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ABSTRACT

Insomnia, commonly treated with benzodiazepine (BZD) receptor agonists, presents 
challenges due to associated serious side effects such as abuse and dependence. To 
address these concerns, many researches have been conducted to develop and advance 
both pharmacological and non-pharmacological interventions. Dual orexin receptor 
antagonists (DORAs), which include suvorexant, daridorexant and lemborexant, have 
recently been approved by United States Food and Drug Administration (US FDA) as a novel 
pharmacotherapeutic alternative. Unlike BZD receptor agonists that act as positive allosteric 
modulators of the gamma-aminobutyric acid type A subunit alpha 1 receptor, DORAs 
function by binding to both orexin receptor types 1 and 2, and inhibiting the action of the 
wake-promoting orexin neuropeptide. These drugs induce normal sleep without sleep stage 
change, do not impair attention and memory performance, and facilitate easier awakening. 
However, more real-world safety information is needed. Selective orexin-2 receptor 
antagonists (2-SORAs) is under clinical developments. This review provides an overview 
of the mechanism of action in relation to insomnia, pharmacokinetics, efficacy and safety 
information of DORAs and SORA. According to insomnia management guidelines, the first-
line treatment for chronic insomnia is cognitive behavioral therapy for insomnia (CBT-I). 
Although it has proven effective in improving sleep-related quality of life, it has several 
restrictions limitations due to a face-to-face format. Recently, prescription digital therapy 
such as Somryst® was approved by US FDA. Somryst®, a smartphone app-based CBT-I, 
demonstrated meaningful responses in patients. However, digital limitations may impact 
scalability. Overall, these developments offer promising alternatives for insomnia treatment, 
emphasizing safety, efficacy, and accessibility.

Keywords: Insomnia; Dual Orexin Receptor Antagonists; Cognitive Behavioral Therapy, 
Digital Health

INTRODUCTION

Good quality sleep significantly influences various aspects of human health, including 
nerves, cognition, immunity, and proper growth [1]. The 21st century has ushered in 
profound changes in the lifestyles of contemporary individuals, affecting sleep quality 
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and patterns. The proliferation and overuse of personal devices increase screen exposure 
particularly in the evening and right before bedtime. Concurrently, the rise of online 
communication through social media has been associated with heightened anxiety and 
stress before sleep. Decreased physical activity, extended daylight hours, and diminished 
exposure to natural light can also lead to sleep disorders [2]. In a 2022 Gallup survey, only 
32% of Americans reported excellent or very good sleep, 35% answered good sleep, and 
33% indicated fair or poor sleep [3]. Trouble falling asleep were reported by 14.5% of United 
States (US) adults in 2020 [3].

Insomnia is associated with serious distress, irrational thoughts, and bedtime rituals 
[4]. Chronic sleep deprivation leads to a variety of detrimental health diseases, such 
as cardiovascular diseases, diabetes, impaired mood and cognitive function including 
Alzheimer’s disease [5]. Sleep disorders are also risk factors for mental disorders [6,7]. 
Insomnia is also recognized as a major social costly public health issue [8]. One study found 
that individuals with moderate and severe insomnia had 75% larger mean total healthcare 
costs and 72% larger mean lost productivity costs [9].

Despite its significance, insomnia remains inadequately treated, and the available 
treatments for insomnia are limited. There is a growing need for development and updating 
of new drugs to address insomnia. Therefore, this paper will provide an overview of the 
pharmacokinetic information, efficacy, and side effects of recent approved therapies and 
upcoming new drug for insomnia treatment, especially, orexin receptor antagonists. In 
addition, prescription digital therapy will be introduced briefly.

LIMITATIONS OF TRADITIONALLY USED AND MARKETED 
INSOMNIA DRUGS
Benzodiazepine (BZD) receptor agonists are the most commonly used mediations for 
insomnia, encompassing both BZDs and non-BZD receptor agonists such as Z-drugs 
(zopiclone, zolpidem, zaleplon). Although BZDs and Z-drugs have different chemical 
structures, they share the same binding site and, consequently, exhibit the same 
pharmacodynamic action as positive allosteric modulators of gamma-aminobutyric acid type 
A (GABA-A) subunit alpha 1 receptor. This action induces sleep by causing a broad inhibition 
of central nervous system (CNS) activity [10].

Z-drugs are the most wildly used medications for insomnia. Although their drug response 
is very effective, concerns are increasing due to the side effects. The use of Z-drugs 
approximately doubles the risk of being involved in a motor vehicle accident [11,12]. These 
drugs can lead to dependence [13] in addition to next-day cognitive, memory, psychomotor 
and balance impairments [14]. And thus, the US Food and Drug Administration (FDA) 
has issued warnings regarding the use of Z-drugs, taking into consideration the increased 
risk of complex sleep behaviors like sleepwalking and sleep driving in conditions such as 
parasomnias and sleep-related disorders [15].

Among various BZDs, 5—quazepam, estazolam, flurazepam, triazolam, and temazepam—
have been approved and prescribed for insomnia. However, quazepam and estazolam are 
considered unsuitable for treating insomnia due to their long elimination half-life exceeding 
15 hours [16,17]. BZDs have similar but slightly more serious side effects compared with 

2

New therapies for insomnia

https://doi.org/10.12793/tcp.2024.32.e5https://tcpharm.org



Z-drugs, including next-day hangover effects, cognitive or memory impairment, the 
rapid development of tolerance, rebound insomnia upon discontinuation, increased risk 
of car accidents or falls, and a substantial potential for abuse and dependence [18,19]. A 
considerable proportion of individuals who are prescribed BZDs becomes chronic users. 
Furthermore, BZDs are implicated in approximately 5–10% of car accidents, although the rate 
in individual studies varies from 1% to 65% [11].

RECENTLY MARKETED INSOMNIA DRUGS

Orexin: new target for insomnia treatment
Orexin, also known as hypocretin, is a pair of excitatory neuropeptide hormones with 
approximately 50% sequence homology [20], named hypocretin 1 and 2 [21], or orexin A and 
B, respectively [22]. Orexin A and orexin B are exclusively produced in lateral hypothalamic 
neurons [20] and are released by neurons in the tuberal region of the hypothalamus that also 
release glutamate [23,24]. Orexin exerts its physiological effects in the brain by activating 
2 G-protein-coupled receptors known as orexin receptor type 1 (OX1R) and type 2 (OX2R). 
Orexin neurons synthesize prepro-orexin, which is processed to yield orexin A and orexin B. 
Orexin B exhibits 5 to 10 times higher selectivity for OX2R than for OX1R, whereas orexin A 
shows similar affinity for both receptors.

OX1R exhibits approximately 2–3 times lower affinity for orexin B compared to orexin A, 
while OX2R binds to both orexin A and orexin B with similar affinity [22,25]. Orexin neurons 
co-release glutamate and dynorphin, with glutamate binding to glutamate receptors and 
dynorphin binding to kappa opioid receptors and mu opioid receptors. Orexin neurons are 
involved in wakefulness by expressing GABA and galanin. Furthermore, the ventrolateral 
preoptic nucleus (VLPO) in the hypothalamus inhibits orexin neurons, which in turn 
indirectly inhibits the VLPO [26]. Secondly, orexin neurons influence neurons in the 
tuberomammillary nucleus (TMN) that promote wakefulness by co-releasing histamine 
and GABA. Orexin neurons both directly stimulate TMN neurons and indirectly release 
inhibition. Lastly, orexin neurons stimulate neurons in the locus coeruleus (LC) to trigger 
norepinephrine release and promote arousal. The effects on the LC are primarily mediated 
by OX1R, while the effects on the VLPO and TMN by orexin neurons are mainly mediated 
by OX2R [27]. In the regulation of sleep/wake control, orexin neurons receive projections 
from various brain regions, including the hypothalamus, basal forebrain, limbic system, and 
brainstem [28,29]. In this manner, the release of neurotransmitters such as acetylcholine, 
histamine, norepinephrine, and serotonin by the aforementioned wake-promoting centers 
helps to stabilize the state of arousal [26].

Introduction of dual orexin receptor antagonists (DORAs)
DORAs, which work by binding to both OX1R and OX2R, inhibit the activity of the wake-
promoting orexin neuropeptide (Fig. 1), offering an alternative to the traditionally employed 
positive allosteric GABA-A receptor modulators. DORAs exhibit a distinct action mechanism 
from GABA modulators, leading to differences in efficacy and side effects. Firstly, whereas 
GABA modulators alter both sleep stages and the brain’s activity network during specific 
sleep stages, DORAs induce somnolence consistent with normal sleep [30]. The possible 
explanation for this is that, while GABA modulators alter cortical activity, DORAs inhibit 
the activity of orexin peptides. Orexin signaling, characterized by slower neuropeptide 
release, dispersion, and clearance compared to fast neurotransmitters, suggests a role as a 
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wakefulness regulator rather than a carrier of rapid information in the CNS. Secondly, unlike 
GABA modulators, DORAs do not impair attention and memory performance in rats and 
monkeys [31] possibly due to the absence of a direct synaptic effect of orexin antagonists 
on fast neurotransmitter release. However, this effect needs confirmation in long-term and 
large cohort studies. Thirdly, DORAs facilitate easier awakenings than GABA modulators and 
cause less functional impairment in locomotor tasks in various animal [32,33]. The auditory 
discrimination system, crucial for arousability by external stimuli, operates downstream and 
is independent on orexin signaling.

Now, suvorexant, daridorexant and lemborenxant have been approved by US FDA and will be 
introduced in this article.
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Figure 1. Mechanism of action of orexin antagonists. Orexin A and B act on the orexin receptor. Orexin B exhibits 5 to 10 times higher selectivity for OX2R than for 
OX1R, whereas orexin A shows similar affinity for both receptors. Orexin receptors are diversely located in the central nervous system, and LC mainly expresses 
OX1R, TMN and paraventricular nucleus exclusively express OX2R, while DR, basal forebrain, and cortical express both receptors. This orexin regulates wake/
sleep transition by activating a variety of neurons and putative interneurons. Cholinergic neurons that are active during wake/REM sleep have the potential 
to inhibit NREM, while REM-on cholinergic neurons have the potential to induce REM sleep. In addition, serotonergic and noradrenergic neurons interact with 
REM-on neurons to activate interbrain reticular formation. Gamma-aminobutyric acid-ergic interneurons inhibit cholinergic neurons in the PPT and serotonergic 
neurons in the raphe. In addition, orexin receptor antagonists are listed. Dual orexin receptor antagonists bind to OX1R and OX2R is suggested to contribute to 
the suppression of REM sleep. Selective OX2R antagonists has been proposed to facilitate wakefulness and inhibit NREM. Meanwhile, selective OX1R antagonists 
is not directly indicated for sleep. 
OX1R, orexin receptor type 1; OX2R, orexin receptor type 2; LC, locus coeruleus; TMN, tuberomammillary nucleus; DR, dorsal raphe; REM, rapid eye movement; 
NREM, non-rapid eye movement; PPT, pedunculopontine tegmental nucleus; 5HT, serotonergic neurons; Ach, cholinergic neurons; Ach/R, REM-on cholinergic 
neurons; Ach/W, Wake/REM-on cholinergic neurons; GA, gamma-aminobutyric acid-ergic neurons; His, histaminergic neurons; LDT, laterodorsal tegmental 
nucleus; NA, noradrenergic neurons.



Suvorexant
Suvorexant, the first DORA, gained approval from the US FDA in 2014 for the treatment of 
primary insomnia. Receptor-ligand structures showed that suvorexant reversibly blocks the 
binding of orexin A and orexin B at the orthosteric site of both OX1R and OX2R resulting in 
the inhibition of the activation of OX1R and OX2R, leading to the suppression of wakefulness 
[34]. Suvorexant exhibits binding affinities of 0.55 nM and 0.35 nM for human OX1R and 
OX2R, showing high selectivity for OX1R and OX2R [35]. Preclinical studies in various 
species demonstrated reduced wakefulness during active phases and increased rapid eye 
movement (REM) sleep and non-rapid eye movement (NREM) sleep upon oral administration 
of suvorexant [25].

1) Pharmacokinetics
Pharmacokinetic profile of DORAs is listed and compared in Table 1.

The absolute bioavailability of suvorexant is 62%. The median time to reach the maximum 
concentration (Tmax) of suvorexant was approximately 2 hours [36]. Accumulation ratios for 
the area under the concentration-time curve (AUC) and maximum observed concentration 
(Cmax) were increased in a less than dose-proportional manner over the range of 10–80 mg 
due to decreased absorption [37]. When administered with high-fat meals, Tmax was delayed 
by 1.5 hours, but there was no clinically significant change in AUC and Cmax. Protein binding 
exceeds 99%, primarily to human serum albumin and α1-acid glycoprotein [36].

Metabolism primarily occurs in the liver via cytochrome P450 3A (CYP3A), with minimal 
contribution from CYP2C19. A hydroxy-suvorexant, a major circulating metabolite, is 
pharmacologically inactive. Elimination half-life is 12 hours [36]. Suvorexant is eliminated 
primarily as metabolites with less than 1% of dose recovered in feces and urine as suvorexant, 
and 66% in feces and 23% in urine [36]. Ketoconazole, a strong CYP3A inhibitor, increased 
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Table 1. Orexin receptor antagonists for insomnia
Characteristics Drugs Major 

target 
receptors

Inhibition 
constant

Recom-
mended 

dose (mg)

Tmax 
(hr)

Onset 
(min)

Vd (L) CL/F 
(L/h)

Active 
metabolites

Metabolism T1/2 
(hr)

Duration 
of action 

(hr)

Indication Reference

Marketed drugs Suvorexant OX1R Ki: 0.55 nM 
(OX1R)

15–20 
(dose 

reduction 
with 

moderate 
CYP3A 

inhibitor)

2 30 49 N/A - CYP3A 12 7 Sleep 
onset and 

maintenance

[34-36]

OX2R 0.35 nM 
(OX2R)

CYP2C19

Daridorexant OX1R Kb: 0.52 nM 
(OX1R)

25–50 1–2 30 31 5 - CYP3A4 8 7 Sleep 
onset and 

maintenance

[47,94,95]

OX2R 0.78 nM 
(OX2R)

Lemborexant OX1R Ki: 4.8 nM 
(OX1R)

5–10 1–3 30 1,970 22.7 M4 CYP3A 17–19 7 Sleep 
onset and 

maintenance

[67,69]

OX2R 
mainly

0.61 nM 
(OX2R)

M9 CYP2B6
M10 (major 
circulating 

metabolite)
Drugs in 
development

Vornorexant OX1R N/A N/A 2.5–3 60 N/A N/A M3 N/A 1.32–
3.25

N/A N/A until now [76]
OX2R

Seltorexant OX2R 
selective

Ki: 8.0 nM N/A 0.5–
1.5

N/A N/A N/A - CYP3A4 2–3 N/A N/A, target 
indication:  
Sleep onset

[81,96]

Tmax, time to peak drug concentration; Vd, volume of distribution; CL/F, oral clearance; T1/2, elimination half-life; N/A, not applicable; OX1R, orexin receptor 
type 1; OX2R, orexin receptor type 2; Ki, inhibition constant; CYP3A, cytochrome P450 3A.



suvorexant AUC by 2.79-fold and diltiazem, moderate CYP3A inhibitors, increased AUC by 
2.05-fold [38]. Consequently, co-administration with strong or moderate CYP3A4 inhibitors 
is not recommended [36,38]. Suvorexant is a weak inhibitor of CYP3A and the intestinal 
P-glycoprotein (P-gp) following consecutive, multiple dose administration. Due to P-gp 
inhibition, co-administration of suvorexant and digoxin resulted in a slight increase in 
digoxin levels. When co-administering suvorexant and digoxin, clinicians should monitor the 
digoxin concentrations [36].

Age, race, and renal impairment do not appear to have a clinically significant effect on 
suvorexant pharmacokinetics [39]. In individuals with moderate hepatic impairment (Child-
Pugh category 7 to 9), the terminal half-life increased from 15 hours in healthy subjects to 19 
hours [39]. It has not been studied in patients with severe hepatic impairment, and its use is 
not recommended in these patients.

The AUC and Cmax in female are increased by 17% and 9% compared to male following 
administration of suvorexant 40 mg [36]. Oral clearance is inversely related body mass index 
(BMI). In obese female (BMI > 30 kg/m2), the AUC and Cmax increased by 31% and 17%, 
respectively, compared to nonobese female (BMI < 25 kg/m2) [36].

2) Clinical efficacy in insomnia
In early phase II studies, suvorexant showed dose-related efficacy as measured by the latency 
to persistent sleep (LPS) and wake after sleep onset (WASO) in a dose range of 10–80 mg over 
two 4-week periods [40]. In 3 phase III studies, in an administered dose range of 15–40 mg, 
suvorexant improved the LPS as objectively measured by polysomnography, and self-reported 
total sleep time (sTST), and subjective sleep quality, as well as the Insomnia Severity Index 
score during the 3 months [41,42].

3) Safety
The most common adverse events (AEs) (more than 2%) were somnolence, dizziness, 
headache, and nightmare [41,42]. Female are more likely to experience AEs than males at 
similar dosages; however, the AE profile was similar between the male and female groups [43].

In the assessment of next-morning residual effects of suvorexant on driving performance, there was 
no statistically significant change [44]. However, 5 females out of a total 52 subjects (4 non-elderly 
on suvorexant; one elderly on placebo) prematurely stopped their driving tests due to somnolence, 
suggesting clinically meaningful impaired driving performance. Patients should be advised not to 
drive and engage in other activities requiring full mental alertness until fully awake [44].

Long-term use of suvorexant for chronic insomnia did not result in physical dependence 
or withdrawal syndrome after one year of chronic treatment cessation [42]. No evidence of 
rebound insomnia was observed following treatment discontinuation at Month 3, Month 6 
or Month 12 [42]. In a study to evaluate the abuse potential in recreational polydrug users, 
suvorexant (40, 80 and 150 mg) produced similar effects as zolpidem (15 and 30 mg) on 
subjective ratings of drug liking [45]. And thus, as with other hypnotics, care should be taken 
with suvorexant the patients with a history of addiction or abuse due to risk of misuse or abuse.

Daridorexant
1) Pharmacokinetics
According to FDA labels, Bioavailability of daridorexant is 62%. Its plasma exposure is dose-
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proportional at the therapeutic doses [46]. The pharmacokinetic profiles of daridorexant are 
similar following a single dose and multiple doses, with no clinically relevant accumulation 
[47]. The average Tmax of daridorexant was approximately 1.0 hour, indicating rapid 
absorption [47]. In healthy subjects, a high-fat and high-calorie meal delayed the Tmax by 1.3 
hours and decreased the Cmax by 16%, but did not affect the AUC [48].

Daridorexant is highly bound to plasma proteins (99.7%) and has a blood to plasma ratio 
of 0.64. Daridorexant undergoes extensive metabolism and is primarily metabolized by 
CYP3A4 (89%). Other CYP enzymes individually contribute to less than 3% of metabolic 
clearance of daridorexant. The major human metabolites of daridorexant do not contribute 
to its pharmacodynamic effect [49]. The primary route of daridorexant excretion is via feces 
(approximately 57%), followed by urine (approximately 28%) primarily as metabolites with 
trace amounts of parent drug found [49]. The terminal elimination half-life of daridorexant 
is approximately 8 hours [47]. This represents the shortest half-life among available DORAs, 
and whether this contributes to a reduced risk of next-day functional impairment remains to 
be elucidated.

The pharmacokinetics of daridorexant are not affected to a clinically significant extent by sex, 
race, body size, mild-to-severe kidney impairment (not on dialysis) or mild liver impairment 
[50-52]. But following a 25 mg dose of daridorexant in patients with moderate liver impairment 
(Child-Pugh score 7–9), there was an increase of 1.6- and 2.1-fold in the exposure to unbound 
daridorexant and half-life, compared with healthy subjects [53]. The pharmacokinetics of 
daridorexant have not been studied in patients with severe liver impairment [53].

2) Clinical efficacy in insomnia
The maximum pharmacodynamic effects were observed approximately 2 hours post-
administration, returning to baseline levels within 4–10 hours post-dose [47]. In subjects 
with insomnia disorder at doses of 5, 10, 25, and 50 mg, daridorexant demonstrated a 
substantial and dose-dependent improvement in objectively evaluated sleep initiation and 
maintenance compared to placebo, without dosage-limiting safety concerns [54]. In 2 phase 
III studies, daridorexant 50 mg significantly reduced WASO and LPS from baseline, and 
improved sTST and Insomnia Daytime Symptoms and Impacts Questionnaire compared to 
placebo at Month 1 and 3 [55].

3) Safety
In 2 phase III studies, daridorexant was generally well tolerated in patients with insomnia 
disorder with minimal reported side effects [55]. The overall incidence of AEs was similar 
across all treatment groups (38% with daridorexant 50 mg, 38% with daridorexant 25 mg and 
34% with placebo), showing no evidence of dose dependency. The most common AEs (more 
than 2%) were nasopharyngitis, headache, somnolence, fatigue, etc., and they were mild in 
severity. Despite the low incidence, suicidal ideation was reported in one patient receiving 
daridorexant 25 mg and one receiving daridorexant 10 mg; both patients had pre-existing 
conditions (paranoid schizophrenia and depression, respectively). Cataplexy-like symptoms 
or complex sleep behaviors were not reported [55].

In the assessment of next-morning residual effects of daridorexant on driving performance, 
conducted 9 hours after first dose, driving performance was impaired [56]; patients should 
be cautioned about driving and engaging in other hazardous activities after administration of 
daridorexant.
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The safety and tolerability of daridorexant in older adults were comparable to those in 
younger adults [50]; thus, no dose reduction is recommended in elderly patients.

In the 12-month extension study, there were no new safety or tolerability concerns, nor was there 
evidence of dose dependency in the frequency of AEs [57]. This supports relatively safe chronic use 
in chronic insomnia while The European guideline for the treatment of insomnia recommends 
BZDs and Z-drugs for the short-term (≤ 4 weeks) treatment of insomnia [58]. No evidence of 
rebound insomnia was observed during the run-out periods or the extension study [55]. Thus, 
daridorexant can be discontinued without down-titration. Daridorexant did not produce signs 
of withdrawal or dependence upon discontinuation in animal studies and clinical trials [59]. In a 
human abuse potential study involving recreational sedative drug users, daridorexant 50 mg, 100 
mg and 150 mg exhibited greater drug-liking effects than placebo in a dose-dependent manner 
[60]. Patients with a history of substance abuse should be closely monitored.

Lemborexant
Lemborexant received approval for the treatment of adult insomnia from the US FDA in 2019 
and from Pharmaceuticals and Medical Devices Agency in Japan in 2020 [61].

Similar to suvorexant, lemborexant is a reversible competitive antagonist binding to both 
OX1R and OX2R; however, lemborexant exhibits higher affinity or activity for OX2R than 
OX1R [62]. OX1R inhibits the onset of REM sleep, while the OX2R predominantly plays a 
role in suppressing the initiation of NREM sleep and also contributes to some extent to the 
regulation of REM sleep [63]. Therefore, lemborexant increases NREM sleep compared to 
zolpidem and placebo [64]. Lemborexant diminishes wakefulness by modulating orexin-
mediated wake drive.

Unlike other orexin receptor antagonists with slower dissociation kinetics, lemborexant 
rapidly binds and dissociates from orexin receptors [62]. These characteristics suggest 
a shorter action duration, i.e., promoting sleep onset and reducing the risk of daytime 
sleepiness [65].

1) Pharmacokinetics
The bioavailability of lemborexant is at least 87% [66]. The Tmax of lemborexant is 1 to 3 
hours. The administration of high-fat and high-calorie meal has been found to delay the 
Tmax by 2 hours. The distribution volume of Lemborexant is extensive, measuring 1,970 
L. Although Lemborexant is bound to approximately 94% of proteins in vitro, the specific 
protein to which it binds in plasma has not been identified [67].

Lemborexant undergoes extensive metabolism primarily by CYP3A4 and, to a lesser extent, 
by CYP3A5 [68]. Metabolism via CYP3A yields M4, M9, and M10, with the predominant 
circulating metabolite being M10. M10 is pharmacologically active, binding to orexin 
receptors with comparable affinity. However, its contributions to the sleep-promoting effects 
are likely low due to limited brain penetration by P-gp. M10 has the potential to induce 
CYP3A and CYP2B6, weakly inhibit CYP3A [69].

Following oral administration, 57.4% of the dose is recovered in the feces, while 29.1% is found in 
the urine. Less than 1% of the recovered dose in the urine remains unchanged [69]. Lemborexant 
has a long effective half-life of 17–19 hours; however, in the earlier elimination phase, it appears to 
be more rapidly cleared than suvorexant [69], contributing reduced next-day effects.

8

New therapies for insomnia

https://doi.org/10.12793/tcp.2024.32.e5https://tcpharm.org



The age, sex, race/ethnicity, BMI, or renal impairment didn’t have the clinically significant effects 
on the pharmacokinetics of lemborexant [66]. Lemborexant exposure was increased in mild and 
moderate hepatic impairment supporting recommendation of dose adjustment. It has not been 
studied in the patients with severe hepatic impairment, so it’s use is not recommended.

2) Clinical efficacy in insomnia
In a recent meta-analysis comparing various insomnia treatments, including suvorexant, 
zolpidem, zopiclone, eszopiclone, trazodone, flunitrazepam, estazolam, triazolam, 
brotizolam, temazepam, and ramelteon, lemborexant emerged as the most effective 
treatment in 3 out of 4 objectively measured outcomes assessed by polysomnography, such 
as TST, LPS, and sleep efficiency at 4 weeks [70]. Lemborexant exhibited similar efficacy 
to suvorexant in subjective measurements of WASO, sTST, and sleep onset latency (SOL) 
at 4 weeks. These demonstrating significant advantages in sleep onset and maintenance. 
In addition, the sustained effects of lemborexant over a period of 12 months suggest that 
lemborexant may provide long-term benefits to subjects with chronic insomnia [71].

3) Safety
The safety profile of lemborexant, regarding serous AEs and withdrawals due to AEs, was 
broadly similar to that of other insomnia drugs [70]. Lemborexant did not show significant 
morning residual effects or a meaningful association with next-day functional impairment 
and it posed a significantly lower risk of dizziness and postural discomfort compared to BZD 
receptor agonists [70,72]. Due to the potential risk of impaired driving ability the following 
day, individuals sensitive to lemborexant effects should be prescribed lower doses [72].

Lemborexant did not induce withdrawal signs or symptoms upon drug discontinuation 
[73], suggesting that lemborexant does not lead to physical dependence. In a human abuse 
potential study conducted in recreational sedative abusers, lemborexant 10 mg, 20 mg, and 
30 mg produced responses such as drug liking, take drug again that were statistically similar 
to those produced by 30 mg zolpidem and 40 suvorexant [74]. Therefore, individuals with a 
history of abuse or addiction to alcohol or other drugs should be carefully monitored.

PIPELINE DRUGS OF OREXIN RECEPTOR ANTAGONISTS 
UNDER CLINICAL DEVELOPMENT FOR INSOMNIA IN 2023
Several drugs for insomnia are currently under clinical development. Investigational drugs by 
category are as follows (clinicaltrials.gov).

• �GABAA receptor positive allosteric modulators: Lorediplon (GF-015535-00), Zuranolone 
(SAGE-217), EVT-201

• DORAs: Vornorexant (ORN-0829, TS-142)
• �Selective OX2 receptor antagonist (2-SORA): Seltorexant (MIN-202, JNJ,42847922, JNJ-922)
• Melatonin receptor agonists: Piromelatine (Neu-P11)
• Nociceptin receptor agonists: Sunobinop (IMB-115, IT-1315, S-117957, V-117957)

DORAs and 2-SORAs will be introduced below.

DORAs under clinical development
Vornorexant (ORN-0829, TS-142)
Vornorexant, the investigational DORA, known by the development code names ORN-0829 or 
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TS-142, is under development by Taisho Pharmaceutical Co. for the treatment of insomnia and 
sleep apnea [59,75]. Designed with a short half-life and duration of action to reduce next-day 
effects, such as residual sedation [75], vornorexant is currently undergoing phase III trials 
(clinicaltrials.gov).

1) Pharmacokinetics
The vornorexant AUC increased proportionally with dose [76]. No cumulative effect was 
observed with repeated administration of vornorexant at doses of 10–30 mg showing almost 
similar concentration-time profiles on Day 1 and Day 7. Vornorexant was rapidly absorbed 
with a Tmax of 0.5–3 hours. In food intake, Tmax was delayed to 1.5–4 hours although no 
effects on Cmax and AUC of vornorexant.

Vornorexant was extensively metabolized into various metabolites [76]. However, the 
unchanged form was predominant in plasma followed by M3 (less than one fifth of 
vornorexant concentration levels) with a dehydrogenated oxazinane ring and then M1 (less 
than one tenth of vornorexant) with a hydroxylated methylphenyl moiety. Although Tosho Co. 
didn’t publish, they suggested that M1 and M3 is active but less potent antagonistic activity 
against OX1 and OX2 compared to vornorexant.

The elimination half-life of vornorexant ranged from 1.32 to 3.25 hours, indicating rapid 
elimination and possibility of reduced next-day effects [76].

There was no significant difference in vornorexant exposure between non-elderly and elderly 
individuals [76].

2) Clinical efficacy in insomnia
In a phase II clinical trials in insomnia patients administered dose of 5 mg, 10 mg and 30 mg, 
vornorexant improved LPS, WASO, and self-reported measures of sleep onset, awakening, 
and sleep quality [77].

3) Safety
In phase I and phase II trials, all AEs were mild or moderate and none were serious [76,77]. 
Until now, suicide attempts or suicidal ideation were not observed [76,77]. In a phase II trial, in 
order to evaluate the risk of next-day residual effects, Karolinska Sleepiness Scale (KSS), Digit 
Symbol Substitution Test (DSST) were assessed [77]. There was no significant change in KSS or 
DSST scores between vornorexant and placebo, suggesting that the occurrence rate of next-day 
residual effects may be low when vornorexant is administered at a dose range of 5–30 mg [77].

Introduction of 2-SORAs
SORA, a selective antagonist of human orexin receptors, exerts its effects by selectively 
binding to either OX1R or OX2R, in contrast to a comprehensive DORA that inhibits both 
receptors. The activation of OX2R has been proposed to facilitate wakefulness and inhibit 
NREM, whereas the activation of both receptors is suggested to contribute to the suppression 
of REM sleep [78]. Therefore, 2-SORA can offer a more tailored sleep profile by preserving 
the normal sleep architecture [79]. Meanwhile, 1-SORAs, which is not directly associated with 
sleep, is in development for treatment of addictive behavior and stress-related disturbances 
[80]. Therefore, it will not be covered in this article.
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JNJ-48816274 and seltorexant (JNJ-42847922) were developed as 2-SORA by Janssen 
Pharmaceuticals. While JNJ-48816274 is no longer being studied (clinicaltrials.gov), 
seltorexant is under development and has clinical data, which will be introduced here.

Seltorexant (JNJ-42847922/MIN-202)
Seltorexant is a selective, high-affinity OX2R antagonist, exhibiting a 100-fold greater selectivity 
compared to OX1R, with negligible affinity for other receptors, transporters, or ion channels [79].

1) Preclinical characteristics
Following oral administration of seltorexant in mice, rapid occupancy and clearance of OX2R 
binding sites in the brain were observed. This resulted in a reduction of SOL and an extension 
of NREM sleep duration while minimizing its impact on REM sleep. The sleep-promoting 
effects persisted upon repeated administration, and after discontinuation, returned 
to baseline levels. Notably, this compound showed no effects in OX2R knockout mice, 
confirming the specificity of its mediation in sleep response through OX2R [79].

2) Pharmacokinetics
Seltorexant exhibits rapid absorption with a Tmax ranged from 0.5 to 1.5 hours, and a short 
duration characterized by a half-life of 2 to 3 hours [81]. This profile suggests it is ideal for 
sleep induction. Seltorexant exposure at doses ranging from 10 mg to 80 mg showed an 
increase that was less than dose-proportional [79]. It is known to be metabolized by the 
CYP3A4 and shows moderate CYP inhibition.

In vivo positron emission tomography imaging in animals revealed that [18F] Seltorexant has 
demonstrated exceptional binding specificity for OX2R, along with suitable blood-brain 
barrier penetration, and brain uptake [82]. Pretreatment with competitive P-gp inhibitor 
cyclosporin increased brain uptake, suggesting a potential interaction with P-gp.

3) Clinical efficacy for insomnia
Seltorexant is currently undergoing phase III clinical trials for treatment for major depressive 
disorder and phase II trials for insomnia treatment. Here, clinical efficacy for only insomnia 
will be covered.

In a dose-ranging phase II study with dose ranging from 5 mg to 20 mg, seltorexant resulted in 
a prolonged TST, and shorter LPS and WASO compared to placebo [83]. The study also reported 
a persistent reduction in the time to REM onset and an increase in the total duration of REM 
sleep, confirming seltorexant as a promising candidate for the treatment of insomnia.

4) Safety
In a phase III trials, headaches, somnolence, nausea were the most common AEs [84]. In a 
meta-analysis, seltorexant had fewer AEs than BZDs and Z-drugs [85]. Seltorexant appeared 
to be a well-tolerated drug, but data on other important outcomes including AE were limited, 
making firm conclusions impossible.
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EMERGING PRESCRIPTION DIGITAL COGNITIVE 
BEHAVIORAL THERAPY
According to the most recent guidelines, cognitive behavioral therapy for insomnia (CBT-I) 
is the first-line treatment for chronic insomnia [86,87]. The limitations of pharmacological 
treatments for insomnia, such as the potential for dependency and resistance with long-
term use, support the use of medications only for short-term relief. Not only has CBT-I 
shown beneficial effects on insomnia symptoms, but it has also proven effective in reducing 
depression, anxiety, chronic pain, and improving sleep-related quality of life [88]. CBT-I has 
traditionally been delivered in a face-to-face format by trained therapists, which, however, 
comes with drawbacks. Cases exist where patients may not fully grasp the treatment or face 
geographical constraints. a need that has become particularly acute due to many restrictions in 
face-to-face healthcare interactions mandated as a result of the COVID-19 pandemic. Moreover, 
the limited number of trained experts can result in long waiting times. Despite robust empirical 
evidence, CBT-I has not been widely adopted in clinical settings [89]. With recent developments 
in technology, an innovative solution has been developed to deliver digital CBT-I. Until now, as 
digital CBT-I, Somryst® and NightWare™ are approved by US FDA. Unlike CBT-I, NightWare™ 
was approved for sleep disturbance for psychiatric condition such as post-traumatic stress 
disorder. By utilizing a biosensor within a smartwatch, the NightWare™ system can incorporate 
a sophisticated app that vibrates the user’s arm when it detects they are having a nightmare 
[90]. Due to lack of space, Somryst® will be briefly introduced.

Somryst®

Somryst®, which received approval in April 2019 is the first approved prescription digital 
therapeutic for chronic insomnia. Developed by Pear Therapeutics, Inc., Somryst® follows the 
approval of reSET® and reSET-O® in 2023. It is a mobile application designed for smartphone or 
tablet, offering CBT-I for adults aged 22 and older with chronic insomnia. Somryst® incorporates 
3 key therapeutic components to address the symptoms of chronic insomnia: tailored sleep 
restriction and consolidation, stimulus control, and personalized cognitive restructuring. These 
components align with standard CBT-I provided in a face-to-face context [91].

Its effectiveness in treating chronic insomnia is reported in 2 clinical studies [92,93]. 
After treatment with Somryst®, over 40% of patients no longer met the criteria for chronic 
insomnia, and more than 60% showed clinically meaningful responses to insomnia without 
AE. Additionally, the therapy offers advantages such as flexible treatment timing, overcoming 
geographical and logistical barriers to treatment access. It excels in providing treatment in 
individual environments, particularly crucial for conditions prone to stigmatization, such 
as substance use disorder, suicidal impulses, or depression. The therapy’s personalization 
based on observed patient responses, outcomes, progress, or other metrics is advantageous. 
Somryst® allows treatment adjustments as needed, and clinicians can review key progress 
parameters before face-to-face or virtual meetings with patients.

Somryst® uses sleep restriction, a technic that limits the time a patient spends in bed to 
generally match the amount of time they sleep. However, this treatment approach can 
increase the risks of excessive daytime sleepiness for some patients whose pathophysiology 
may be worsened by sleep restriction [93]. Therefore, Somryst® should not be used in 
following conditions: any disorder exacerbated by sleep restriction (e.g., bipolar disorder, 
schizophrenia, other psychotic spectrum disorders), untreated obstructive sleep apnea, 
parasomnias, epilepsy, individuals at high risk of falls, pregnant female, individuals with any 
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other unstable or degenerative illness judged to be worsened by sleep restriction delivered as 
part of CBT-I [91].

CONCLUSIONS

When compared to GABA modulators, the beneficial effects of DORAs, a newly approved 
class, on the onset and maintenance of sleep have been demonstrated from data on 
pharmacokinetics, efficacy and safety. In addition, it was proved to lower risk of next-
morning sleepiness, cognitive function, and rebound insomnia.

A 2-SORA including seltorexant, is under clinical developments. Seltorexant selectively binds 
to OX2R, providing advantages in residual effects and associated side effects due to its rapid 
absorption and short elimination profile [85] although it needs to be confirmed in phase III.

US FDA approved digital therapy like Somryst® have demonstrated significant improvements 
in insomnia, mental health, and cost-effectiveness, making them valuable alternatives 
with benefits such as sustained efficacy and reduced risk of adverse effects in the evolving 
landscape of insomnia therapeutics.
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