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Relevant Word order Vectorization 
for Improved Natural Language 
processing in electronic Health 
Records
Jeffrey thompson1,2, Jinxiang Hu1,2, Dinesh Pal Mudaranthakam1,2, David streeter1,2, 
Lisa Neums1,2, Michele park2, Devin C. Koestler1,2, Byron Gajewski1,2, Roy Jensen  2 & 
Matthew S. Mayo1,2

Electronic health records (EHR) represent a rich resource for conducting observational studies, 
supporting clinical trials, and more. However, much of the data contains unstructured text, presenting 
an obstacle to automated extraction. Natural language processing (NLP) can structure and learn from 
text, but NLP algorithms were not designed for the unique characteristics of EHR. Here, we propose 
Relevant Word Order Vectorization (RWOV) to aid with structuring. RWOV is based on finding the 
positional relationship between the most relevant words to predicting the class of a text. This facilitates 
machine learning algorithms to use the interaction of not just keywords but positional dependencies 
(e.g. a relevant word occurs 5 relevant words before some term of interest). As a proof-of-concept, we 
attempted to classify the hormone receptor status of breast cancer patients treated at the University 
of Kansas Medical Center, comparing RWOV to other methods using the F1 score and AUC. RWOV 
performed as well as, or better than other methods in all but one case. For F1 score, RWOV had a clear 
edge on most tasks. AUC tended to be closer, but for HER2, RWOV was significantly better for most 
comparisons. These results suggest RWOV should be further developed for EHR-related NLP.

Since 2015, the federal government has required most healthcare providers in the United States to use electronic 
medical records (EMR), or suffer penalties to Medicaid and Medicare reimbursement levels1. Incentives were 
also provided to create and use electronic health records (EHR), which are more comprehensive, although the 
terms are frequently used interchangeably. Many healthcare providers transitioned to EHR well in advance, and 
consequently, many hospitals now have years of patient records stored in a fashion that is relatively easy to search. 
In the era of big data, researchers quickly saw the potential to utilize EHR to advance their work in ways that were 
previously challenging2–6. For example, retrospective cohorts for exposures captured in patient records might 
relatively easily be assembled to study the impact of things like smoking or BMI on outcomes for diseases that are 
commonly treated at hospitals, such as cancer5. EHR have also greatly simplified the process of recruiting subjects 
for prospective studies and clinical trials6. However, the EHR was created for healthcare, not research, and the 
structure of the data leads to challenges in the research setting.

The biggest challenge in the use of EHR comes from extensive reliance on unstructured data. Healthcare 
providers typically use freeform notes to capture important information when interacting with patients. Certain 
types of reports, such as pathology reports, are also entered as free text. Often, some of the most important infor-
mation is stored in these fields, such as patient descriptions of symptoms, or clinicians’ observation of relevant 
signs of disease. Due to the volume of data generated by hospitals and other healthcare facilities, collecting data 
from free text is an arduous process to perform manually. Yet, particularly for clinical trials, this is currently the 
only available option at many institutions. Given the importance of clinical trials to drug development for a range 
of conditions, there is a critical need for methods that can automate and improve the efficiency of this process. 
This led many researchers to propose the application of natural language processing (NLP) techniques to these 
data7–12. NLP is not a specific method but rather a collection of approaches that involve extracting information 
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from language as it is naturally spoken or written. Increasingly, NLP efforts have been focused on EHR to enable 
researchers to capitalize on its valuable information.

Many NLP approaches are based on two main phases: data structuring and machine learning. In the data 
structuring phase, an algorithm attempts to impose some sort of regular structure on the data. In the machine 
learning phase, the newly structured data are used to learn some characteristic of the data (e.g. hormone recep-
tor status for breast cancer patients). The challenge of the data structuring phase is to find some way to impose 
structure on data that allows meaningful information to be extracted. There is typically a great deal of information 
in the arrangement of natural language, but it also typically varies a great deal in its arrangement from instance 
to instance. Therefore, it is difficult to reduce natural language to a structure that works well in most instances.

The field of NLP, as it is applied to EHR, is still developing, and there is a need for methods that are designed 
specifically to capitalize on the context of EHR. It is our hypothesis that methods specifically designed to exploit 
the nature of free text in the EHR should exhibit better performance than more general approaches. We note 
that while some fields may be unstructured, healthcare providers often state things in similar ways, for example 
estrogen receptor (ER) status may be given as any of the following: “estrogen receptor positive”, “ER+”, “positive 
for ER”, “positive staining for ER”, “ER: 30%”, and still other variations. Nevertheless, the vocabulary around ER 
status is relatively constrained. Additionally, the order of text in a medical record is frequently important, as mul-
tiple results might be included near each other in the text (e.g. “positive for ER, negative for PR”). As part of our 
own work to support research at the University of Kansas Cancer Center using the EHR13, we are investigating 
methods for using NLP to extract information from free text fields. In this article, we propose an approach we call 
Relevant Word Order Vectorization (RWOV). RWOV examines a text for its association to some target class (e.g. 
ER status). It identifies the most common terms that occur in relation to this target and then scores a text to show 
the relative position of these most relevant terms to the target. This differs from other methods by considering 
only the relative position of specific terms, which are assumed to be predictive, to a target term, with extreme 
flexibility in the true distance between those terms.

Methods
All work was performed in accordance with relevant guidelines and regulations under a protocol approved by the 
University of Kansas Medical Center Institutional Review Board, which included a waiver of informed consent.

Relevant word order vectorization (RWOV).  In this work, we focus on the data structuring part of the 
NLP problem, thus we will pair our vectorization-based approach with a couple of different machine learning 
algorithms to compare its performance to existing methods. The basis of our proposed method is to determine the 
structure of the most relevant words as they relate to predicting the class of text. Therefore, we call this approach 
Relevant Word Order Vectorization (RWOV). Pseudocode for the basic approach is shown in Algorithm 1.

In Algorithm 1, tokenize refers to breaking the input apart, first into sentences, then into words or symbols. 
The phrase excluded words refers to common “stop words” as they are often called, which for our purposes were 
the following: the, are, of, as, is, and, or, report, pathology. These were deemed not to be useful for our purposes, 
although this list could almost certainly be added to and refined. The variable m refers to the number of observa-
tions (i.e. pathology reports about individuals).

Algorithm 1. .

https://doi.org/10.1038/s41598-019-45705-y


3Scientific RepoRts |          (2019) 9:9253  | https://doi.org/10.1038/s41598-019-45705-y

www.nature.com/scientificreportswww.nature.com/scientificreports/

The idea behind RWOV is quite simple. RWOV is focused on predicting the class of a term of interest (TOI) 
from a block of text. Although EHR data are unstructured, nevertheless, there is a relatively concise vocabulary 
that is used by healthcare professionals when describing patient characteristics. Therefore, we should see the same 
terms occurring repeatedly in patient medical records. Furthermore, we propose that only a fraction of these 
terms indicate the meaning in relation to some particular term of interest. Nevertheless, we believe that the rela-
tive order of these “most relevant words” is important to the meaning of the text. RWOV creates a matrix, where 
each row represents a subject and each column a word. The most relevant words are those that co-occur the most 
frequently with respect to some TOI. We will call these the top words. The value in each cell of the matrix is either 
0, or the inverse of the number of top words that occur between the top word represented by the column and the 
TOI plus 1. The sign of the value indicates if the top word occurs before or after the TOI in the text. Therefore, the 
value in each cell drops away naturally in a nonlinear fashion from 1 (as close as possible to the TOI) to 0 (does 
not occur in the block of text).

=






 +

T i j
if term j does not occur in block i

d
where d is the number of most relevant terms between term j and TOI( , )

0,
1

1
,

Data.  For this study, we used a straightforward collection of data to evaluate the performance of our NLP 
approach compared to a few other existing approaches. Three datasets containing tumor pathology reports of 
women with breast cancer who sought treatment at the University of Kansas Medical Center in two recent years 
were included, one for each of the terms of interest we used in this study. Our goal is to identify the status of three 
important breast cancer biomarkers from the pathology report free text: estrogen receptor (ER), progesterone 
receptor (PR), and human epidermal growth factor receptor 2 (HER2). In order to keep the results more inter-
pretable, we limited the datasets to include only those reports that included a determination of hormone receptor 
status. The number of positive and negative subjects for each hormone receptor are shown in Table 1.

The data were labelled using two annotators who received training in reading pathology reports from clinical 
research coordinators who normally perform this task. Any discrepancies in annotation were then manually 
resolved (there were no disagreements due to interpretation).

With respect to Algorithm 1, the specific terms of interest (TOI) used in this study were “er”, “pr”, and “her2”. 
However, we allow the user to set aliases for TOI. In this case the aliases were for “er”: “estrogen” and “estrogen 
receptor”, for “pr”: “progesterone receptor”, and for “her2”: “her-2” and “her/”.

Note that in most cases, there were numerous biomarkers listed in a single block of text. For example, a report 
might list the following: “tumor cells are positive for CK7 and MOC31, negative for CK5/6, TTF-1, CK20, ER and 
PR. Her2 immunostain is positive. Ki-67 is reported 85%”. In most cases there were between 3–10 biomarkers 
delineated, adding to the challenge of correct classification.

Analysis.  Class imbalance is likely to be a factor when assessing performance with these types of data. 
Hormone receptor status is unbalanced in the population. Furthermore, depending on the study, researchers may 
be interested in one class or the other of the subjects. Complicating this, is the fact that some performance met-
rics, such as accuracy, can give the impression of good performance even when a method is unable to accurately 
predict the class of interest. Therefore, we will break down the performance by class (and train separate models 
to predict each class), and provide F1 and AUC as our major performance metrics, given that accuracy can be 
misleading in these circumstances. We will not attempt to use sophisticated class balancing approaches in this 
assessment, so that we can minimize the number of factors that are being considered. F1 is defined as follows:

=
× ×

+
+ +

+ +

F1
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TP FP
TP

TP FN
TP

TP FP
TP

TP FN

where TP, FP, and FN stand for the number of true positives, false positives, and false negatives respectively. In 
other words, it is the harmonic mean of the precision and the recall. We will assume that each of our NLP meth-
ods can produce a score representing its confidence in the predicted class label of a sample. For this work, we will 
also assume that a sample can only be one of two classes. Then the AUC is simply the probability that a random 
sample that is truly of one class is scored higher than a random sample from the other class.

We will compare the performance of our approach to two popular vectorization methods. The first is known 
as n-grams9,11, and the other is called word2vec14, combined with either of two machine learning algorithms: sup-
port vector machines (SVM), and artificial neural networks (NN). For n-grams, we rely on the implementation 
in CountVectorizer module of the scikit learn library for python. For word2vec, we used the genism library for 

Hormone Receptor Positive (%) Negative (%) Total

Estrogen receptor (ER) 491 (78.1) 138 (21.9) 629

Progesterone receptor (PR) 396 (66.1) 203 (33.9) 599

Human epidermal growth factor 2 (HER2) 42 (18.3) 187 (81.7) 229

Table 1. Counts of subjects with hormone receptors status.
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python, and chose the skip-gram model. For SVM, we used the SVC module, and for NN we use MLPClassifier. 
There are two important stages to consider, with their own associated algorithms: (1) data structuring or vectori-
zation and (2) learning and prediction. At both of these stages, important choices can be made that affect perfor-
mance. At the first stage, vectorization, there are hyperparameters for all of these approaches. For our approach, 
the only hyperparameter is the number of top (or most relevant) words to model. This was decided by training 
and testing on an independent dataset and then this setting was simply used for all the analyses here. This will be 
the recommended default settings for our method, but likely performance could be improved by using training, 
validation, and test data. However, we wanted to preserve our sample size in this case. For n-grams, we used a 
number of different settings to try and determine the effect of considering greater or fewer numbers of words. 
These were [1,2], [2,2], [1,3], [2,3], and [3,3]. The numbers represent the ranges of the number of words to build 
n-grams from. Furthermore, the vectors were transformed by IDF15. The word2vec approach has more hyper-
parameters, so we searched a number of parameter sets on the independent dataset to determine those with the 
best performance. We found settings that are in a relatively common range (size = 100 for dimensionality of the 
vectors, window = 6 for the maximum distance between a word and the predicted word, negative = 5 for sampling 
negative words). The neural network structure was determined using a grid search to determine the best struc-
ture for the n-grams and word2vec methods. Although the differences in performance were minimal overall, the 
same structure was found for both these methods. Therefore, we also used this structure for our own method, in 
order to give those methods any possible advantage. This structure contained three hidden layers using rectified 
linear units (ReLU) for their activations with 50, 50, and then 100 nodes respectively, and a final sigmoid layer for 
classification. L2 regularization of the network was also used, and the hyperparameter was determined separately 

Method

ER+ ER− PR+ PR− HER2+ HER2−

F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC

RWOV-NN 0.95 0.95 0.82 0.96 0.93 0.96 0.86 0.95 0.68 0.89 0.91 0.86

RWOV-SVM 0.90 0.88 0.70 0.88 0.76 0.72 0.58 0.71 0.53 0.77 0.84 0.77

SVM(1,2) 0.92 0.94 0.69 0.94 0.91 0.95 0.81 0.95 0.31 0.67 0.87 0.68

SVM(2,2) 0.93 0.94 0.72 0.94 0.91 0.96 0.82 0.96 0.37 0.73 0.90 0.74

SVM(1,3) 0.94 0.94 0.73 0.94 0.90 0.95 0.80 0.95 0.32 0.69 0.89 0.70

SVM(2,3) 0.94 0.94 0.75 0.94 0.91 0.95 0.82 0.95 0.40 0.72 0.91 0.74

SVM(3,3) 0.93 0.92 0.71 0.92 0.90 0.92 0.79 0.92 0.35 0.71 0.91 0.72

SVM-W2V 0.71 0.64 0.40 0.64 0.67 0.69 0.57 0.69 0.20 0.45 0.60 0.43

NN(1,2) 0.93 0.95 0.71 0.94 0.90 0.95 0.82 0.95 0.35 0.81 0.91 0.79

NN(2,2) 0.93 0.93 0.72 0.94 0.92 0.96 0.81 0.95 0.39 0.80 0.91 0.80

NN(1,3) 0.94 0.94 0.72 0.95 0.91 0.95 0.81 0.95 0.30 0.79 0.91 0.79

NN(2,3) 0.93 0.92 0.70 0.93 0.92 0.94 0.80 0.95 0.33 0.78 0.90 0.78

NN(3,3) 0.93 0.92 0.69 0.91 0.89 0.92 0.79 0.92 0.20 0.76 0.90 0.76

NN-W2V 0.85 0.76 0.40 0.75 0.81 0.75 0.63 0.78 0.07 0.43 0.87 0.41

Table 2. Classification performance based on vectorization method. RWOV had the most consistent 
performance across classification tasks. The best performing method for each metric on each task is shown in 
bold in the table. In only one case did RWOV-NN not have the best performance (PR− AUC), however it was 
very close to the top performer.

Method ER+ ER− PR+ PR− HER2+ HER2−

RWOV-SVM 1.54E-06 3.64E-07 9.35E-28 1.83E-24 6.09E-04 3.51E-02

SVM(1,2) 3.56E-01 1.85E-01 4.34E-01 9.54E-01 3.60E-08 2.60E-05

SVM(2,2) 4.75E-01 2.56E-01 8.66E-01 5.32E-01 4.30E-05 4.29E-03

SVM(1,3) 5.70E-01 3.08E-01 3.03E-01 8.78E-01 1.62E-07 7.30E-05

SVM(2,3) 5.04E-01 2.55E-01 3.16E-01 9.02E-01 1.23E-05 1.96E-03

SVM(3,3) 5.52E-02 1.99E-02 3.96E-03 4.40E-02 3.88E-06 3.98E-04

SVM-W2V 2.75E-15 1.26E-16 3.40E-19 7.95E-19 2.12E-07 1.82E-05

NN(1,2) 9.43E-01 3.81E-01 2.68E-01 5.94E-01 2.06E-02 8.48E-02

NN(2,2) 2.99E-01 1.93E-01 8.79E-01 3.90E-01 1.90E-02 1.65E-01

NN(1,3) 5.83E-01 5.43E-01 3.53E-01 7.23E-01 3.60E-03 5.34E-02

NN(2,3) 1.33E-01 6.79E-02 2.14E-01 8.44E-01 3.23E-03 4.08E-02

NN(3,3) 5.79E-02 1.13E-02 4.09E-03 9.24E-02 6.36E-04 1.99E-02

NN-W2V 1.42E-27 1.91E-27 5.89E-31 2.21E-27 1.60E-09 7.34E-07

Table 3. P-values for difference in AUC between RWOV-NN and other methods. Significant results are 
highlighted in bold.
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for each method using the independent dataset. Again, better performance could be achieved by tailoring this 
solution. As noted, we have taken measures to ensure the comparison is as fair as possible. In all comparisons, the 
exact same training and test data were used to compare all models. All results are presented as the average result 
over a threefold cross-validation.

Results
Our results (Table 2) showed that RWOV has consistently high accuracy in detecting ER, PR, and Her2 status 
compared to other vectorization approaches, using NN as a classifier. Furthermore, this result is true irrespective 
of which class is being predicted. In terms of class imbalance, the other approaches saw a noticeable decline in 
performance for the underrepresented class in most cases (i.e. ER−, PR−, and HER2+), particularly in terms of 
F1 score. This is despite the fact that class weighting was enabled for SVM. In every case, RWOV had the highest 
F1 score. This is particularly notable for the HER2+ class, which included only 42 subjects that were HER2+.

For both F1 score and AUC, RWOV-NN (i.e., RWOV using neural networks), had the best performance in 
every task with the exception of AUC for PR− classification. However, even in that case it was very close (0.95 
vs 0.96 for SVM with n-grams). In some cases, the other methods had equal performance to RWOV at par-
ticular settings. Difference in AUC were tested using the pROC package for the R statistical environment using 
the method of DeLong, et al.16 (Table 3). In most cases, there were not significant differences in terms of AUC. 
Although for HER2+, and most comparisons for HER2−, RWOV-NN had a significantly greater AUC than any 
other approach.

We created 95% bootstrap confidence intervals for all AUCs and F1 scores. For most tasks, RWOV-NN had not 
only the highest performance but also consistently narrow confidence intervals. These are shown in Figs 1 and 2  
respectively. ROC curves are shown in Fig. 3.
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Figure 1. 95% confidence intervals for AUC across breast cancer subtypes. Our approach is shown on the left, 
in black. RWOV-NN has consistently high AUC across the tasks.
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From Figs 1 and 2, it can be seen that in every case that there is a significantly superior method, it is RWOV 
that has the best performance. Figure 3 demonstrates that although there are typically not significant differences 
in AUC, RWOV-NN typically exhibits the best cut threshold allowing for a high true positive fraction and a low 
false positive fraction.

The top 30 words for each TOI are shown in Table 4, as well as the mean frequency of their occurrence per 
observation. Note that the words have been stemmed to reduce them to their common roots or parts, often by 
truncation, in some cases by substitution with an identifier. For example “tumor” is “tum” and “comma” and “,” 
are “comm”.

Discussion and Conclusions
Electronic healthcare records have enormous promise in facilitating research into improving patient treatment. 
However, much of the EHR is stored as unstructured data. Therefore, it is time-consuming to extract data from 
the EHR to pre-screen patients for clinical trials, or perform feasibility analysis for recruitment, because these 
records must be manually examined. Additionally, useful observational studies could be performed, if it were not 
for this major limitation. Nevertheless, given that the primary purpose of EHR is to support patient care, it would 
be inappropriate to change its structure purely to facilitate research. Therefore, it is imperative to develop methods 
for structuring and learning from these data that can facilitate these goals.

In this study, we have demonstrated that our method, Relevant Word Order Vectorization (RWOV), com-
bined with a neural network, shows great promise in tackling this challenge. On a relevant use case, of identifying 
the hormone receptor status of breast cancer patients, RWOV showed consistently high accuracy across all three 
classification tasks. In most cases, it had the highest accuracy of any method examined in this study. Of particu-
lar importance, RWOV maintained high accuracy in classes with the poorest representation. This is necessary, 
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Figure 2. 95% confidence intervals for F1 across breast cancer subtypes. Our approach is shown on the left, in 
black. In every case, RWOV-NN has the highest F1 score across the tasks.
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because for some studies, it will be necessary to include patients based on these poorly represented classes, and 
poor accuracy might lead to some subjects being unnecessarily excluded (for example HER2+).

The reason for RWOV’s performance on these tasks seems clear. It depends on a unique vectorization method 
that determines the most important words for classifying a particular case, in addition to their relative location 
with reference to a term of interest. This relevant word ordering is well suited to the natural language processing 
in electronic health records, where the data are semi-structured, due to the repetitive nature of how healthcare 
providers often enter text. Our algorithm is able to take advantage of this semi-structured data to be a more pow-
erful learner. The relatively poor performance of word2vec, which is a well-respected approach, is likely due to the 
small sample size. Typically, it depends on larger samples to perform well.

Although RWOV performed at least as well as the other methods for the most common class, it particularly 
shone in predicting the least common class (ER−, PR−, and HER2+). This was partricularly evident in the case 
of HER2+. For this dataset, there were relatively few positive observations (just 42 of the 229 total observations), 
and it has a higher semantic complexity. Although we could not determine a single reason for its performance 
edge for this problem, in at least some cases it able to recognize a class with a more complex set of dependencies. 
For example, RWOV-NN and RWOV-SVM correctly classified an observation with a snippet of text like the fol-
lowing (full text longer): “ER: Positive (85%) PR: Positive (80%) HER2: Equivocal (2+) Ki-67: 23% FISH analysis 
for HER2/neu was performed and was reportedly negative.” The other methods were unable to (with the excep-
tion of NN-W2V). For HER2, when the initial test is equivocal, an additional test is performed (FISH analysis), 
making the classification more complex, especially given the limited sample size. While many approaches focus 
on finding terms that differentiate text, RWOV focuses on finding positional interactions of terms, which may 
give it an edge in these scenarios.
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Figure 3. ROC curves for our method, and the best of each of the comparison methods. RWOV-NN shows 
more clinically useful cut points with low false positives and high true positives are possible consistently across 
the tasks.
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This initial approach, although promising, is only the beginning. There are many ways that our method could 
likely be improved. The learning algorithm was off the shelf, in order to provide proof-of-concept but would 
likely benefit from more customization, such as tuning the structure of the neural network and applying network 
optimization methods. Also, we were limited in the amount of data that we could provide, due to the laborious 
process of hand-labeling examples that is required. Therefore, we think we could improve performance by imple-
menting a semi-supervised approach, in addition to a larger training dataset. We expect that the ideas put forward 
in this article will stimulate research into other approaches that account for the unique characteristics of EHR. At 
the same time, RWOV will directly benefit research at the University of Kansas Cancer Center by increasing and 
improving the data available for projecting the feasibility of studies at this institution. To help other institutions 
benefit from this approach, RWOV is available for Python in a public code repository at https://github.com/
jeffreyat/RWOV.git.
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