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ABSTRACT

The transcriptional regulatory network (TRN) of
Pseudomonas aeruginosa coordinates cellular pro-
cesses in response to stimuli. We used 364 tran-
scriptomes (281 publicly available + 83 in-house gen-
erated) to reconstruct the TRN of P. aeruginosa us-
ing independent component analysis. We identified
104 independently modulated sets of genes (iMod-
ulons) among which 81 reflect the effects of known
transcriptional regulators. We identified iModulons
that (i) play an important role in defining the genomic
boundaries of biosynthetic gene clusters (BGCs), (ii)
show increased expression of the BGCs and asso-
ciated secretion systems in nutrient conditions that
are important in cystic fibrosis, (iii) show the pres-
ence of a novel ribosomally synthesized and post-
translationally modified peptide (RiPP) BGC which
might have a role in P. aeruginosa virulence, (iv)
exhibit interplay of amino acid metabolism regula-
tion and central metabolism across different car-
bon sources and (v) clustered according to their
activity changes to define iron and sulfur stimu-
lons. Finally, we compared the identified iModulons
of P. aeruginosa with those previously described
in Escherichia coli to observe conserved regulons
across two Gram-negative species. This comprehen-
sive TRN framework encompasses the majority of
the transcriptional regulatory machinery in P. aerug-
inosa, and thus should prove foundational for future
research into its physiological functions.

INTRODUCTION

Pseudomonas aeruginosa is an opportunistic pathogen that
can be found in diverse environments such as soil, water,
plants and humans (1,2). It is one of the major causative
agents of hospital-acquired nosocomial infections and the
leading cause of lung infection in people suffering from cys-
tic fibrosis (CF) (3,4). All major biological processes in P.
aeruginosa are controlled by a complex transcriptional reg-
ulatory network (TRN) that is yet to be fully elucidated.
TRNs constitute the underlying framework for understand-
ing the developmental and physiological responses of or-
ganisms, and define the relationships between transcription
factors (TFs) and their target genes in response to diverse
stimuli (5,6). Knowledge of the TRN of P. aeruginosa and
other pathogenic bacteria would be beneficial in elucidat-
ing novel drug targets, understanding the functions of their
various virulence factors (6), as well as important for de-
signing new or combinatorial therapies against P. aerugi-
nosa infections. Today, machine learning approaches, such
as independent component analysis (ICA), can be applied
to sufficiently large transcriptomic datasets to identify in-
dependent signals in the data, which can then be anno-
tated with mechanistic data to improve our understanding
of transcriptional regulation in bacteria (7).

ICA is a decomposition method to separate the multi-
variate signals into independent signals and their relative
strengths. A study of 42 TRN inference methods, which in-
cluded clustering, network inference and other decompo-
sition methods, demonstrated that decomposition methods
based on ICA were the best at recapitulating known regula-
tory modules (8). ICA used to identify independent signals
in complex data sets (9), has been applied to data sets of
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bacterial transcriptomes to identify independently modu-
lated sets of genes called iModulons and the transcriptional
regulators that control them (10–12). iModulons have been
used to study the adaptive evolution trade-off during oxida-
tive stress under naphthoquinone-based aerobic respiration
(13), mutations in the OxyR transcription factor and regu-
lation of the ROS response (14), and the host response to
expression of heterologous proteins (15). We have also used
ICA to elucidate quantitative TRN structures of Staphylo-
coccus aureus (10), Escherichia coli (11) and Bacillus subtilis
(12), which are presented in interactive dashboards on the
iModulonDB.org website (16). ICA-based methods were
also used to classify the tumor samples (17,18) and the con-
nection of identified transcriptional modules to the diseased
state (19).

In this study, we applied ICA to high-quality RNA-seq
expression profiles of P. aeruginosa to decipher the overall
structure of its TRN, expanding upon the current under-
standing of its regulatory networks (20–22). We incorpo-
rated in-house generated RNA-seq data from diverse con-
ditions such as osmotic stress, low pH, oxidative stress, and
micronutrient supplementation, and integrated all publicly
available data of sufficient quality from the NCBI Sequence
Read Archive as of October 20, 2020 (23). We assembled
the largest RNA-seq compendium for P. aeruginosa to-date,
and used ICA to reveal the relationship between iModulon
activities and specific stimuli.

iModulons can use co-expression patterns to define the
functional gene composition of a biosynthetic gene clus-
ter (BGC), since genes in biosynthetic pathways are usu-
ally co-expressed. BGCs are clusters of genes that synthe-
size specialized secondary metabolites (24), such as pyoche-
lin, pyoverdine, pyocyanin and bacteriocins (25–28). These
specialized metabolites are of particular interest because
of their diverse range of functions, and they contribute to
the ability of Pseudomonas to survive in different environ-
ments, including the human lung (29). The comprehensive
antiSMASH software uses sequence comparison to detect
BGCs, but assigns BGC borders that were empirically de-
termined and defined in the detection rules (30). iModu-
lons are able to capture genes regulated by the same reg-
ulator, which makes them an accurate and efficient way to
define the genomic boundaries without needing to gener-
ate specific gene knockouts; thus, iModulons can assist in
annotating the BGCs and their accessory functions. The
TRN structure established here represents a significant ad-
vance toward understanding the complex transcriptional
regulation of P. aeruginosa under different growth condi-
tions. Further, our study identifies several hypotheses from
the transcriptomic data that are relevant to P. aeruginosa
infections.

MATERIALS AND METHODS

RNA extraction and library preparation

The P. aeruginosa PAO1 and PAO1(ΔmexB) strains were
used in this study. We extracted RNA samples for 25
unique conditions including different media types (M9,
CAMHB, LB, RPMI + 10% LB), oxidative stress (treat-
ment with paraquat), iron starvation (treatment with DPD),

osmotics stress (high NaCl), low pH, various carbon
sources (succinate, glycerol, pyruvate, fructose, sucrose,
N-acetyl glucosamine), micronutrients (copper, iron, zinc,
sodium hypochlorite). All conditions were collected in bio-
logical duplicates and untreated controls were also collected
for each set to rule out the possibility of the batch effect
(Supplementary Notes 1).

In brief, strains were grown overnight at 37◦C, with
rolling, in appropriate media types for the testing condi-
tion of choice. Overnight cultures were then diluted to a
starting OD600 of ∼0.01 and grown at 37◦C, with stirring.
Once cultures reached the desired OD600 of 0.4, 2 ml cul-
tures were immediately added to centrifuge tubes contain-
ing 4 mL RNAprotect Bacteria Reagent (Qiagen), vortexed
for 5 s and incubated at room temperature for 5 min. Sam-
ples were then centrifuged for 10 min at 5000 × g and the
supernatant was removed prior to storage at −80◦C until
further processing. In conditions involving antibiotic treat-
ment, when the bacterial culture had reached an OD600 of
∼0.2, antibiotics were added at 2× or 5× their MIC in the
appropriate media type and allowed to incubate at 37◦C,
with stirring, for an additional hour prior to sample collec-
tion.

Total RNA was isolated and purified using a Zymo
Research Quick-RNA Fungal/Bacterial Microprep Kit
from frozen cell pellets previously harvested using Qiagen
RNAprotect Bacteria Reagent according to the manufac-
turers’ protocols. Ribosomal RNA was removed from 1 ug
Total RNA with the use of a thermostable RNase H (Hybri-
dase) and short DNA oligos complementary to the riboso-
mal RNA, performed at 65◦C to prevent non-specific degra-
dation of mRNA. The resulting rRNA-subtracted RNA
was made into libraries with a KAPA RNA HyperPrep kit
incorporating short Y-adapters and barcoded PCR primers.
The libraries were quantified with a fluorescent assay (ds-
DNA AccuGreen quantitation kit, Biotium) and checked
for proper size distribution and average size with a TapeS-
tation (D1000 Tape, Agilent). Library pools were then as-
sembled and a 1× SPRI bead cleanup performed to remove
traces of carryover PCR primers. The final library pool was
quantified and run on an Illumina instrument (NextSeq,
Novaseq).

Data acquisition and preprocessing

Apart from the in-house generated data, we also down-
loaded and processed all RNA sequencing data available
from NCBI SRA for P. aeruginosa PAO1 (Figure 1A, B,
and Supplementary Figure S2C). Data processing and qual-
ity control for the public datasets is detailed in Sastry et al.
(7). Data processing and quality control scripts are avail-
able at https://github.com/avsastry/modulome-workflow.
Briefly, raw FASTQ files were downloaded from NCBI us-
ing fasterq-dump (https://github.com/ncbi/sra-tools/wiki/
HowTo:-fasterq-dump). Next, read trimming was per-
formed using Trim Galore (https://www.bioinformatics.
babraham.ac.uk/projects/trim galore/) with the default op-
tions, followed by FastQC (http://www.bioinformatics.
babraham.ac.uk/projects/fastqc/) on the trimmed reads.
Next, reads were aligned to the P. aeruginosa genome

https://github.com/avsastry/modulome-workflow
https://github.com/ncbi/sra-tools/wiki/HowTo:-fasterq-dump
https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/


3660 Nucleic Acids Research, 2022, Vol. 50, No. 7

Figure 1. Data analysis procedure. (A) Overview of the methodology used in the study. It includes gathering high-quality data from the NCBI-SRA as well
as generated in the lab. The RNAseq reads were processed and quality control was done. Further, the independent component analysis (ICA) was applied
to generate the iModulons that were characterized to get the regulatory networks of P. aeruginosa (Adapted from Sastry et al. (7)). (B) ICA calculates
the independently modulated sets of genes (iModulons). A compendium of expression profiles (X) is decomposed into two matrices: the independent
components composed of a set of genes, represented as columns in the matrix M, and their condition-specific activities (A).

(NC 002516.2) using Bowtie (31). The read direction was
inferred using RSEQC (32) before generating read counts
using featureCounts (33). Finally, all quality control metrics
were compiled using MultiQC (34) and the final expression
dataset is reported in units of log-transformed Transcripts
per Million (log-TPM).

To ensure quality control, data that failed any of the fol-
lowing four FASTQC metrics were discarded: per base se-
quence quality, per sequence quality scores, per base n con-
tent, and adapter content. Samples that contained under
500 000 reads mapped to coding sequences were also dis-
carded. Hierarchical clustering was used to identify samples
that did not conform to a typical expression profile.

Manual metadata curation was performed on the data
that passed the first four quality control steps. Information
including the strain description, base media, carbon source,
treatments, and temperature were pulled from the literature.
Each project was assigned a short unique name, and each
condition within a project was also assigned a unique name
to identify biological and technical replicates. After cura-
tion, samples were discarded if (a) metadata was not avail-
able, (b) samples did not have replicates or (c) the Pearson
R correlation between replicates was below 0.95. Finally,
the log-TPM data within each project was centered to a
project-specific reference condition. After quality control,
the final compendium contained 364 high-quality expres-
sion profiles: 83 generated for this study, plus 281 expres-

sion profiles extracted from public databases (Supplemen-
tary Table S1).

Computing robust independent components

To compute the optimal independent components, an ex-
tension of ICA was performed on the RNA-seq dataset as
described in McConn et al. (35)

Briefly, the scikit-learn (v0.23.2) (36) implementation of
FastICA (37) was executed 100 times with random seeds
and a convergence tolerance of 10–7. The resulting indepen-
dent components (ICs) were clustered using DBSCAN (38)
to identify robust ICs, using an epsilon of 0.1 and minimum
cluster seed size of 50. To account for identical components
with opposite signs, the following distance metric was used
for computing the distance matrix:

dx,y = 1 − ∣
∣
∣
∣ρx,y

∣
∣
∣
∣

where ρx,y is the Pearson correlation between components
x and y. The final robust ICs were defined as the centroids
of the cluster.

Since the number of dimensions selected in ICA can alter
the results, we applied the above procedure to the dataset
multiple times, ranging the number of dimensions from 10
to 360 (i.e. the approximate size of the dataset) with a step
size of 10. To identify the optimal dimensionality, we com-
pared the number of ICs with single genes to the number
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of ICs that were correlated (Pearson R > 0.7) with the ICs
in the largest dimension (called ‘final components’). We se-
lected the number of dimensions where the number of non-
single gene ICs was equal to the number of final compo-
nents in that dimension.

Determination of the gene coefficient threshold

The gene coefficients are determined as described in Sas-
try et al. (7). Each independent component contains the
contributions of each gene to the statistically independent
source of variation. Most of these values are near zero for a
given component. In order to identify the most significant
genes in each component, we iteratively removed genes with
the largest absolute value and computed the D’Agostino K2

test statistic (39) for the resulting distribution. Once the test
statistic dropped below a cutoff, we designated the removed
genes as significant.

To identify this cutoff, we performed a sensitivity anal-
ysis on the concordance between significant genes in each
component and known regulons. Known regulons were
downloaded from RegPrecise (40). First, we isolated the
20 genes from each component with the highest absolute
gene coefficients. We then compared each gene set against
all known regulons using the two-sided Fisher’s exact test
(FDR < 10–5). For each component with at least one signif-
icant enrichment, we selected the regulator with the lowest
p-value.

Next, we varied the D’Agostino K2 test statistic from 50
through 2000 in increments of 50, and computed the F1-
score (harmonic average between precision and recall) be-
tween each component and its linked regulator. The maxi-
mum value of the average F1-score across the components
with linked regulators occurred at a test statistic of cutoff of
420 for the P. aeruginosa dataset.

For future datasets where a draft TRN is unavailable, an
alternative method is proposed that is agnostic to regula-
tor enrichments. The Sci-kit learn (36) implementation of
K-means clustering, using three clusters, can be applied to
the absolute values of the gene weights in each independent
component. All genes in the top two clusters are deemed
significant genes in the iModulon.

Regulator enrichment

The regulator enrichments are determined as described in
Sastry et al. (7). The gene annotation pipeline can be found
at https://github.com/SBRG/pymodulon/blob/master/docs/
tutorials/creating the gene table.ipynb. Gene annotations
were pulled from Pseudomonas genomedb (41). Addi-
tionally, KEGG (42) and Cluster of Orthologous Groups
(COG) information were obtained using EggNOG mapper
(43). Uniprot IDs were obtained using the Uniprot ID map-
per (44), and operon information was obtained from Bio-
cyc (45). Gene ontology (GO) annotations were obtained
from AmiGO2 (46). The known TRN was obtained from
RegPrecise (40) and manually curated from literature. The
performance of the predicted iModulons was evaluated us-
ing the ‘iModulon recall’ and ‘regulon recall’ values. The
‘iModulon recall’ represents the fraction of shared genes
and the genes in an iModulon while ‘regulon recall’ is the

fraction of shared genes and the genes in a regulon (Supple-
mentary Figure S2B).

Differential activation analysis

The distribution of differences in iModulon activities were
determined as described in Rychel et al. (12). We fit a log-
normal distribution to the differences in iModulon activi-
ties between biological replicates for each iModulon. For a
single comparison, we computed the absolute value of the
difference in the mean iModulon activity level and com-
pared it against the iModulon’s log-normal distribution to
determine a P-value. We performed this comparison (two-
tailed) for a given pair of conditions across all iModulons
at once and designated significance as FDR < 0.01. Only
iModulons with change in activity levels >5 were consid-
ered significant.

Characterizing functionally correlated iModulons

The clustering iModulon activity is determined as described
in Sastry et al. (7). Global iModulon activity clustering
was performed using the clustermap function in the Python
Seaborn (47) package using the following distance metric:

dx,y = 1 − ∣
∣
∣
∣ρx,y

∣
∣
∣
∣

where ||ρx,y|| is the absolute value of the Pearson correlation
between two iModulon activity profiles. The threshold for
optimal clustering was determined by testing different dis-
tance thresholds to locate the maximum silhouette score.

Prediction of the biosynthetic gene clusters

We used the antiSMASH algorithm to predict the
BGCs in P. aeruginosa (30). While using the anti-
SMASH software, we used the P. aeruginosa reference
genome NC 002516.2 with the ‘relaxed’ detection strict-
ness. The antiSMASH algorithm predicts different types
of the BGCs like non-ribosomal peptide synthetases
(NRPS), polyketide synthases (PKS), ribosomally synthe-
sized and post-translationally modified peptides (RiPP),
redox-cofactors and many more. Apart from the predicted
BGCs, antiSMASH also provides the gene ontology anno-
tations for the BGCs components.

Generating iModulonDB Dashboards

iModulonDB dashboards were generated using the Py-
Modulon package (7,16). Where applicable, we provide
links to gene information in Pseudomonas.com (41).

RESULTS

The iModulon structure of Pseudomonas aeruginosa’s tran-
scriptome

We assembled the largest possible set of RNAseq profiles
for P. aeruginosa from the literature and publicly avail-
able databases, and supplemented it with lab-generated
RNAseq profiles for specific conditions of interest. We in-
cluded RNA-seq expression profiles from two strains of P.

https://github.com/SBRG/pymodulon/blob/master/docs/tutorials/creating_the_gene_table.ipynb
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aeruginosa, PAO1 and PAO1(ΔmexB). The PAO1(ΔmexB)
was utilized in this study to potentially uncover transcrip-
tional differences in stress response in a sensitized strain.
The genomic and transcriptomic comparison analysis sug-
gests that combining the data from both strains will not cre-
ate a problem in ICA (Supplementary Note 2, Supplemen-
tary Figure S2A). The dataset included a range of growth
conditions, including micronutrient supplementation, nu-
trition source variation, osmotic stress, iron starvation, and
gene knockouts (Supplementary Figure S1).

After filtering the profiles based on quality control crite-
ria (see Materials and Methods), we compiled a transcrip-
tomic compendium containing 364 samples (83 new +281
public expression profiles) named aeruPRECISE364 (Fig-
ure 2A and Supplementary Figure S1). All samples used
for analysis were shown to have Pearson’s correlation coeffi-
cient (PCC) of 0.97 between replicates, and to minimize pos-
sible batch effects, each individual experiment was normal-
ized to a reference condition prior to calculating the iMod-
ulons (7).

iModulons represent a data-driven, top-down recon-
struction of transcriptional regulatory networks and can be
characterized using transcriptional regulator binding (11).
To assign transcriptional regulators to iModulons, we com-
pared each iModulon against regulons published in the lit-
erature. We compiled a TRN scaffold using RegPrecise (40),
a manually curated database containing 58 regulons, and
manually searched the literature for additional high-quality
transcription factor binding sites. In total, the resulting
TRN scaffold contained binding information for 134 TFs
and corresponding regulons. This data is available in Sup-
plementary Table S2.

We applied ICA to the transcriptomic compendium to
identify independent signals in the data set that represent
the effects of transcriptional regulators, resulting in the
identification of 104 iModulons that explain 66% of the
variance in the gene expression (Figure 2B). To annotate
each iModulon, their genes were compared with those in the
134 regulons (Supplementary Table S3) to find statistically
significant enrichments (see Materials and Methods). For
iModulons with strong associations to known regulons, we
used ‘iModulon recall’ and ‘regulon recall’ to evaluate our
confidence in the associations. ‘iModulon recall’ represents
the fraction of shared genes and the genes in an iModulon
while ‘regulon recall’ is the fraction of shared genes and the
genes in a regulon (Supplementary Figure S2B).

The relationship between the 134 regulons and the
104 iModulons are grouped into four categories (Figure
2C): well-matched, regulon subset, regulon discovery, and
poorly matched. The well-matched category includes iMod-
ulons with a large fraction of shared genes with a known
regulon, representing good agreement between our decom-
position and the literature. The regulon subset category in-
cludes iModulons which capture a relatively small fraction
of a known regulon, usually because the regulon is very
large and iModulons only capture the most strongly reg-
ulated genes (or because of additional, unknown regula-
tion). The regulon discovery category includes iModulons
that contain most of a known regulon, but also include
many other, typically uncharacterized genes. The poorly-
matched category includes iModulons that are statistically

significantly enriched for a known regulon, but their over-
laps with the known regulons do not reach the threshold;
they often correspond to master regulators, contain many
uncharacterized genes, or are co-stimulated by several un-
derlying signals. Thus, we identified 104 iModulons that are
the regulated gene sets from complementary bottom-up and
top-down methods.

Functional classification of the iModulons, their coverage of
genes, and how they form the variation in the RNAseq com-
pendium

The 104 iModulons identified were annotated with differ-
ent functions, such as BGCs, secretion systems, stress re-
sponses, prophages, metal homeostasis, structural compo-
nents, amino acid metabolism, and carbon metabolism. We
identified 11 iModulons related to BGCs, 14 related to
metal homeostasis and 3 representing type III and type VI
secretion systems (T3SS and T6SS, respectively) (48). We
also functionally annotated iModulons associated with car-
bon, amino acids, sulfur, iron, secondary, lipid, and nitrogen
metabolism (Figure 2D). Out of 104 iModulons, we found
22 that contain either uncharacterized genes, contain a sin-
gle gene, and/or contain only genes with hypothetical func-
tion (Supplementary Table S3).

Among the 104 iModulons, four contain single genes.
The remaining 100 iModulons contain 1835 unique genes.
561 genes were found in more than one iModulon. We have
provided the information for each iModulon in the form
of an interactive dashboard on iModulonDB.org (16). The
dashboard is a user-friendly way for researchers to search
for or browse the details of iModulons, TRN, genes, or reg-
ulators of interest. Such an examination gives both a guide
to the study of molecular level mechanisms (49,50) and sys-
tems level mechanisms, such as those of resource allocation
through changes in the transcriptome composition between
conditions (11,15).

iModulons provide a definition of genomic boundaries of
biosynthetic gene clusters

The 104 iModulons identified contain 11 out of the 14 pre-
dicted BGCs in P. aeruginosa using anti-SMASH software
(Figure 3A and Supplementary Figure S3A). The remaining
3 BGCs had fairly normally distributed transcriptional ac-
tivity in the conditions represented in the dataset analyzed,
and thus were not detected by ICA. The ErbR-2 iModulon
contains coregulated genes which are predicted to be redox-
cofactors, such as pyrroloquinoline quinone (PQQ) (Figure
3B and C). The BGC’s boundaries defined by antiSMASH
are arbitrarily marked from PA1977–PA1997. However, the
iModulon captured by ICA identifies an independent tran-
scriptional signal from PA1975 to PA1990 (Figure 3D). All
11 identified iModulons related to BGCs can be used to an-
notate their boundaries (Supplementary Figure S3B).

iModulons elucidate responses to N-acetylglucosamine as the
sole carbon source

Chronic infections with P. aeruginosa in CF patients can
lead to increased lung deterioration and higher mortality
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Figure 2. iModulons computed from the Pseudomonas aeruginosa transcriptomic data compendium. (A) Plot showing the amount of passed samples per
year which is used in the study. (B) Bar plot showing the explained variance in all the iModulons with overall explained variance of 0.66. Total Explained
Variance is the sum of the fraction of explained variance across all iModulons. (C) Scatter plot showing the regulon recall versus iModulon recall for all
104 iModulons found in the P. aeruginosa dataset. The scatter plot is divided into four quadrants: Upper right represents the well-matched iModulons;
upper left shows iModulons representing a regulon-subset; lower right depicts the regulon-discovery; lower left contains the poorly-matched iModulons.
The size of the circle represents the size of the iModulons (number of genes) and the color represents the functional categories as shown in the color key.
(D) Treemap of the 104 P. aeruginosa iModulons. The size of each box represents the size of the iModulons (number of genes) and the color shades of
each functional category represented by the explained variance of each iModulon. iModulons are grouped into 12 different categories: AA/Nucleotide
Metabolism, Biosynthetic Gene Clusters, Carbon Metabolism, Defense Mechanism, Energy Metabolism, Metal Homeostasis, Miscellaneous Metabolism,
Prophages, Quorum sensing, Secretion systems, Stress Responses and Structural Components. Abbreviations: AA, amino acids.
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Figure 3. iModulons can aid in the definition of genomic boundaries of biosynthetic gene clusters (BGCs). (A) Genomic locations of the 14 predicted
BGCs in the P. aeruginosa PAO1 by using the anti-SMASH software. (B) Scatter Plot showing the gene weights of the ErbR-2 iModulon with the color
depicting the COG categories of the genes that it contains. (C) Venn diagram depicting the status of the genes in the ErbR-2 iModulons, ErbR regulon, and
the predicted redox-cofactor BGCs by using the anti-SMASH software. (D) Genomic overview of the redox-cofactor BGCs predicted by the anti-SMASH
software, alongside the iModulons whose boundaries are defined by genes between the PA1975-PA1990.

rates (51). Previous research found that genes required for
N-acetylglucosamine (GlcNAc) metabolism, such as the
NagQ operon, were upregulated during in vitro growth in
sputum from CF patients (52,53). It is hypothesized that P.
aeruginosa is able to take up GlcNAc from various sources,
such as host mucin or bacterial peptidoglycan, during in-
fection (52,54). Therefore, the role of GlcNAc in driving P.
aeruginosa virulence and persistence provided an impetus
for additional data generation and analysis.

We grew P. aeruginosa PAO1 in M9 minimal media sup-
plemented with different concentrations of GlcNAc (1, 2,
4 and 8 g/l) as the sole carbon source and examined its im-
pact on the identified iModulons (Figure 4A-C). Among
the BGC iModulons, we found an increased expression of
the PvdS iModulon, which includes the genes involved in
the regulation and synthesis of the siderophore pyoverdine
(51). The increased expression of siderophores in the pres-
ence of GlcNAc has been previously reported in the Strep-
tomyces species (55,56) but not in P. aeruginosa. In con-
trast to the increased expression of the PvdS iModulon,
we found decreased expression of the QscR-2 iModulon,
which contains a pyocyanin-associated BGC during growth
in GlcNAc-M9 media.

Our analysis also found a previously unannotated, ribo-
somally synthesized and post-translationally modified pep-
tide (RiPP) BGC iMoudlon, which showed increased ex-
pression during bacterial growth on GlcNAc as the sole
carbon source. The novel RiPP iModulon contains genes
encoding DUF692-associated bacteriocin, as predicted by
anti-SMASH (Supplementary Figure S4A). This DUF692-
associated bacteriocin has not been reported in P. aerug-
inosa, however the evidence of its presence is reported
in Streptomyces and Methanobacteria sps (57). The BGC
RiPP iModulon was also found to be expressed in the pres-
ence of sodium hypochlorite (NaOCl) (Supplementary Fig-
ure S4B). Hypochlorite is known to be elevated in CF spu-
tum (58,59) as well as facilitate bacterial clearance by in-
filtrating neutrophils in the lung, although a previous study
showed that the production of hypochlorite was diminished
in the phagosomes of neutrophils from CF patients (60).
Bacteriocins are bacterially-derived antimicrobial peptides
secreted as part of interbacterial competition (61). The up-
regulation of this BGC iModulon under these experimental
conditions suggests its role in helping P. aeruginosa defend
against competitors during decreased nutrient availability
or stress.
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Figure 4. iModulon responses to GlcNAc culture. (A) Scatter Plot showing the gene weights of the NagQ iModulon; the color depicts the COG categories.
The NagQ iModulons have two regulons; one is GlcNAc catabolism and other is related to structural components. (B) Heat map depicting the activity of
selected iModulons in different concentrations of GlcNAc (1g/l, 2g/l, 4g/l, and 8g/l). It describes the change in differential activities in NagQ, biosynthetic
gene clusters, secretion systems, carbon metabolism, amino acid metabolism, and nucleotide metabolism. (C) Activity plot of the conditions expressed in
NagQ iModulon in the Paeru Precise. (D) Plot showing iModulon activities in the presence of N-acetyl glucosamine (GlcNAc), ZnCl, CuSO4 and FeSO4
micronutrients. The iModulons include the micronutrient metabolism (NagQ, CueR, Zur-1, Zur-2, FpvR) and the biosynthetic gene clusters (PvdS, PchR,
RiPP, NRPS, QscR-2 and k-opioid).

iModulons highlighted bacterial response to metal micronu-
trient supplementation

Some studies report that the sputum sample of CF fibrosis
patients shows an elevated concentration of various metals
like Ca, Mg, Mn, Zn, Mo and Ni (62,63). In our study, we
used the PAO1 and PAO1(ΔmexB) strains to generate the
RNAseq profile data in different micronutrient conditions
and checked their expression, as many previous papers sug-
gest that micronutrient concentrations are important fac-
tors in the pathogenicity and virulence of P. aeruginosa.

We generated the transcriptomic profiles for Cu, Zn, and
Fe, and examined the iModulon activities in their presence
(Figure 4D), which were included in the RNAseq dataset
used for ICA. We found that the CueR iModulon is up-
regulated in the presence of Cu, as expected. The expres-
sion of the Zur-2 and FpvR iModulons are repressed in the
presence of Zn and Fe, respectively. Both Zur-2 and FpvR
function in concert with other proteins to bring in Zn and
Fe, respectively, into bacteria during growth in conditions
with low Zn or Fe (64,65). The Zur-1 iModulon shows ac-
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tivation in the presence of Zn because the genes responsible
for binding the Zn has negative gene weight. Interestingly,
we also found that iModulons related to the secretion of py-
ochelin and pyoverdine, as well as a novel bacteriocin pro-
ducing (RiPP), are upregulated in the presence of these mi-
cronutrients. The PchR and PvdS iModulons are responsi-
ble for the expression and secretion of the siderophores py-
ochelin and pyoverdine, respectively. The PchR iModulon
showed increased activity in the presence of Zn, while PvdS
is activated during growth with both GlcNAc and Zn. Both
pyochelin and pyoverdine are known to be important in P.
aeruginosa pathogenicity (66), which further supports that
the novel RiPP BGC, which has similar expression profiles,
may also play a role in the ability of the pathogen to infect
or invade host lungs.

iModulons reveal coordinated expression of secretion systems

Secretion systems play a role in the pathogenicity of Pseu-
domonas by facilitating the secretion of virulence factors
(67). We found increased expression of the H1-T6SS and
T3SS secretion systems in the TagR1 and ExsB iModu-
lons respectively during growth on GlcNAc as the sole car-
bon source (Figure 4B). H1-T6SS is known to target other
prokaryotes and contributes to the survival advantage of P.
aeruginosa (68). In comparison, the T3SS secretion system
in P. aeruginosa is a major virulence factor that contributes
to cytotoxicity and acute infections. T3SS is used to inject
the effector proteins into the host cells (69). We hypothesize
that the activation of the secretion systems during growth
on GlcNAc might be helpful to export the products of the
BGCs, such as RiPP, outside P. aeruginosa, furthering their
fitness advantage in limited nutrient conditions (69).

iModulons describe central metabolic pathways

We found multiple iModulons related to central car-
bon metabolism (Supplementary Figure S5). Among the
identified metabolic iModulons, NagQ is involved in the
catabolism of GlcNAc to fructose-6-phosphate, a key gly-
colytic intermediate. As mentioned previously, GlcNAc has
been suggested to play a role in the pathogenicity of P.
aeruginosa in CF patients (52). Furthermore, iModulons re-
lated to the catabolism of the ethanolamine, glycerol, fruc-
tose, and 2-ketogluconate describe the state of the metabolic
network when these substrates serve as the sole carbon
source in place of the preferred glucose (Figure 5A, Supple-
mentary Figures S5 and S6A). This demonstrates the ability
of iModulons to highlight the complex metabolic network
of P. aeruginosa that contributes to its ability to grow in di-
verse environments (70,71).

Several of the identified iModulons mapped onto
amino acid metabolic pathways, such as branched chain
amino acids (MmsR, AtuR, PrrF, and LiuR), aromatic
amino acids (PhhR and DhcR), arginine catabolism
(CbrB), histidine utilization (HutC), arginine succinyltrans-
ferase (ArgR-1 & 2), arginine deaminase (ArcR), and L-
hydroxyproline (HypR) (Supplementary Figure S5). We
found significant correlations among the iModulons reg-
ulating the branched-chain amino acid (BCAA) and aro-
matic amino acid (AAA) pathways (Figure 5B). It is known

that amino acids are the main nutrient source for P. aerug-
inosa in CF lungs (53,71) and it is hypothesized that they
play a vital role in promoting biofilm formation (72) in CF
patients (73). Our data showed that iModulons related to
amino acid metabolism pathways had higher activities dur-
ing growth in biofilm conditions compared to planktonic
growth (Figure 5C and Supplementary Figure S6B). This is
important as P. aeruginosa primarily grows as a biofilm in
CF lungs (74), and a microarray study looking at gene ex-
pression at different timepoints of P. aeruginosa infections
in CF patients showed increased expression of amino acid
metabolism genes (71).

iModulons related to the altered metabolism of branched-
chain amino acids

Bis-(3′-5′)-cyclic dimeric guanosine monophosphate (c-di-
GMP) is a secondary messenger that regulates various im-
portant cellular processes like quorum sensing, biofilm for-
mation, and pathogenicity (75). YhjH is a c-di-GMP phos-
phodiesterase and, upon induction, it decreases c-di-GMP
levels (76). A decrease in c-di-GMP levels leads to a de-
crease in the biofilm formation and increased biofilm dis-
persal. We found the knockouts of YhjH (�yhjH, PR-
JNA381683) (77) led to increased expression of BCAA
metabolism iModulons, subsequently increasing intermedi-
ates of the tricarboxylic acid (TCA) cycle (Figure 5C). Like-
wise, the deletion of Crc (�crc) also led to increased expres-
sion of the BCAA iModulons (Figure 5D), similar to YhjH.
Crc is a global metabolic regulator that represses succinate
metabolism and BCAA assimilation in P. aeruginosa and P.
putida (78). Therefore, from our analysis, we can hypothe-
size that YhjH and Crc may be used as an important tar-
get to control the biofilm formation and pathogenicity of
P. aeruginosa through the alteration of BCAA metabolism.
Activities of the identified iModulons were therefore able to
untangle complex relationships between metabolites, tran-
scriptional regulators, and lifestyle in P. aeruginosa.

Correlated activity changes of iModulons lead to the defini-
tion of Stimulons

We have clustered the iModulons based on their correla-
tion as a set (Figure 6A and Supplementary Figure S7B).
Though iModulons are independently modulated through-
out the transcriptome, clusters of iModulons may be simi-
larly expressed across most conditions in the compendium
and only diverge from one another under select condi-
tions. Thus, a cluster of iModulons with coordinated activ-
ity changes can be interpreted as a ‘stimulon’. Such clusters
of iModulons are of interest for understanding the broader
structure of transcriptional regulation (79). For example, we
have found that sulfur stimulon {AtsR, CysB-1 and CysB-
2} and iron stimulon {FpvR, PvdS, PchR, FoxR and Iron
acquisition} are among the top clustered stimulons in P.
aeruginosa.

Sulfur acquisition: The iModulons AtsR, CysB-1 and
CysB-2 form a sulfur acquisition stimulon (Figure 6A).
AtsR is a transcription factor that encodes the ABC trans-
porters of sulfate and other ions. We observed that the AtsR
iModulon was activated during oxidative stress (paraquat
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Figure 5. iModulons related to Carbon metabolism and Amino acid/Nucleotide metabolism. (A) Heat map depicting the differential activity of glucose,
sucrose, fructose, N-acetylglucosamine, pyruvate, glycerol, Ca-MHB (bacteriological media), and acetate with respect to HexR-1, NagQ, EutR, FruR,
HexR-2, GlpR, and PtxR iModulons. (B) Correlation plot among the Branched chain amino acid [BCAA (LiuR and MmsR)] and the Aromatic amino
acid [AAA (DhcR and PhhR)]. The outer layer is divided into the four arcs which depict the four different iModulons. Thin lines represent the common
genes among the iModulons, and the thick line connecting different iModulons depicts the Pearson correlation coefficients (PCC). (C) Bar plot representing
the iModulon activities of MmsR, LiuR and PhhR under different conditions. The x-label shows some conditions used in the study. The ‘�yhjH vs. wt’ is
the knockout of the yhjH, ‘Biofilm vs. Dispersed’ is the biofilm mode of growth, ‘pAMBL vs. metabolite wt’ is the pAMBL plasmid showing overexpression
of metabolites, ‘�crc vs. wt’ is the deletion of the global regulator of crc, ‘PrePSA gentamycin vs. wt’ is the pre-PatH-Cap library of P. aeruginosa (‘PSA’
PAO1-GFP) treated with gentamycin,’NaNO2 EDTA vs. wt’ is the presence of sodium nitrite and EDTA in the media, and ‘Cisplatin vs. wt’ is the presence
of cisplatin and bile in the media. (D) Scatter plot showing the correlation between the BCAA pathways iModulons, i.e. LiuR and MmsR, with the PCC
of 0.69.

treatment) (Supplementary Figure S7A). The relationship
between sulfate limitation and the oxidative stress response
has been previously established in E. coli (80) but not in
P. aeruginosa. The CysB-1 and CysB-2 regulators modulate
sulfur uptake and cysteine biosynthesis, as well as influence
the genes involved in host colonization and virulence fac-
tor production (81). The two CysB iModulons are highly
expressed in planktonic growth conditions as well as in the
presence of bile (Figure 6B). However, CysB’s direct con-
nection with bile has not been previously established in the
literature. Taurine, a sulfur-containing amino acid, is one
the primary components of bile acids. We hypothesize that

P. aeruginosa upregulates its sulfur acquisition genes in re-
sponse to the presence of taurine in the conjugated bile acid.
Interestingly, in certain patients with CF, there can be mi-
croaspirations of bile into the lungs, and studies have shown
bile to affect the transition of P. aeruginosa into biofilms
(82). Therefore, it is possible that CysB may play an impor-
tant role in the pathogenicity of P. aeruginosa in CF lungs
through its role in acquiring sulfur from bile aspirations.

Iron acquisition: We identified a stimulon of five iron-
related iModulons (FpvR, PvdS, PchR, FoxR and Iron ac-
quisition) (Supplementary Figure S7B). The five iModu-
lons involved in this cluster contained genes involved in the
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Figure 6. Activity clustering of the iModulons among P. aeruginosa defines stimulons. (A) Sulfur acquisition cluster includes the grouping of AtsR, CysB-
1 and CysB-2 iModulons with silhouette score of 58. (B) The scatter plot shows correlation between the CysB-1 and CysB-2 iModulons with PCC of 0.86.
Both the iModulons show high activity in the planktonic condition and bile salt medium of P. aeruginosa.

uptake of iron through endogenous (pyoverdine, fpv, pvd)
or exogenous (xenosiderophores, FoxR and heme) carriers
(83). The activities of both the endogenous PvdS and exoge-
nous FoxR iModulons were upregulated during the pres-
ence of the chelator EDTA and during planktonic growth
(PCC 0.67) (Supplementary Figure S7C). The iron acquisi-
tion iModulon was previously uncharacterized and known
as Uncharacterized-13, which was further annotated to
be involved in iron acquisition by clustering analysis. Ad-
ditionally, the presence of an uncharacterized iModulon
(Uncharacterized-13) in this cluster allowed us to annotate
its potential function, which we hypothesize as playing a
role in pyoverdine synthesis. Several genes, such as PA2531,
PA4709, phuR, opmQ, pvdT, pvdR, pvdE and PA2412 are
shared between the PvdS and Uncharacterized-13 iModu-
lons (Supplementary Figure S7D). Thus, our analysis pro-
vides insight into the interconnectedness of iron acquisition
systems in P. aeruginosa.

iModulons show ‘Fear vs. Greed’ Trade-off

In previous studies of E. coli and S. aureus transcriptional
regulation, a trade-off between the expression of translation
machinery and stress-hedging genes was observed (10,11).
This global trade-off was termed the ‘Fear vs. Greed’ trade-
off.

The allocation of the resources to the optimal growth
(greed) versus its allocation towards the bet-hedging strate-
gies to attenuate its effect of the stressors in the environ-
ment (fear) (11,84) was demonstrated using two iModu-
lons in E. coli. We identified two iModulons in P. aerugi-
nosa (Translation-1 and RpoS-2 iModulons) that were or-
thologous to these E. coli iModulons (translation and RpoS
iModulons) (Supplementary Table S4). The RpoS-2 iMod-
ulon includes the sigma factor RpoS, which is a central
regulator of the bacterial response to stress that allows
cells to survive environmental challenges. The translational
iModulon represents the translational machinery like ri-
bosomal proteins and the growth-related function of the

transcriptome. We identified an anti-correlation relation-
ship between the RpoS-2 iModulon and the Translational-1
iModulon (Figure 7A). Further, the RpoS-2 iModulon also
showed correlation (PCC 0.61, P-value < 10–10) with the ex-
pression level of the rpoS gene. High correlation between the
activity of the RpoS iModulon and rpoS gene expression
was also observed in E. coli (Figure 7B). These results sug-
gest that the ‘Fear vs Greed’ trade-off relationship is con-
served among bacterial species.

DISCUSSION

We have constructed a large compendium of P. aeruginosa
transcriptomes from all publicly available high-quality data,
compiled a TRN of 134 regulons from literature, and com-
puted and characterized a data-driven TRN of 104 iMod-
ulons that matches well with the literature. The regulons
are based on targeted biomolecular studies, whereas iMod-
ulons result from the data analysis of a global compendium
of transcriptomic data. These complementary approaches
to TRN elucidation synergize well. The iModulons were
effective for clarifying BGC groups (including identifying
a new BGC), characterizing simple and disease-relevant
growth conditions from a transcriptomic perspective, clus-
tering functional groups of genes and comparing regulatory
modules across organisms.

From our analysis, we find that iModulons are useful in
quickly determining the boundary of BGCs without the
need to generate specific gene knockouts or heterologous
expression strains. Various initiatives have been undertaken
to confirm the boundaries of BGCs, but existing, arbitrary
rules do not capture the important feature that they be
co-transcribed (85–87). Thus, in this study, we present im-
proved annotations for 11 P. aeruginosa BGCs. Interest-
ingly, we identified several iModulons of BGCs and secre-
tion systems that could play a significant role in establishing
P. aeruginosa infections in the lungs of CF patients. Several
BGCs, including the newly discovered RiPP discussed ear-
lier, are upregulated under the GlcNAc and supplemented
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Figure 7. Fear versus Greed trade-off relationship between iModulons. (A) The RpoS-2 iModulon activities were anti-correlated with the Translational-1
iModulon activities. All the stress conditions (hypoxia, iron starvation, osmotic stress, oxidative stress, and low pH) were highlighted with different colors.
(B) Scatter plot showing correlation between the RpoS-2 iModulon activity and the rpoS gene expression with the Pearson’s correlation coefficient of 0.61.

Cu growth environments. Both GlcNAc and Cu have been
previously shown to be altered in the microenvironments
of the CF lungs (52,62). We also identified upregulation of
iModulons related to the different secretion systems (H1-
T6SS and T3SS) in the presence of the GlcNAc. These se-
cretion systems are well known to increase the pathogenicity
in the host (69,88). Thus, we hypothesize that the BGCs and
the secretion system might play an important role in patho-
genesis of P. aeruginosa. Furthermore, Bernier et al. demon-
strated that several amino acids, at concentrations found in
CF sputum, promoted biofilm formation of P. aeruginosa
through the alteration of c-di-GMP signaling (73). In our
study, we found that the AAA and the BCAA related iMod-
ulons were upregulated in the biofilm mode of growth. This
highlights the ability of iModulons to identify important
physiological changes that impact P. aeruginosa metabolism
and fitness in altered environmental conditions, such as in
the lungs of patients with CF.

From the functional clustering of iModulons, we
annotated a previously uncharacterized iModulon
(Uncharacterized-13) that may be involved in addi-
tional iron acquisition. Furthermore, we found a potential
correlation of the bile and sulfur acquisition, which might
be an important factor for P. aeruginosa infection in CF
patients. We performed interspecies iModulon comparison
using our in house python function available in Pymodulon
package (7). We found 20 iModulons from P. aeruginosa
showing high correlation with the E. coli iModulons (Sup-
plementary Table S4), with the translational iModulon
being the most important among them. Additionally, we
find that the stress related iModulon (RpoS-2) shows
anti-correlation with the translational (Translational-1)
iModulon, which demonstrates the survival strategy of P.
aeruginosa under stress conditions in a ‘Fear-vs-Greed’
trade-off modality.

All the activity and expression profiles as well as the
details of iModulons would be very useful for microbi-
ologists to understand the large transcriptional plastic-
ity of P. aeruginosa. The code for this pipeline is avail-

able on Github. The framework of the Pseudo Precise
iModulons would be helpful to elucidate the regula-
tory metabolic networks, transcription factors, and vari-
ous cross-talk among mechanisms. To browse or search
dashboards for each iModulon and gene analyzed in
this study, visit iModulonDB.org (https://imodulondb.
org/dataset.html?organism = p aeruginosa&dataset =
precise364).

Previously, two studies used the network based methods
to identify the gene regulatory networks of P. aeruginosa
(89,90). However our iModulon approach is distinct and
more comprehensive than previous two approaches (Sup-
plementary Table S5). In this study, we implemented ma-
chine learning to identify the TRN in P. aeruginosa. We
incorporated high quality transcriptomics data, both in-
house generated as well as all publicly available data from
the SRA database, to get the independently co-regulated
sets of genes (iModulons) which provide a genome-wide,
top-down perspective of the TRN of P. aeruginosa. We
have demonstrated its usefulness for characterizing BGCs,
metabolism, and virulence, and its wide scope could enable
additional insights into many other processes in P. aerugi-
nosa. It may also serve as the basis for comparisons in regu-
lation across the phylogenetic tree, as we have demonstrated
with E. coli.
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(2018) Beyond nitrogen metabolism: nitric oxide, cyclic-di-GMP and
bacterial biofilms. FEMS Microbiol. Lett., 365,
https://doi.org/10.1093/femsle/fny029.

76. Christensen,L.D., van Gennip,M., Rybtke,M.T., Wu,H.,
Chiang,W.-C., Alhede,M., Høiby,N., Nielsen,T.E., Givskov,M. and
Tolker-Nielsen,T. (2013) Clearance of Pseudomonas aeruginosa
foreign-body biofilm infections through reduction of the cyclic
Di-GMP level in the bacteria. Infect. Immun., 81, 2705–2713.

77. Lin Chua,S., Liu,Y., Li,Y., Jun Ting,H., Kohli,G.S., Cai,Z.,
Suwanchaikasem,P., Kau Kit Goh,K., Pin Ng,S., Tolker-Nielsen,T.
et al. (2017) Reduced intracellular c-di-GMP content increases
expression of quorum sensing-regulated genes in. Front. Cell. Infect.
Microbiol., 7, 451.

78. Rojo,F. (2010) Carbon catabolite repression in Pseudomonas :
optimizing metabolic versatility and interactions with the
environment. FEMS Microbiol. Rev., 34, 658–684.

79. Smith,M.W. and Neidhardt,F.C. (1983) Proteins induced by
aerobiosis in Escherichia coli. J. Bacteriol., 154, 344–350.

80. Gyaneshwar,P., Paliy,O., McAuliffe,J., Popham,D.L., Jordan,M.I.
and Kustu,S. (2005) Sulfur and nitrogen limitation in Escherichia coli
K-12: specific homeostatic responses. J. Bacteriol., 187, 1074–1090.

81. Farrow,J.M. 3rd, Hudson,L.L., Wells,G., Coleman,J.P. and Pesci,E.C.
(2015) CysB negatively affects the transcription of pqsR and
pseudomonas quinolone signal production in Pseudomonas
aeruginosa. J. Bacteriol., 197, 1988–2002.

82. Pezo,R.C., Wong,M. and Martin,A. (2019) Impact of the gut
microbiota on immune checkpoint inhibitor-associated toxicities.
Therap. Adv. Gastroenterol., 12, 1756284819870911.

83. Llamas,M.A., Imperi,F., Visca,P. and Lamont,I.L. (2014)
Cell-surface signaling in Pseudomonas: stress responses, iron
transport, and pathogenicity. FEMS Microbiol. Rev., 38, 569–597.

84. Huang,S.C., Panagiotidis,C.A. and Canellakis,E.S. (1990)
Transcriptional effects of polyamines on ribosomal proteins and on
polyamine-synthesizing enzymes in Escherichia coli. Proc. Natl.
Acad. Sci. U.S.A., 87, 3464–3468.

85. Chavali,A.K. and Rhee,S.Y. (2018) Bioinformatics tools for the
identification of gene clusters that biosynthesize specialized
metabolites. Brief. Bioinform., 19, 1022–1034.

86. Umemura,M., Koike,H., Nagano,N., Ishii,T., Kawano,J.,
Yamane,N., Kozone,I., Horimoto,K., Shin-ya,K., Asai,K. et al.
(2013) MIDDAS-M: motif-independent de novo detection of
secondary metabolite gene clusters through the integration of genome
sequencing and transcriptome data. PLoS One, 8, e84028.

87. Vesth,T.C., Brandl,J. and Andersen,M.R. (2016) FunGeneClusterS:
predicting fungal gene clusters from genome and transcriptome data.
Synth. Syst. Biotechnol., 1, 122–129.

88. Hauser,A.R. (2009) The type III secretion system of Pseudomonas
aeruginosa: infection by injection. Nat. Rev. Microbiol., 7, 654–665.

89. Galán-Vásquez,E., Luna,B. and Martı́nez-Antonio,A. (2011) The
regulatory network of Pseudomonas aeruginosa. Microb. Inform. Exp.,
1, 3.

90. Huang,H., Shao,X., Xie,Y., Wang,T., Zhang,Y., Wang,X. and
Deng,X. (2019) An integrated genomic regulatory network of
virulence-related transcriptional factors in Pseudomonas aeruginosa.
Nat. Commun., 10, 2931.

https://doi.org/10.1093/femsle/fny029

