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A conditional GAN‑based approach 
for enhancing transfer learning 
performance in few‑shot HCR tasks
Nagwa Elaraby*, Sherif Barakat & Amira Rezk

Supervised learning with the restriction of a few existing training samples is called Few-Shot 
Learning. FSL is a subarea that puts deep learning performance in a gap, as building robust deep 
networks requires big training data. Using transfer learning in FSL tasks is an acceptable way to 
avoid the challenge of building new deep models from scratch. Transfer learning methodology 
considers borrowing the architecture and parameters of a previously trained model on a large-scale 
dataset and fine-tuning it for low-data target tasks. But practically, fine-tuning pretrained models 
in target FSL tasks suffers from overfitting. The few existing samples are not enough to correctly 
adjust the pretrained model’s parameters to provide the best fit for the target task. In this study, we 
consider mitigating the overfitting problem when applying transfer learning in few-shot Handwritten 
Character Recognition (HCR) tasks. A data augmentation approach based on Conditional Generative 
Adversarial Networks is introduced. CGAN is a generative model that can create artificial instances 
that appear more real and indistinguishable from the original samples. CGAN helps generate extra 
samples that hold the possible variations of human handwriting instead of applying traditional 
image transformations. These transformations are low-level, data-independent operations, and 
only produce augmented samples with limited diversity. The introduced approach was evaluated in 
fine-tuning the three pretrained models: AlexNet, VGG-16, and GoogleNet. The results show that the 
samples generated by CGAN can enhance transfer learning performance in few-shot HCR tasks. This 
is by achieving model fine-tuning with fewer epochs and by increasing the model’s F1− score and 
decreasing the Generalization Error (E

test
).

Handwritten Character Recognition (HCR) is one of the foremost vital fields in the computer vision domain. It 
is concerned with building machine learning models that can best recognize and distinguish written characters 
by humans. The necessity for such models has increased in most banking, postal, medical, and teaching services. 
Resorting to deep learning by most researchers in building HCR models is an optimal direction because of its 
unprecedented ability to achieve performance near human-level performances1–4. However, deep learning is 
valid and provides efficient spatial understanding and deep features only in the presence of sufficient training 
samples (thousands or tens of thousands per class)5.

Consequently, building deep learning models for Few-Shot Learning (FSL) in the HCR has become a chal-
lenge for researchers. The precise meaning of FSL is the cases in which only a few training samples are available 
to build a model6,7. It is considered a simulation for the human brain’s ability to learn new object categories from 
a few instances. Humans can distinguish written characters, text, and languages by viewing a few examples of 
them or just a first look. FSL is useful for building more generalized models with fewer costs, but practically its 
tasks are nontrivial. The existing few samples in FSL tasks are considered support sets and not training sets and 
will not be sufficient to build a deep network from scratch.

Applying transfer learning to dispense with the difficulty of building new deep networks for few-shot HCR 
tasks is recommended8–10. As shown in Fig. 1, transfer learning follows the principle of “instead of building a 
deep network from scratch for a low-data target task, borrow the architecture and parameters of a previously 
pretrained network on a related source task.” This methodology allows the reuse of a previously trained model 
on sufficient training data and fine-tuning it for FSL tasks. Fine-tuning attends to convert the pretrained model 
to a model that best fits the new task. Achieving the best fitting in an FSL task has become a challenge since fine-
tuning with few training samples usually causes model overfitting.
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Overfitting (also called Generalization Error) means that the model loses its generalization ability from 
training data to unseen data11,12. The core reason for this phenomenon is the quantity and quality of the training 
samples. Fine-tuning the model parameters with a few training samples make it a less representative view of the 
FSL target task. Enlarging the size of the training data by applying a data augmentation technique is an effective 
solution to the overfitting problem13. Data augmentation has succeeded in saving the costs of collecting labeled 
data and overriding data neediness without any human intervention14. Traditional dataset expansion methods 
are the most commonly applied methods for data augmentation15–18.

Traditional dataset expansion methods create slightly edited copies of the existing training data by applying 
one or more traditional transformations, such as rotation, translation, flipping, sharpening, and color changing. 
These methods are simple, easy to implement, and save disk space in real-time implementation19. But applying 
traditional data augmentation methods in HCR tasks has two primary drawbacks: 

1.	 The traditional transformations are low-level, data-independent operations and can only produce augmented 
samples with limited diversity20. The data variations presented using these methods may not cover actual 
variations in character handwriting. The writing form of characters varies among humans, and sometimes 
the writing style of the same individual differs from time to time. The representation of these variations is 
impossible by just a traditional transformation.

2.	 There are no unified transformations as a data augmentation model for all HCR tasks16,21. It is a task-
dependent problem. Therefore, it is necessary to conduct several trial-and-error experiments for each HCR 
task to determine which transformations are suitable for increasing its performance.

Such drawbacks motivate the need to generate synthetic samples that can hold possible variations in human 
handwriting and, concurrently, appear more realistic and indistinguishable from the original samples. Using 
Generative Adversarial Networks (GANs) may achieve the proposed motivation. GAN consists of two networks 
trained simultaneously: generator and discriminator22. The generator adds random noise to the input to pro-
duce synthetic samples with the same structure and distribution as real samples. Then, the generated and real 
samples are forwarded to a discriminator that works as a classification network. If the discriminator succeeds 
in distinguishing between the two types of samples, the generator loss is considered to update the generator 
network. Updating the generator helps in making it produce synthetic samples that appear more real and fall at 
the discriminator fault point.

General GAN works in an unsupervised mode. It can generate random images from the domain without 
control over which data categories should be generated23. Conditional GAN (CGAN) is the supervised version 
of GAN. In CGAN, the generator and discriminator are trained under a condition that is usually a class label24. 
If GAN performs image generation, then we can say that CGAN achieves a targeted image generation. Conse-
quently, it is considered an improvement for the general GAN. It helps in preserving stable and faster training 
and generating better-quality artificial data.

In this study, we introduce a data augmentation approach based on CGAN to solve the overfitting problem, 
which occurs when applying transfer learning in few-shot HCR tasks. First, CGAN is trained to generate synthetic 
samples for each character’s class to provide additional samples with the possible variations of human handwrit-
ing. Then, the generated samples by CGAN are added to the existing few ones before fine-tuning the transfer 
learning model. Thus, the model during fine-tuning has sufficient variations for the input that helps adjust its 
parameters correctly and acquire the generalization ability for new-unseen test samples.

The remainder part of the study is structured into sections as follows. A literature review is presented in 
“Literature review” section. “Basic concepts” section presents the basic concepts of generative and discriminative 
models, GANs, CGANs, and transfer learning. “Using CGAN in fine-tuning transfer learning models for few-
Shot HCR tasks” section introduces the proposed framework for using CGAN in fine-tuning transfer learning 

Figure 1.   Transfer learning methodology creates high-performing learners by extracting knowledge learned 
from previous tasks and applying it to new related low-data tasks.
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models for few-shot HCR tasks. “Experimental results and discussion” section consists of the experimental 
results and the discussion. The conclusions and suggestions for future study are presented in “Conclusion and 
future work” section.

Literature review
FSL is a subarea that puts deep learning performance in a gap. Building a deep network from scratch and adjust-
ing its hyperparameters, such as bias and weights, entails numerous labeled training samples. Expanding the 
superior performance of deep models to include FSL tasks can be performed using transfer learning6,25,26. Chen 
et al.27 introduced a transfer learning idea for enhancing the accuracy of Electrocardiogram (ECG) classification 
with small datasets. The effectiveness of this idea was evaluated using First China’s ECG Intelligent Competi-
tion dataset. Han and Jin28 showed that the accuracy and robustness of small-sample image recognition could 
be improved using the hybrid training mode of Convolutional Neural Networks (CNNs) and transfer learn-
ing. Alzubaidi et al.29 proposed a novel transfer learning approach to fill the performance gap of deep learning 
models when there was a lack of training data in medical imaging tasks. Jing et al.30 suggested a feature transfer 
framework that depends on transferring knowledge from related fields to facilitate and reduce the challenges of 
fault diagnosis with small samples.

However, practically, applying transfer learning in few-shot HCR tasks suffers from overfitting. Human 
handwriting is inconsistent. The writing styles of humans vary according to the circumstances. Fine-tuning any 
transfer learning model with few shots of handwritten samples allows it to achieve a high generalization error 
in recognizing unseen test samples. Early stopping, regularization, and data augmentation are three state-of-
the-art strategies for solving the overfitting problem11,31 . The early stopping strategy states that training must 
be stopped before the performance decreases32,33. The regularization strategy concludes that the network must 
preserve only neurons that hold useful features34,35. Finally, the data augmentation strategy guarantees the net-
work’s performance by adjusting its hyperparameters sets with a large amount of data16.

In our study, we recommend a data augmentation strategy to avoid the overfitting problem that occurs when 
fine-tuning pretrained deep networks for few-shot HCR tasks. We consider the core reason for the overfitting 
problem in this study to be the disability of correctly adjusting network parameters in the presence of a few train-
ing samples. Augmenting data may be developed based on basic image manipulations or generative modeling.

Data augmentation based on basic image manipulation.  This type of augmentation deliberates by 
applying traditional image transformations to the available training samples to generate slightly edited cop-
ies of them. Traditional transformations are classified into geometric and photometric transformations36. Geo-
metric transformations are interested in changing the image geometry by moving its pixel positions. Rotation, 
translation, and flipping are examples of geometric transformations. However, photometric transformations are 
concerned with altering the image’s color properties by shifting each pixel value to a new one. Similarly, color 
jittering, contrast changing, and edge enhancement are examples of photometric transformations.

Zhang et al.37 solved the FSL problem in ear recognition using the traditional data augmentation methods. 
They augmented the number of training samples up to a factor of 100 by applying horizontal flipping, cropping, 
scaling, rotating, and contrast-changing transformations. Experiments proved that the proposed solution created 
a flexible model that could adapt to new test data and perform fast recognition. However, it was not tested in 
open-set ear recognition problems, which are highly challenging. Noon et al.38 explored the effect of traditional 
data augmentation methods in avoiding the overfitting problem when fine-tuning a pretrained DenseNet-121 
model for plant leaf disease recognition. They performed the experiments using the combinations of several 
rotations, width shift, height shift, zoom, horizontal flip, and vertical flip transformations. The results showed 
that the network generalization was best for the combination of width shift and height shift transformations. 
However, the combination of zoom and rotation transformations makes the network highly prone to overfitting. 
Joseph and George19 compared the performance of traditional data augmentation methods with two execution 
modes. The main idea of the comparison was to determine which mode was best for tackling the problem of 
training data scarcity in the HCR. The first mode was offline augmentation, in which traditional transformations 
were applied to the existing training examples before training and saved in the disk for use during the train-
ing. The second mode was real-time augmentation, in which traditional transformations were applied during 
training without saving to the disk. Experiments showed that the real-time mode helps CNNs achieve better 
accuracy by exceeding low resources compared with the offline mode. However, the applied transformations in 
each mode are different, which makes the comparison unfair. Ahmad et al.39 suggested applying traditional data 
augmentation methods to classify novel COVID-19 when sufficient chest X-ray images are absent. The applied 
transformations include random rotation, random horizontal reflection, random vertical reflection, random 
horizontal shear, and random vertical shear. They used generated augmented data for hyperparameter tuning 
in several transfer learning models. The results showed that the applied transformations helped increase the 
performance significantly. However, augmented X-ray images are still not highly accurate as benchmarks for 
identifying COVID-19 infections in patients. Fabian et al.40 introduced a data augmentation pipeline to reduce 
the costs of collecting training data for accelerated Magnetic Resonance Imaging (MRI). The proposed pipeline 
was a combination of pixel preserving and general affine transformations and applied to different small-sample 
datasets. Then, they used the augmented datasets to train an end-to-end VarNet model. The results confirmed 
that applying traditional data augmentation in the low-data regime is an optimal surrogate for generating flex-
ible models against overfitting. However, the challenge of this study was how to find the optimal augmentation 
strength throughout training. De la Rosa et al.41 studied the effect of data augmentation on the performance of a 
ResNet-50 model in defect classification problems. Especially, in cases where the volumes of training images and 
balanced classes are small. They applied scaling, rotation, translation, and flipping transformations to increase 
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the volume of defect images. Similarly, they performed seven experiments to evaluate the model performance 
as they increased the dataset to twice as many images as the previous experiment. The results showed that the 
F1 score of the model increased every time the dataset volume increased with augmented images. However, this 
study does not regard the Generalization Error for performance evaluations.

Data augmentation based on generative modeling.  This type of augmentation depends on generat-
ing synthetic data that hold characteristics to the original data. Generative models can create artificial instances 
that appear more real and indistinguishable from the original data. Antoniou et al.42 developed a Data Aug-
mentation GAN (DAGAN) model to generate reliable synthetic data for the low-data regime tasks. They used 
transfer learning to build the structure of the proposed DAGAN. A combination of two standard networks, 
UNet, and ResNet, builds the generator, whereas the DensNet architecture builds the discriminator. They used 
the DAGAN to generate artificial samples for the human faces and handwriting domains and used the generated 
samples to train a standard Stochastic Gradient Descent Neural Network (SGDNN). The results showed that 
the proposed DAGAN significantly improved the classification accuracy in each domain. Further evaluations 
of the developed GAN in FSL are necessary. Frid-Adar et al.43 proposed an augmentation approach to solving 
the problem of overfitting in training deep networks for low-data medical recognition problems. The proposed 
approach consists of traditional data augmentation methods and GAN. First, they used the traditional methods 
to increase the training data in terms of size and diversity. Then, GAN was applied to generate synthetic data 
augmentation. The results showed that using GAN with the traditional methods increased the performance of 
CNN to 7% compared with using only traditional methods. However, using GAN to generate artificial images 
for each class is a time-consuming task. Mondal et al.44 studied the perspective of FSL in segmenting 3D multi-
modal medical images. They analyzed two different GAN architectures to determine which one was appropriate 
to significantly improve the segmentation performance. The first architecture was the Feature Matching GAN 
(FM GAN), which used the feature matching loss for training the generator. The second one was the Bad-GAN, 
where unlabeled and artificial images were not separated in the generator. The empirical results showed that 
FM GAN outperformed Bad-GAN in segmenting 3D multimodal brain MRI images. However, further experi-
ments are required for the FM Bad-GAN, as Bad-GAN is essential for good semi-supervised learning. Guan 
and Loew45 proposed a solution of two deep-learning-based technologies for developing breast cancer detection 
systems when training examples are small. The first technology focused on training a GAN network to gener-
ate synthetic mammographic images. The second focused on applying transfer learning using the pretrained 
VGG-16 model. The experiments showed that combining these two steps helps to obtain the best classification 
performance. GAN avoided overfitting in the pretrained network, and transfer learning increased the speed of 
training approximately 10 times faster than training CNN from scratch. However, by replacing GAN with its 
supervised version, CGAN may reduce the time needed to generate targeted images for each class. Zhang et al.46 
proposed a Deep Adversarial Data Augmentation (DADA) technique to solve the overfitting problem in the ill-
posed extremely low-data regimes. The technique was built by training a supervised GAN and applying the 2K 
loss to the GAN’s discriminator. The experiments showed the power of the GAN in generating new training data 
and enforcing fine-grained classification. However, in evaluations, the proposed DADA has yet to be applied 
to real-world tasks, such as military, satellite, and biomedical image classification. Jha and Cecotti18 suggested 
using generative networks to avoid generalization errors when training a network with small labeled examples in 
handwritten digit recognition tasks. Therefore, GAN was used to generate new artificial images for every single 
class in each task. The results showed that the suggested augmentation approach caused a substantial gain in 
accuracy. However, they noticed that the overall performance might decrease when they added too many artifi-
cial images to the original training examples. Yunusa et al.47 introduced a generative augmentation framework 
to increase the CNN’s ability to recognize rice leaf diseases when large quality datasets are absent. They built a 
StyleGAN2 Adaptive Discriminator Augmentation (SG2-ADA) architecture to be an improvement to the vanilla 
GAN by regularizing the generator, redesigning the generator normalization, and modifying the progressive 
growing. They used the SG2ADA to generate synthetic rice leaf disease images for training Faster Region-Based 
CNN (Faster- RCNN) and Single Shot Detector(SSD) models. The observations from the experimental results 
told that the SG2-ADA produces better-quality artificial images and leads to good recognition when compared 
with the traditional augmentation methods. However, experiments miss comparing the performance of Style-
GAN2 and the vanilla GAN architecture. Asghar et al.48 studied the overfitting problem that occurred when 
CNNs used to detect COVID-19 cases in the scarcity of X-ray images. They solved this problem by exploring two 
data augmentation approaches, the first was the traditional transformations and the second was the GAN. They 
evaluated the generated samples by the two approaches in training InceptionV3, Resnet101, DenseNet-121, 
Xception, and QuNet models. The experimental results showed that the highest detection accuracy is achieved 
by Xception and QuNet models when applying the traditional transformations and by the QuNet model when 
using GAN. However, the experimental observations couldn’t conclude the perfect augmentation approach to 
detect the novel COVID-19.

Table 1 summarizes the above mentioned studies. Although, these studies applied data augmentation strate-
gies either depend on basic image manipulations or generative modeling. Thus, this study introduced a data 
augmentation approach based on generative modeling to mitigate the overfitting problem when applying transfer 
learning in few-shot HCR tasks. Preferring generative modeling to basic image manipulations generates synthetic 
samples that hold the possible variations in handwriting. A flooding network with sufficient data variations 
during fine-tuning helps acquire the generalization ability. Most of the recent studies that applied generative 
modeling used GANs. Training GAN in supervised tasks like HCR is time-consuming. GAN trained on each class 
separately to generate samples belonging to that class. Therefore, CGAN is the proposed generative augmentation 
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approach in this study. Replacing GAN with its supervised version avoids its limitations and generates better-
quality artificial samples with stable and faster training.

Table 1.   A comparison of some recent studies concentrating on applying data augmentation to avoid the 
overfitting problem in low-data regimes.

Reference Augmentation Strategy Classification Model Task Advantages Limitations

Antoniou et al.42 DAGAN Standard SGDNN Low-data regime tasks

The proposed DAGAN 
significantly improves the 
classification accuracy in the 
human faces and handwriting 
domains

Further evaluations for the 
developed GAN architecture 
need to be made in FSL

Frid-Adar et al.43 Traditional transformations 
and GAN CNN model Low-data medical recogni-

tion tasks

Using GAN with the tradi-
tional methods increases the 
performance of CNN to 7% 
compared with using only 
traditional methods

Using GAN to generate artifi-
cial images for each class is a 
time-consuming task

Mondal et al.44 FM GAN and Bad-GAN CNN model FSL in segmenting 3D multi-
modal medical images

FM GAN outperforms the 
performance of classical GAN 
and Bad GAN

Further experiments are 
required for the FM-Bad 
GAN, as Bad-GAN is essen-
tial for good semi-supervised 
learning

Zhang et al.37
Horizontal flipping, cropping 
,scaling, rotating, and contrast 
changing transformations

Different architectures of 
CNNs FSL in ear recognition

The applied transformations 
create flexible CNN that can 
adapt to new test data and 
perform fast recognition

The applied transformations 
are not tested in open-set ear 
recognition problems which 
are highly challenging

Guan and Loew45 GAN VGG-16 model
Breast cancer detection sys-
tems when training examples 
are small

GAN avoids overfitting in 
the pretrained network and 
transfer learning increases the 
speed of training approxi-
mately 10 times faster than 
training CNN from scratch

Using GAN for generating 
artificial images for each class 
is a time-consuming task

Noon et al.38

Rotation, width shift, height 
shift, zoom, horizontal flip, 
and vertical flip transforma-
tions

DenseNet-121 model Plant leaf disease recognition 
with small datasets

The network generalization 
is best for the combination of 
width shift and height shift 
transformations

The combination of zoom 
and rotation transformations 
makes the network highly 
prone to overfitting

Joseph and George19 Offline and real-time tradi-
tional transformations CNN model HCR with data scarcity

The real-time augmentation 
helps CNNs achieve better 
accuracy by exceeding low 
resources compared with the 
offline augmentation

The applied transformations 
in each mode are different, 
this made the comparison 
not fair

Zhang et al.46 DADA CNN model Ill-posed extremely low-data 
regimes

Applying the 2K loss to 
GAN’s discriminator boosts 
the performance

The proposed DADA has yet 
to be applied to real-world 
tasks, such as military, satel-
lite, and biomedical image 
classification.

Jha and Cecotti18 GAN CNN model
Handwritten digit recogni-
tion tasks with low number 
of labeled samples

The recommended augmen-
tation approach causes a 
substantial gain in accuracy

The overall performance may 
decrease when too many 
artificial images added to the 
original training examples

Ahmad et al.39

Random rotation, random 
horizontal reflection, random 
vertical reflection, random 
horizontal shear, and random 
vertical shear transformations

MobileNet, ResNet50, and 
InceptionV3 models

Classifying novel COVID-19 
when sufficient chest X-ray 
images are absent

The applied transformations 
help increase the perfor-
mance significantly

The augmented X-ray images 
are still not highly accurate as 
benchmarks for identify-
ingCOVID-19 infections in 
patients

Fabianet al.40
A combination of pixel and 
general affine preserving 
transformations

End-to-end VarNet model Accelerated MRI reconstruc-
tion on small datasets

The proposed data augmenta-
tion pipeline improves the 
model robustness against 
various shifts in the test 
distribution

This study faces a challenge 
which is how to find the opti-
mal augmentation strength 
throughout training

De la Rosa et al.41 Scaling, rotation, translation, 
and flipping. ResNet-50 model Small sample defect clas-

sification problems

The F1 score of the model 
increases every time the 
dataset volume increased 
with augmented images

This study does not regard 
the Generalization Error for 
performance evaluations

Yunusa et al.47 SG2-ADA Faster- RCNN , and SSD 
models

Rice leaf diseases when large 
quality datasets are absent

The SG2-ADA produces 
better-quality artificial images 
and leads to good recognition

Experiments miss comparing 
the performance of Style-
GAN2 and the vanilla GAN 
architecture

Asghar et al.48
Zoom, horizontal shift, 
vertical shift, and rotation 
transformation, and GAN

InceptionV3, Resnet101, 
DenseNet-121, Xception , 
and QuNet

Data scarcity problem in 
detecting COVID-19 cases

The highest detection accu-
racy is achieved byXception 
and QuNet models when 
applying the traditional trans-
formations and by QuNet 
when using GAN

The experimental observa-
tions couldn’t conclude 
the perfect augmentation 
approach to detect the novel 
COVID-19
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Basic concepts
Generative and discriminative models.  Both the generative and discriminative models are probabilis-
tic. Generative models apply the joint probability distribution using Eq. (1) to learn the input data distribution49. 
Learning data distribution enables the model to extract potential features and determine the process of generat-
ing the data. Therefore, generative models provide new artificial data with the same distribution as real data. The 
generated synthetic data obtained using the generative models are plausible and different from real data of the 
domain.

Alternatively, discriminative models apply the conditional probability distribution according to Eq. (2) to learn 
how to map inputs (x) to their class labels (y)49. The formatted citation’s main goal of discriminative models is 
to find decision boundaries between classes. Thus, it can determine the class of new unknown data and detect 
outliers, but cannot generate data. Figure 2 reveals the difference between generative and discriminative models 
in dealing with the input data.

GANs.  As presented in Fig. 3, GANs combine two different adversarial networks that are trained simultane-
ously. The two networks are 

(1)p(x, y) = p(x)× p(y)

(2)p(x|y) =
p(x, y)

p(y)

Figure 2.   Difference between generative and discriminative modeling in dealing with input data.

Figure 3.   GAN architecture consists of two networks trained simultaneously, G and D. G generates synthetic 
samples that D tries to make plausible.
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1.	 The generator (G): A generative model that is trained to capture the data distribution. It can output synthetic 
and generative samples from the learned distribution. Random noise (Z) is given as an input to G for guar-
antee diversity in the generated output samples.

2.	 The discriminator (D): A discriminative model trained to determine which distribution of the input samples 
belong. It helps to indicate if they belong to the real data distribution or artificial. D works like a teacher 
who determines whether his student (G) needs more practice or if he is working smart. If D falls at fault and 
classifies the artificially generated samples as real, then, it means that the G works too well. In summary, D 
improves the total performance in GAN.

During training, the two models compete against each other. G tries hard to generate data that appear real 
and tricks D. Simultaneously, D also tries not to be deceived and intelligently classifies the input samples. As a 
result, a zero-sum game is established between the two models, which helps improve their functionalities.

Generally, the G function is expressed as G(z, θg ) : Z → X̂ . It maps the random noise Z to the artificial data 
distribution X̂ with θg as the parameters. Furthermore, the D function is expressed as D(x, θd) : (X ∪ X̂) → S 
withθd as the parameters to differentiate the elements of the real data distribution X from X̂ , where S is a real 
number in the interval [0 : 1]. G is trained to minimize its loss and maximize D loss using Eq. (3)50. The objective 
of G is to intelligently generate indistinguishable elements, which D classifies as real. D is trained simultaneously 
to minimize its loss using Eq. (4), to not be a cheated and to separate the samples of X and X̂ correctly. In sum-
mary, D and G play a mini-max two-player game and calculate its loss for each single data point using Eq. (5). 
Thus, the total value function of GAN can be stated as Eq. (6)24.

CGANs.  There is no control over which classes the generator should produce additional samples in the GAN. 
It works in an unsupervised mode with no way of requesting particular targeted images. It takes the input as a 
whole without concentrating on whether the input holds images belonging to different classes or the same class. 
Then, it starts its role by generating artificial samples that appear real without distinguishing the class to which 
the artificial sample belongs. Therefore, Mirza and Osindero24 proposed CGAN as an extension of the superior 
performance of GAN from unsupervised learning to supervised learning. CGAN is the supervised version of a 
GAN in which an extra input layer is added to both the generator and discriminator to guide them in terms of 
which images should be produced.

CGAN follows the same training style as GAN but with restrictions on the label of the generated samples. 
As indicated in Fig. 4, Y is the additional information that determines the class label for both G and D. Thus, the 
cost function for CGAN can be stated as Eq. (7)24.

Transfer learning specifications.  The consideration of transfer learning is stimulated because humans 
can apply the previously learned knowledge to provide better solutions for new related situations51. Transfer 
learning follows the same style of learning. It creates high-performing learners by extracting knowledge learned 
from the previously trained models on source tasks. Then, borrow this knowledge to learn new related target 
tasks. The precise meaning of the borrowed knowledge is the model’s architecture and parameters. Instead, 
building new deep models from scratch with initialized parameters, transfer learning can be applied. This prop-
erty aids in making models generalize better and more accessible and tackling the problem of having small data 
for training newer tasks52.

Two basic steps are involved when transfer learning is preferred to solve a new target task. The first step is 
model selection, in which a single model is chosen from the available pretrained ones to be the source model 
for the new target task. Figure 5 displays the most popular pretrained CNN models that won in the ImageNet 
Large Scale Visual Recognition Challenge (ILSVRC) from 2012 to 201753. Each model has a different structure 

(3)L(G) = min [ logD(x)+ log(1− D(G(z)))]

(4)L(D) = max [ logD(x)+ log(1− D(G(z)))]

(5)L = min
G

max
D

[ logD(x)+ log(1− D(G(z)))]

(6)min
G

max
D

V(D,G) = Ex∼pdata(x)[ logD(x)] + Ez∼pz (z)[ log(1− D(G(z)))]

(7)min
G

max
D

V(D,G) = Ex∼pdata(x)[ logD(x|y)] + Ez∼pz (z)[ log(1− D(G(z|y)))]

Figure 4.   Both G and D are conditioned with the class labels in CGAN.
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and depth and was previously trained on approximately 1.2 million high-resolution images from the ImageNet 
database to classify 1000 different object categories. Selecting one of these pretrained models for new recognition 
tasks leads to faster and easier training. While, the second step is model fine-tuning, in which the selected source 
model is re-designed to suit the new task. Fine-tuning implies that the network is not trained from scratch with 
initialized weights. Instead, it is trained to adjust its borrowed architecture and parameters to fit the new target 
task7,54. Fine-tuning guarantees that the pretrained model will achieve the best results for the new target tasks. 
Algorithm 1, presents the basic steps for fine-tuning any pretrained model.

Using CGAN in fine‑tuning transfer learning models for few‑Shot HCR tasks
As mentioned above, applying transfer learning avoids the difficulties of building deep models from scratch. 
However, fine-tuning transfer learning models in few-shot HCR tasks usually involve an overfitting problem. 
The pretrained model, during fine-tuning, must see sufficient data variations to acquire generalization ability 
for handwriting variations. Figure 6 summarizes the proposed framework for solving the overfitting problem, 
which occurs when applying transfer learning in few-shot HCR tasks. The steps represented in the framework 
are CGAN building and training, model fine-tuning, and model testing and evaluation. The following subsec-
tions present the details of each step.

Figure 5.   Different transfer learning models with their depth.

Figure 6.   The proposed framework for enhancing the performance of transfer learning models in few-shot 
HCR tasks.
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CGAN building and training.  The purpose of this step is to generate synthetic samples from the few input 
ones. CGAN is built by two networks that are trained simultaneously, G network and D network.

G network.  G is built as a series of transposed convolution, batch normalization, and Rectified Linear Unit 
(RELU) layers. As shown in Fig. 7a, we used 4 transposed convolution, 3 batch normalization, and 3 RELU lay-
ers. We set the size of the noise input into G to 100 and the embedding dimension for the categorical labels to 50. 
Similarly, we convert each input using a fully connected layer followed by a reshaping function. The projection 
size was [ 4 4 1024]. For the transposed convolution layers, 5× 5 filters are applied, with a decreasing number 
of filters for the following layers. However, in the final transposed convolution layer, three 5× 5 filters are used 
to represent the three RGB channels of the generated images. Finally, the hyperbolic tangent (tanh) activation 
function is applied to the output layer to produce outputs on the scale of [−1,+1].

D network.  Conversely, D is built as a series of convolution, batch normalization, and leaky RELU layers. As 
presented in Fig. 7b, we used 5 convolutions, 3 batch normalization, and 4 leaky RELU layers. We adjusted the 
input layer to receive 64× 64× 1 images and the corresponding labels. Then, a noise is added to the input by a 
dropout layer to guarantee the performance of D. Similarly, the dropout probability was 0.75. For the convolu-
tion layers, 5× 5filters are used, with an increasing number of filters for the following layers. The scale score of 
the leaky RELU was set to 0.2.

Model fine‑tuning.  The output generated samples by CGAN are used to fine-tune three pretrained models: 
AlexNet, VGG-16, and GoogleNet. AlexNet is a small-sized network, VGG-16 is a medium-sized network, and 
GoogleNet is a large-sized network. Choosing different-sized pretrained models shows the extent that the per-
formance of deep learning can be affected by the number of available training samples.

AlexNet.  AlexNet is a CNN proposed by Krizhevsky et al.55. It consists of 25 layers, eight of which are learn-
able (5 convolutional layers followed by 3 fully connected layers). All learnable layers except the last one use the 
RELU activation function. The convolutional layers pertain to multiple kernel sizes, which are 11× 11 with 4 
strides 0 padding, 5× 5 with 1 stride 2 paddings, and 3× 3 with 1 stride 1 padding. AlexNet performs nonlinear 
downsampling and reduces the computational complexity by applying three max-pooling functions. Each func-
tion uses 3× 3 filters with 2 strides and no padding. For the final fully connected layers, the first two layers have 
4096 channels and followed by a dropout layer to prevent overfitting. The last group has 1000 channels, which 
represent the number of output classes.

VGG‑16.  Zisserman and Simonyan56 developed the VGG-16. It comprises 47 layers, 16 of which are learnable 
(13 convolutional layers followed by 3 fully connected layers). The distribution of the convolutional layers forms 
five blocks, in which each block ends with a max-pooling layer. Each convolutional layer in each block uses filters 
with a fixed size, stride, and padding, which are 3× 3 , 1, and 1, respectively. Additionally, a ReLU activation is 
performed at the end. VGG-16 uses small and fixed convolutional kernels to reduce the number of used param-
eters and to conclude more discriminative decision function57. The applied max-pooling functions use 2× 2 
filters with 2 strides and no padding. Thus, each spatial dimension of the activation map from the previous layer 
is halved58. The final fully connected layers used in VGG-16 are the same as those in AlexNet.

GoogleNet.  Szegedy et al.59 implemented GoogleNet. It consists of 144 layers, 22 of which are learnable. It is 
also known as Inception-V1 model as it uses the Inception module as its basic unit. The main thought under 
the Inception module is to run several parallel operations (convolution and pooling) with multiple kernel filter 
sizes ( 1× 1 , 3× 3 , and 5× 5 ) on the same convolutional layer. Then, the output results are concatenated and 
forwarded to the next convolutional layer. Inception units produce multilevel feature extraction with optimized 

Figure 7.   The total structure of G and D networks included in the introduced CGAN architecture.
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variants and avoid patch alignment problems60,61. They also reduce the number of network parameters. Goog-
leNet holds seven million parameters which are smaller than the number of parameters in less deep networks 
such as AlexNet. GoogleNet structure has four convolutional layers, nine Inception modules, four max-pooling 
layers, three average pooling layers, five fully connected layers, and three SoftMax layers. Additionally, it applies 
the RELU activation in the convolutional layers and employs dropout regularization in its fully connected layers.

Model testing and evaluation.  Three measures are considered for evaluating each model’s performance. 
These measures are 

1.	 Validation accuracy (Val.Acc.): implies the model accuracy on the validation samples and is calculated using 
Eq. (8). 

 where TP is the number of correctly classified samples, TN is the number of correctly rejected samples, FP 
is the number of incorrectly rejected samples, and FN is the number of incorrectly classified samples.

2.	 F1− Score : covers the harmonic mean of the precision and recall. it assesses summarizing the overall quality 
of the model and is calculated using Eq. (9)–(11). 

3.	 Generalization Error (Etest) : represents the model deficiency to recognize new-unseen test samples and is 
calculated using Eq. (12). 

 where n is the number of classes, i is the number of test samples, fD(xi) is the predicted class by the model, 
and yi is the actual class.

Experimental results and discussion
Experiments are conducted on a benchmark package of few-shot datasets, which is the Omniglot. All experi-
ments are implemented in MATLAB 2022 a on a personal computer Intel Core i7 with 2.60 GHz processor and 
16GB of RAM.

Datasets description.  Omniglot is considered an official package of datasets used to evaluate FSL 
models62,63. It holds 1623 handwritten characters from 50 different languages. Each character was formed by 20 
writers and scanned in a grayscale image of size 105× 105 . The number of classes in each dataset is equal to the 
number of language letters the dataset represents. We chose four different languages from Omniglot to work. 
These languages are Latin, Malay (Jawi-Arabic), Korean, and Sanskrit (old Indo-Aryan). Table 2 summarizes the 
properties of each dataset. Each dataset is divided into two parts:

•	 Part1: represents 70% of the existing samples used to train the introduced CGAN to generate synthetic sam-
ples and as few-shot input to train the transfer learning models.

•	 Part2: represents the rest of the existing samples (30%) and used as a static test set to perform fair experiments 
for model evaluation. The network does not see this part during the training. Monitoring the generalization 
efficiency of the network can be done by measuring the network performance on new-unseen samples.

(8)Val.Acc. =
TP + TN

TP + FN + TN + FB

(9)F1− Score =
2(Precision× Recall)

Precision+ Recall

(10)Precision =
TP

TP + FB

(11)Recall =
TP

TP + FN

(12)Etest =
1

n

n∑

i=1

error(fD(xi), yi)

Table 2.   Details of the chosen datasets from Omniglot package.

Dataset No. of classes No. of samples/class

Latin 26 20

Malay(Jawi-Arabic) 38 20

Korean 40 20

Sanskrit (old Indo-Aryan) 42 20
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CGAN training results.  CGAN was trained for 500 epochs on all datasets. Figure 8 shows its total loss. 
Notably, G loss becomes near or equal to zero in the last iterations, indicating the success of G in generating syn-
thetic examples that feel D is at fault. Thus, at the D, loss becomes large and near 1. Finally, G won the min-max 
two-player game. Figure 9 shows samples of the generated images by GCAN for each dataset.

Model fine‑tuning setting.  We edited AlexNet, VGG-16, and GoogleNet to fit the target tasks and placed 
the final fully connected layer and classification SoftMax layers in all networks with new ones. Similarly, we 
adjusted the output size of the newly added fully connected layer in each model to equal the number of dataset 
classes. The input was formed by dividing part1 of each dataset into 85% for training and 15% for validation. 
The applied validation strategy is the holdout cross-validation. Furthermore, we adjusted the learning rate of all 
networks to 0.0001 and applied the stochastic gradient descent with a momentum optimizer to monitor possible 
losses. Finally, we trained all the networks for 5 epochs.

Experimental results.  Four training cases are presented in the results. These cases are 

1.	 Case(A) → training in the existence of a few samples in each dataset.
2.	 Case(B) → training by applying the traditional image transformations. We performed trial-and-error experi-

ments for each dataset to achieve the optimal transformations that can be used to improve the performance. 
Table 3 mentions the final transformations that are used in each dataset.

3.	 Case(C) → training with applying the introduced CGAN approach. The number of samples generated by 
CGAN that are added before training is 500 samples in each class.

4.	 Case(A) → training by applying a combination of the traditional image transformations (Case(B)) and the 
introduced CGAN approach (Case(C)).

Table 4 represents the recognition results. Under the different cases of training, each model records the 
Val.Acc., F1− Score , and Etest measures. Each measure is visualized by a figure to be characterized easily. First, 
Fig. 10 displays the F1− Score representation for the four datasets. As shown, case(C) achieves the highest 
F1− Score and beats all other cases significantly. A high F1− Score indicates the model achieves high value 
for both Recall and Precision metrics as illustrated in Eq. (9). Formally, comparing among machine learning 
algorithms is ended when attaining one achieves the highest F1− Score . This implies that case(C) is an optimal 
training case among all other cases.

Secondly, Fig. 11 points to the Etest occurred by each model in the four datasets. As presented, case(C) is the 
case that has the least Etest among all cases. Indicating, in case(C), each model correct recognizes a large number 
of unseen test samples. Consequently, case(C) increases the overall generalization ability of the three models. 
Finally, Fig. 12 displays the recorded Val.Acc. at each epoch in case(A)and case(C). Notably, training with case(C) 
achieves high Val.Acc. at the first two epochs. All models start to converge at the third epoch beginning. We can 
conclude that case(C) achieves model fine-tuning in fewer epochs while training with case(A) needs more epochs.

Discussion.  We used four datasets for different languages to evaluate the proposed framework for solving 
the overfitting problem, which occurs when applying transfer learning in few-shot HCR tasks. These languages 
are Latin, Malay (Jawi-Arabic), Korean, and Sanskrit (old Indo-Aryan). Each dataset had only 20 labeled hand-
written samples in each class. We divided these labeled samples into 70% for training and 30% for testing. The 
training set in each dataset is used to train a CGAN for generating the synthetic samples and to train the transfer 
learning model. We executed various training cases to compare and evaluate the proposed framework. These 
cases are A (training with the few existing input samples), B (training by applying the traditional transformations 
to the few input samples), C (training by adding the samples generated by the CGAN to the few input samples, 

Figure 8.   Total loss of the constructed CGAN. G loss decreases when the D loss increases , the two networks 
play a mina mini-max two-player game.
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and D (training by combining case B and case C). We used the test set to evaluate each model’s performance 
under each training case. The transfer learning models which are trained in the experiments are the AlexNet, 
VGG-16, and GoogleNet. These models differ in their deep structure. AlexNet is the smallest network, whereas 
GoogleNet is the deepest network. We can conclude with the following highlights from all conducted experi-
ments:

Figure 9.   For each dataset: (a) represents examples of its real samples, and (b) represents examples of its fake 
samples generated by the construced CGAN.

Table 3.   The applied traditional transformations in each dataset for Case(B).

Dataset Applied Transformations

Latin Random reflection with x axis

Malay(Jawi-Arabic) Random reflection with x-axis, horizontal and vertical translation by a distance in the range [−3, 3] pixels

Korean Horizontal and vertical translation by a distance in the range [−3, 3] pixels

Sanskrit(old Indo-Aryan) Random reflection with x-axis, and horizontal translation by a distance in the range [−5, 5] pixels
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•	 For case(A): the F1− Score and Etest recorded by each model are significantly different. AlexNet records the 
highest F1− Score and the least Etest in all datasets. GoogleNet records the least F1− Score And the highest 
Etest . while VGG-16 achieves records in between. This reveals that the depth of the network is an important 
factor that controls the performance of transfer learning models in few-shot HCR tasks. Deeper networks 
achieve higher Etest if they are trained with small number of training samples. For the Val.Acc. , the records 

Table 4.   The recognition results of AlexNet, VGG-16, and GoogleNet models under the different training 
cases for each dataset. Significant values are in [bold].

Dataset
Recognition 
Model

Val.Acc.(%) F1− Score(%) Etest (%)

Case(A) Case(B) Case(C) Case(D) Case(A) Case(B) Case(C) Case(D) Case(A) Case(B) Case(C) Case(D)

Latin

AlexNet 86.54 80.77 99.33 99.19 86.69 85 89.42 85.27 14.1 16.03 12.18 16.03

Vgg16 82.69 84.62 99.36 98.59 87.24 83.66 92.20 85.50 14.74 18.59 8.33 16.03

GoogleNet 65.38 69.23 98.05 97.24 73.96 74.29 86.98 86.31 27.56 28.21 14.1 14.47

Malay(Jawi-Arabic)

AlexNet 80.26 89.47 97.57 92.36 80.18 78.55 98.82 80.12 21.93 24.12 1.32 21.49

Vgg16 72.37 76.32 96.79 92.61 76.18 79.08 89.93 84.85 27.63 23.25 14.04 16.76

GoogleNet 43.42 47.37 91.78 86.89 39.46 38.4 82.60 72.52 60.53 64.91 18.86 30.26

Korean

AlexNet 85 90 97.24 96.80 89.83 88.05 100 85.80 11.76 12.92 0 15

Vgg16 68.75 72.50 96.67 97.27 77.81 75.36 88.12 85.77 24.12 27.08 12.92 15.83

GoogleNet 60 47.50 96.98 96.82 51.34 55.02 89.10 88.45 50 48.75 12.08 12.50

Sanskrit(old Indo-
Aryan)

AlexNet 70.24 78.57 95.21 93.12 72.47 65.28 73.47 72.42 31.35 38.10 28.17 28.97

Vgg16 54.76 61.90 94.82 91.56 55.54 52.51 77.01 70.43 49.60 53.17 24.60 30.95

GoogleNet 29.76 30.95 91.50 87.73 29.24 27.37 75.11 74.45 74.60 75 26.59 27.78

Figure 10.   Visualization for the F1-Score recorded by each model under the different training cases for (a) 
Latin dataset, (b) Malay(Jawi-Arabic) dataset, (c) Korean dataset, and (d) Sanskrit(Indo-Aryan) dataset.



14

Vol:.(1234567890)

Scientific Reports |        (2022) 12:16271  | https://doi.org/10.1038/s41598-022-20654-1

www.nature.com/scientificreports/

of the three models at the first epochs are not high. The Val.Acc. of AlexNet, VGG-16, and GoogleNet at the 
third epoch in the Sanskrit dataset reaches 54.76% , 32.14% , and 23.8% respectively. Even though, applying 
transfer learning makes the model need fewer epochs for training. But the few existing input samples cause 
very high loss for the model at the first epochs.

•	 For case(B): the advantage of applying the traditional transformations appears in the performance of two 
models in two different datasets, VGG-16 for Malay dataset and GoogleNet for Korean dataset. In these two 
situations, case(B) achieves higher F1− Score and lower Etest than case(A). However, in the rest, case(B) 
achieve the worst results among all cases. Results prove that applying the traditional transformations is not 
suitable as a generalized data augmentation strategy for all few-shot HCR datasets.

•	 For case(C): applying the introduced CGAN approach achieves the highest F1− Score and the least Etest in 
all models and for all datasets. The Etest for AlexNet in Korean dataset reaches 0% while it is 11.76% , 12.92% , 
and15% in case(A), (B), and(D) respectively. Also, the F1− Score for GoogleNet in Sanskrit dataset reaches 
75.11% while it is 29.24% , 27.37%,and 74.45% in case(A), (B), and (C) respectively. Additionally, each model 
in case(C) reaches to fast convergence. As shown in Fig. 12, at the beginning of the third epoch , all models 
reach the highest Val.Acc. and start to converge. So, results prove that using the introduced CGAN approach 
is an effective solution for reducing the overfitting problem when applying transfer learning in few-shot HCR 
tasks.

•	 For case(D): Combining traditional transformations with CGAN increases the F1− Score in all models com-
pared with case(A), and(B). However, its effect in the Etest differs. It works better and achieves lower Etest than 
case(A)and(B) in GoogleNet and VGG-16 for all datasets. But it achieves higher Etest than case(A), and(B) 
in AlexNet for Latin and Korean dataset. The usefulness of case(D) may appear in deeper networks. But 
comparing with case(C), case(D)achieves lower F1-Score and higher Etest than case(C) in all models and for 
all datasets. Results prove that case(C) is more effective and generalized than case(D).

Figure 11.   Visualization for the Etest recorded by each model under the different training cases for (a) Latin 
dataset, (b) Malay dataset, (c) Korean dataset, and (d) Sanskrit(Indo-Aryan) dataset.
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In summary, results prove that adding synthetic samples generated by CGAN in training transfer learning 
models for few-shot HCR tasks helps in increasing the total performance of the model, avoiding overfitting, 
and achieving model fine-tuning in fewer epochs. However, the implemented CGAN in our study is the vanilla 
CGAN. Improving CGAN implementation by several optimizations such as enhancing the topology of G and 
D networks, preprocessing inputs before passing them to CGAN, and improving the loss function may allow 
an additional great result.

Conclusion and future work
We introduced a proposed framework for solving the overfitting problem which occurs when applying transfer 
learning in few-shot HCR tasks. The proposed framework considers using a CGAN approach to enlarge the 
number of the few existing input training samples. CGAN is an improvement for the general GAN and helps 
in preserving stable and faster training and generating better-quality artificial data. We evaluated the proposed 
framework in training AlexNet, VGG-16, and GoogleNet models for four few-shot HCR datasets from the 
Omniglot package. These datasets are Latin, Malay (Jawi-Arabic), Korean, and Sanskrit (old Indo-Aryan). Results 
show that training with the addition of the generated synthetic samples by CGAN reaches fast convergence in 
few epochs and achieves the highest Val.Acc., F1− Score , and the least Etest measures compared with three other 
training cases. These cases are training with the few existing input samples, training by applying the traditional 
transformations to the few input samples, and training with combining the traditional transformations with 
CGAN.

For future work, we aim to test the performance of pretrained Vision Transformer (ViT) models in few-shot 
HCR tasks. The Transformer architectures have become the top standard for Natural Language Processing (NLP); 

Figure 12.   Visualization for Val.Acc. achieved at each epoch in Case(A) and Case(C) for (a) Latin dataset, (b) 
Malay dataset, (c) Korean dataset, and (d) Sanskrit(Indo-Aryan) dataset.
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however, their use cases in computer vision tasks are limited. So, the performance of ViT models in few-shot 
image classification tasks needs exploring.

Data availability
The datasets generated and/or analysed during the current study are available in the [github] repository,at https://​
github.​com/​brend​enlake/​omnig​lot.
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