrophobic interaction > ionic
bond > disulfide bond > hydrogen bond. Wang, Shen, Jiang, Song, Liu, and Xie [32] also
reported that hydrophobic interactions and ionic bonds play major roles in maintaining
the protein-polysaccharide gel systems. When the pH value of protein is close to the
isoelectric point of protein, it is easy to denature and aggregate, thus its low solubility leads
to the reduction in intermolecular hydrogen bond formation, which explained the lowest
hydrogen bond in the gel system. As depicted in Table 3, the increased protein solubility
caused the improvement in gel properties. As reported in a previous study, a fine and close
3D structure was formed in the presence of higher protein solubility, and the structure
provides the appropriate space for water [31].

Table 3. Molecular force changes involved in gels.

(mg/mL) L. acidophilus L. casei L. mesenteroides L. lactis

S2–S1
Ionic bond 8.48 ± 0.14 Bb 9.50 ± 0.18 Ba 7.08 ± 0.11 Bd 7.69 ± 0.17 Bc

S3–S2
Hydrogen bonds 3.12 ± 0.03 Cb 3.23 ± 0.04 Da 2.93 ± 0.03 Cc 3.08 ± 0.05 Cb

S4–S3
Hydrophobic
interactions

24.57 ± 1.94 Ab 29.83 ± 1.74 Aa 20.58 ± 1.25 Abc 22.10 ± 1.30 Ac

S5–S4
Disulfide bonds 6.56 ± 0.10 Bb 6.97 ± 0.10 Ca 6.01 ± 0.12 Bc 6.23 ± 0.11 Bc

A–D Indicate significant differences between the same column. a–d Represent the differences between the same line.

3.8. Correlation Analysis

FGs made with strains selected in this study had similar fermentation time and
acidification rate (Figure 1, p < 0.05); the difference in gels could mostly be due to the
production of EPS. Hence, the correlations between EPS yield and gel textural, LF-NMR
spectroscopic, and rheological characteristics under the LAB fermentation were evaluated,
and the correlation diagram was established. This map is represented by the Pearson
correlation coefficient (R2) between −1 and 1, and the color code was used to better
understand the degree of correlation. The yield was assumed to be responsible for different
gelation properties, and was used to establish correlations.

In Figure 6, no correlations between fermentation time or acidification rate and the
gels’ parameters were found. Yield was positively correlated with hardness (0.998), WHC
(0.999), A22 (0.972), G′(0.995), G′′(0.993), η0(0.996), and η50 (0.994), but negatively correlated
with A23 (−0.971) (p < 0.01). Fixed moisture increased with the increase in EPS hydrophilic
groups, which could link with water [33]. EPS enhanced the network structure of FGs,
thereby increasing WHC [34] and gel hardness [35]. EPS interacting with proteins could be
used as active fillers and increase the viscoelastic modulus [33].
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More and more studies have demonstrated the effect of EPS’s macromolecular proper-
ties on gel properties. The high Mw EPS could strengthen WHC and hardness by interacting
with soybean protein [25]. Hassan [36] also found that if the EPS held higher Mw, hardness
was strengthened. Additionally, EPS with high Mw may influence protein aggregation and
network formation [37]. A positive correlation between the viscosity (η0 and η50) and high
Mw EPS production was also reported [4]. G′ increased as the Mw increased [38]. Charged
EPS increased apparent viscosity (η0 and η50) by increasing intramolecular repulsions
within the polymer chains and electrostatic interactions between anionic EPS and soybean
proteins [39]. It was also found that the net negative charge led to stronger hydrophobic
interaction, which contributed to an increase in hardness [40]. The above studies provide
a direction for our future research.

Interestingly, correlations were also detected between gel hardness, viscoelasticity, and
hydrodynamic properties. Gel hardness was positively related to the WHC (0.998) and Xi,
Liu, McClements, and Zou [41] also believed that T22 had a strong negative correlation with
gel viscosity (η0), and the correlation coefficient was −0.958; A22 and G′ showed a strong
positive correlation (0.985); T2 decreased with the increase in hardness. This was also
found in [42], who also said that the correlations above-mentioned between the LF-NMR
spectroscopic characteristics and the rheological properties. T2 was negatively correlated
with G′, which was consistent with the results of [43].

4. Conclusions

Our findings confirmed the key significance of EPS production in the physicochemical
properties, protein conformation, and chemical forces of FGs. The outcomes showed that
hardness, viscoelastic, and apparent viscosity of gels induced with L. casei was the highest.
The Raman spectra and chemical forces showed that conversion of the β-sheet to α-helix
and the increased hydrophobic interaction, resulted in an order, smooth, and uniform 3D
network structure. Yield could be regarded as the main reason, which was responsible for
the enhancement of the gels’ characteristics. The influence of EPS on the gel properties
depends not only on the EPS own macromolecular properties, but also on the ability to
interact with proteins. Overall, the results indicate that EPS producing LAB could be used
wisely to modify the gel properties of soybean proteins and to form novel protein gels.
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