
1

Vol.:(0123456789)

Scientific Reports | (2022) 12:3720 | https://doi.org/10.1038/s41598-022-07404-z

www.nature.com/scientificreports

Photonic reinforcement learning
based on optoelectronic reservoir
computing
Kazutaka Kanno* & Atsushi Uchida

Reinforcement learning has been intensively investigated and developed in artificial intelligence in
the absence of training data, such as autonomous driving vehicles, robot control, internet advertising,
and elastic optical networks. However, the computational cost of reinforcement learning with deep
neural networks is extremely high and reducing the learning cost is a challenging issue. We propose
a photonic on-line implementation of reinforcement learning using optoelectronic delay-based
reservoir computing, both experimentally and numerically. In the proposed scheme, we accelerate
reinforcement learning at a rate of several megahertz because there is no required learning process
for the internal connection weights in reservoir computing. We perform two benchmark tasks,
CartPole-v0 and MountanCar-v0 tasks, to evaluate the proposed scheme. Our results represent the
first hardware implementation of reinforcement learning based on photonic reservoir computing and
pave the way for fast and efficient reinforcement learning as a novel photonic accelerator.

Machine learning in artificial intelligence has been the primary automation tool used in processing large
amounts of data in communications and information technologies1–4. Reinforcement learning is a machine
learning scheme involved in training an action policy to maximize the total reward in a particular situation or
environment5. Various applications have been studied for reinforcement learning, such as autonomous driving
vehicles6, robot control7, communication security8, and elastic optical networks9. Recently, many algorithms
used for reinforcement learning have been actively developed. For example, an algorithm based on a deep neural
network (Agent57) has been proposed in 202010. This scheme has achieved a score that is above the human base-
line on all 57 Atari 2600 games. In addition, simulated policy learning is one of the model-based reinforcement
learning schemes11. This algorithm requires fewer training time steps. Moreover, a multi-agent reinforcement
learning scheme (AlphaStar) has been proposed12. This scheme achieves real-time processing at 30 ms and almost
outperforms human players in the online game StarCraft II.

Deep neural networks have often been used for reinforcement learning based on Q-learning, known as the
deep Q network13. The deep Q network is trained to produce the value of action in a particular state. The tech-
nique of deep Q networks has contributed to the development of reinforcement learning. However, learning
the connection weights of deep neural networks using reinforcement learning entails high computation costs
because of the repeated training of network weights from vast playing data14,15. This fact indicates the need for
a large number of parameters used for learning to improve the performance of deep neural networks, known as
overparameterization15–17. Large-scale overparameterization has several hundred million parameters for deep
learning15, and the training time is required for days or weeks using the deep Q network on GPU15. Several
techniques have been proposed to reduce learning costs, such as prioritized experienced replay18. However, the
prioritized experienced replay speeds up only by a factor of two. A more efficient implementation than deep
neural networks is required for reinforcement learning.

Reservoir computing has attracted significant attention in various research fields because it is capable of fast
learning that results in reduced computational/training costs compared to other recurrent neural networks19,20.
Reservoir computing is a computation framework used for information processing and supervised learning21,22.
The main advantage of reservoir computing is that only the output weights (readout weights) are trained using
a simple learning rule, realizing a fast-learning process, and enabling a reduction in its computational cost.

Recently, physical implementations of reservoir computing and its hardware implementations have been
intensively studied23–28. Specifically, the photonic implementation of reservoir computing based on the idea of
photonic accelerators29 can realize fast information processing with low learning costs30–35. A previous study
reported the realization of speech recognition at 1.1 GB/s using photonic reservoir computing36. This result

OPEN

Department of Information and Computer Sciences, Saitama University, 255 Shimo‑Okubo, Sakura‑ku, Saitama
City, Saitama 338–8570, Japan. *email: kkanno@mail.saitama-u.ac.jp

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-07404-z&domain=pdf

2

Vol:.(1234567890)

Scientific Reports | (2022) 12:3720 | https://doi.org/10.1038/s41598-022-07404-z

www.nature.com/scientificreports/

suggested the reduction of computational cost and fast processing speed in photonic reservoir computing. How-
ever, photonic reservoir computing has been applied to supervised learning, and no hardware implementation
of reservoir computing for reinforcement learning has been reported yet.

Hardware implementations including photonics for reinforcement learning have a demand for the appli-
cations in edge computing. In edge computing, data processing is executed close to the data source without
connecting to a powerful server computer through a network37. Edge computing requires low power, memory
budget, processing speed, and efficiency37. Therefore, the hardware implementation of reinforcement learning
based on photonic reservoir computing is a promising candidate for edge computing.

Here, we demonstrate the photonic on-line implementation of reinforcement learning based on optoelectronic
delay-based reservoir computing, both experimentally and numerically. The photonic reservoir computing is
implemented based on an optoelectronic time-delayed system30,38,39 and is used to select an agent’s action to
evaluate the action-value function. The output weights in reservoir computing are trained based on the reward
obtained from the reinforcement learning environment, where Q-learning is used to update the output weights
in reservoir computing. We perform two benchmark tasks, CartPole-v0 and MountainCar-v0, for the evalua-
tion of our proposed scheme. Our demonstration is a novel on-line hardware implementation of reinforcement
learning based on photonic reservoir computing.

Results
Reinforcement learning based on reservoir computing.  Figure 1 shows a schematic of reinforce-
ment learning based on reservoir computing, incorporating a decision-making agent and an environment5. The
agent affects the future state of the environment by its actions, and the environment provides rewards to every
action of the agent. The objective of the agent is to maximize the total reward. However, the agent has no infor-
mation regarding a good action policy. Here, we consider the action-value function Q(sn, an) for state sn and
action an at the n-th time step5. The agent selects an action with the highest Q value in each state, and the total
reward is increased if the agent initially knows the value of Q. However, the Q function is usually unknown.
In various previous studies, the Q function was replaced by deep neural networks. Deep neural networks were
trained to approximate the Q function using some methods, including Q-learning13. Here, the Q function is
replaced by photonic delay-based reservoir computing to reduce the learning cost and realize fast processing.
The reservoir computing consists of three layers: input, reservoir, and output. We explain about the three layers
for reinforcement learning. Table 1 summarizes the variables used in the following explanation.

In delay-based reservoir computing, the reservoir consists of a nonlinear element and a feedback loop40. In
this scheme, the nodes in the network are virtually implemented by dividing the temporal output into short node
intervals θ . The number of nodes N is given by N = τ/θ , where τ is the feedback delay time of the reservoir. The
definition of the virtual nodes results in an easier implementation because it does not require preparing many
spatial nodes to construct a network.

In the input layer, the n-th input data into the reservoir is the state vector given by the environment
s
T
n =

(

s1,n, s2,n, · · · , sNs ,n

)

 , where Ns is the number of state elements and the superscript T represents the trans-
pose operation. The state vector is preprocessed via the masking procedure before injecting into the reservoir
as follows40,41:

where M is the mask matrix with N × (Ns + 1) elements, µ is the scaling factor for the input state sn . The value
of the mask is randomly obtained from a uniform distribution of [−1, 1] . The mask acts as random connection
weights from input data to reservoir nodes. We represent the i-th element of the preprocessed input vector un
as ui,n . The vector element ui,n corresponds to the input data into the i-th virtual node. An input signal injected
into the reservoir is generated by temporally stretching the elements of un to the node interval θ as follows:

where Tm is the signal period of each input data and is called the mask period. The period Tm is given by Tm = Nθ
and corresponds to the feedback delay time of the reservoir τ . The input signal u(t) is injected into the reservoir
to generate a response signal.

(1)u
T
n =

(

µs1,n,µs2,n, . . . ,µsNs ,n, b
)

M =

(

µsTn , b
)

M,

(2)u(t + (n− 1)Tm) = ui,n ((i − 1)θ ≤ t < iθ),

Nonlinear
Node

Feedback

Node

Environment
Action

Reward

State

Input layer
Reservoir

Output layer

Figure 1.   Schematic diagram of reinforcement learning based on delay-based reservoir computing.

3

Vol.:(0123456789)

Scientific Reports | (2022) 12:3720 | https://doi.org/10.1038/s41598-022-07404-z

www.nature.com/scientificreports/

We note that an input bias b is added to Eq. (1). The input bias prevents the signal un from being
equal to zero when the elements of sn are close to zero. Moreover, the input bias leads to different non-
linearities for each virtual node. We consider the input data ui,n for the i-th virtual node defined as
µ
(

m1,is1,n +m2,is2,n + · · · +mNs ,isNs ,n

)

+ bmNs+1,i , where mp,q is an element of the mask matrix M in the row
p and column q . The representation of ui,n indicates that the input data for the i-th node oscillates with the
center on the bias bmNs+1,i . The center point of the oscillation in the input data is different for each node because
the random element mNs+1,i of the mask matrix is different for each node. A different part of the nonlinear func-
tion that represent the relationship of the input and output in the reservoir is used for each node because of the
bias bmNs+1,i , leading to different nonlinearities for each node. Therefore, adding an input bias enhances the
approximation of the reservoir.

In the output layer, the output of reservoir computing is calculated from the weighted linear combination of
virtual node states. The reservoir output is considered as the action-value function Q(sn, a) for reinforcement
learning. Then, the action-value function Q(sn, a) is given as:

where vj,n is the j-th virtual node state for the n-th input and wj,a is the output weight corresponding to
the j-th virtual node for the action a . The vector vn and wa are given as vTn =

(

v1,n, v2,n, . . . , vN ,n

)

 and
w
T
a =

(

w1,a,w2,a, . . . ,wN ,a

)

 , respectively. The number of reservoir outputs corresponds to the number of actions.
In reinforcement learning, the action with the highest Q value is selected.

Here, we use Q-learning algorithm to train the reservoir weights5. The update rule based on Q-learning is off-
policy learning5, where the action used for training differs from the selected action. In the Q-learning method, the
maximum of the Q function maxaQ(sn+1, a) for the action a at the next state sn+1 is used, and the actual action is
not always used for training. In our scheme, Q(sn, a) is approximated using reservoir computing by considering
a one-step temporal difference error δn = rn+1 + γmaxaQ(sn+1, a)− Q(sn, an) and the square of the temporal
difference error as the loss function. Then, the update rule for the reservoir weights is:

where α is the constant step-size parameter and γ is the discount rate for a future expected reward. These hyper-
parameters should be appropriately selected for a successful computation. We set α as a small positive value and
is related to the training speed. Moreover, γ is set to a positive value of less than one. The details of the training
algorithm are described in the “Methods” section.

Our scheme is demonstrated in both numerical simulation and experiment using an optoelectronic delay
system42. Figure 2a shows the schematic model of an optoelectronic delay system. The system has been applied to
explore complex phenomena such as dynamical bifurcation, chaos, and chimera states43. Moreover, the applica-
tion of this system in physical reservoir computing has also been studied37,38. The system is composed of a laser

(3)Q(sn, a) =
∑N

j=1
wj,avj,n = w

T
a vn,

(4)wan ← wan + α

[

rn+1 + γmax
a

(

w
T

a vn+1

)

− w
T

an
vn

]

vn

Table 1.   Parameters used for reinforcement learning.

Symbol Parameter

N Number of virtual nodes in reservoir

τ Delay time of reservoir

θ Node interval used for time-multiplexing

sn Vector for environmental state at the time step n for reinforcement learning task

si,n i -th element of the state vector sn
Ns Number of elements for state vector sn
M N × (Ns + 1) matrix for input mask in preprocessing input signal

mp,q Element of the mask matrix M in row p and column q

un Input vector generated from the state sn after preprocessing

ui,n i -th element of the input vector un
µ Input scaling coefficient introduced in preprocessing

b Input bias introduced in preprocessing

u(t) Input signal generated from temporally stretching input vector un
Tm Mask period given by Ns × θ

Q(sn , a) Action-value function for the state sn and the action a

wa Weight vector for the reservoir output corresponding to the action a

wi,a j-th element of the output weight wa corresponding to the action a

vn Node vector extracted from the temporal response of the reservoir to the input state

vi,n j-th element of the node vector vn for the n-th input state

α Constant step-size parameter for updating the reservoir weights in Q-learning

γ Discount rate for future expected reward in Q-learning

4

Vol:.(1234567890)

Scientific Reports | (2022) 12:3720 | https://doi.org/10.1038/s41598-022-07404-z

www.nature.com/scientificreports/

diode (LD), a Mach–Zehnder modulator (MZM), and an optical fiber for delayed feedback. In particular, the
modulator provides a nonlinear transfer function cos2(·) from the electrical inputs to the optical outputs. The
optical signal is transmitted through the optical fiber with a delay time of τ and is transformed into an electric
signal using a photodetector (PD). The electric signal is fed back to the MZM after the signal passes through
an electric amplifier (AMP). An input signal for reservoir computing is injected into the reservoir by coupling
with the feedback signal. The temporal dynamics of the system is described using simple delay differential
equations44. We use delay differential equations for the numerical verifications of the proposed scheme. The delay
differential equations are described in the “Methods” section. In our experiment, we employ a system similar
to the scheme shown in Fig. 2a, except for the absence of the delayed feedback, as shown in Fig. 2b. Thus, the
proposed system is considered as an extreme learning machine, which has been studied as a machine-learning
scheme45. The details of the experimental setup and online procedure for reinforcement learning are described
in the “Methods” section.

In both numerical simulation and experiment, the number of nodes N is 600, and the node interval θ is 0.4 ns.
Then, the mask interval Tm is given as Tm = Nθ = 240 ns. The feedback delay time is fixed at the same value as
the mask interval in various studies on delay-based reservoir computing36,40. However, it has been reported that
the slight mismatch between the delay time and the mask interval enhances the performance of information
processing30,46. Therefore, we set the feedback delay time to τ = 236.6 ns ( τ = Tm − θ).

Numerical and experimental results of reinforcement learning using benchmark tasks.  We
evaluate our reinforcement learning scheme based on delay-based reservoir computing using a reinforcement
learning task, known as CartPole-v0 in OpenAI Gym47. An un-actuated joint attaches a pole to a cart that moves
along a frictionless track. The goal of the task is to keep the pole upright during an episode. An episode has a
length of 200 time steps. A reward of +1 is provided for every time steps if the pole remains upright. The task
is solved when the pole remained upright for 100 consecutive episodes. The details of the CartPole-v0 task are
described in the “Methods” section.

Figure 3a shows the numerical results of the total reward as the episode is increased for the CartPole-v0 task.
The total reward of 200 indicates that the pole remains upright over an episode and the task is solved successfully.
We compare the cases with and without the input bias b . The input bias is applied ( b = 0.80 ) for the case of the
black curve in Fig. 3a. The pole cannot be kept upright for the first several episodes. However, the total reward
becomes 200 and the pole becomes upright as the number of episodes increases. The total reward of 200 is always
obtained in consecutive 100 episodes from the 31th to 130th episode. Therefore, the CartPole-v0 task is success-
fully solved. However, for the case without input bias ( b = 0 , the red curve), the total reward does not reach 200
and the pole cannot keep upright for all episodes. The comparison of the black and red curves indicates that the
input bias is required to solve the task. When no input bias is introduced, it was observed that only one action
(push to the left or right) is selected regardless of the state. When the input bias is introduced, the action that
prevents the pole from tilting is selected. It is considered that the input bias contributes to training the reservoir
so that the reservoir can identify the state.

Our scheme requires 130 episodes for solving the task and it is faster than the result presented in48, where
more than 150 episodes are required for solving the task using a deep neural network with prioritized experienced
replay. Another scheme using double deep neural network provided a similar performance as our scheme49.
The double deep neural network requires a similar number of episodes to our scheme; however, the number of

LD
MZM PD

�

AMPBPFbias

Input layer(a)

AWG OSCPC

LD ISO MZM ATT PDISO

Amp
Bias

(b)

Figure 2.   (a) Schematic diagram of the optoelectronic delay system for reservoir computing. An input signal
is preprocessed before injecting into the reservoir and added to a feedback signal. Reservoir node states are
extracted from the temporal response of the reservoir and are shown as red circles. In the schematic diagram,
MZM is the Mach–Zehnder modulator, PD is the photodetector, BPF is the bandpass filter, and AMP is the
electric amplifier. (b) Experimental setup for reinforcement learning. The system has no delayed feedback,
and the detected signal at the PD is not fed back to the MZM. In the personal computer (PC), environmental
states in reinforcement learning tasks are calculated and the masking procedure is applied. The input data
preprocessed in the PC is transferred to the arbitrary waveform generator (AWG). The optical signal from the
MZM is detected at the PD, and the detected power is adjusted using the optical attenuator (ATT). The detected
signal at the PD is measured at the digital oscilloscope (OSC). The AWG and the OSC are controlled by the PC
in an on-line manner.

5

Vol.:(0123456789)

Scientific Reports | (2022) 12:3720 | https://doi.org/10.1038/s41598-022-07404-z

www.nature.com/scientificreports/

training parameters is large (150,531 parameters). Therefore, our scheme requires less training costs than these
existing schemes.

Figure 3b shows the experimental result for the CartPole-v0 task. The input bias is introduced for the black
curve. The total reward reaches 200 at the 110th episode and keeps the total reward until the 300th episode,
indicating that the task is successfully solved in the experiment. We found that the total reward increases slowly
in the experimental result than in the numerical result. We speculate that the measurement noise in the experi-
ment perturbs the Q value estimated by the reservoir. The noise prevents the increase of the total reward. A
proper action may not be selected due to the influence of noise when the difference between the Q values of the
two actions is too small. Therefore, it is necessary to learn the Q values until their difference becomes sufficiently
large to ensure the selection of a proper action in a noisy environment. In addition, time-delayed feedback may
affect the speed of increase in the total reward. The time-delayed feedback provides a memory effect for the
reservoir. If the reservoir has a memory effect, it can learn the state-action value function including the past
states. The introduction of time-delayed feedback is equivalent to expanding the dimension of the input state
space and can approximate a complex state-action value function. Here, no time-delayed feedback is introduced
in the experiment, therefore, the speed of increase in the total reward in the experiment is slower than that in
the numerical simulation.

We demonstrate another benchmark task called the MountainCar-v0 task provided by OpenAI Gym47. This
task aims to make a car reach the top of the mountain by accelerating the car to the right or left. One episode
for the task consists of 200 steps. A reward of − 1 is given for every step until an episode ends. An episode is
terminated if the cart reaches the top of the mountain. Therefore, a higher value of the total reward is obtained
if the cart reaches the top of the mountain faster. Solving this task is defined as obtaining an average reward of
− 110 for 100 consecutive trials47. The details of the MountainCar-v0 task are described in the “Methods” section.

Figure 4a shows the numerical results of the total reward in each episode for the MountainCar-v0 task. The
black curve in Fig. 4a shows the total reward for each episode, and the red curve represents the moving average
of the total reward calculated from the past 100 episodes. The total reward is − 200 in the first several episodes,
indicating that the car does not reach the top of the mountain at all. The total reward increases as the number of
episodes increases, indicating the car reaches the top of the mountain. The average reward exceeds − 110 at the
267th episode, indicating that the task is solved using our scheme.

Figure 4b shows the experimental result for the MountainCar-v0 task. The moving average of the total reward
(red curve) increases as the number of episodes increases. However, the moving average does not reach the blue
dashed line (the total reward of − 110). The number of consecutive episodes at which a high value of the total
reward is obtained is small in the experiment. For example, a large value of the total reward from − 120 to − 80
is obtained during 23 consecutive episodes from the 170th episode in the black curve of Fig. 4b. However, the
moving average (red curve) cannot reach the reward of − 110. The reason the reservoir cannot obtain a large value
of the total reward is due to a negative value of the reward. The negative value of the reward makes the reservoir
trained not to select an action in a state. Therefore, the reservoir cannot continue to take an action policy that
gives a large value of the total reward.

We consider utilizing a fixed reservoir weight to prevent from decreasing the total reward due to a nega-
tive reward. We use the reservoir weights obtained at the 180th episode in the experiment of Fig. 4b, and the
weights are fixed during the experiment, i.e., the weights are not updated in the training procedure. Figure 4c
shows the total reward for each episode in this experiment. The moving average of the total reward (red curve)
exceeds − 110 at the 141st episode. Therefore, the task is solved if the weights are not updated. Additionally, this
indicates that the trained weight works appropriately even though the experimental setup conditions are slightly

0

50

100

150

200

0 50 100 150 200 250 300

To
ta
lr
ew

ar
d

Episode index

With input bias

Without input bias

(a) (b)

0

50

100

150

200

0 50 100 150 200 250 300

To
ta
lr
ew

ar
d

Episode index

With input bias

Without
input bias

Figure 3.   (a) Numerical and (b) experimental results of the CartPole-v0 task. The result shows the total reward
for each episode. The total reward of 200 indicates that the pole keeps upright over an episode. The black and red
curves show the case with and without the input bias ( b = 0.8 and b = 0.0 ), respectively.

6

Vol:.(1234567890)

Scientific Reports | (2022) 12:3720 | https://doi.org/10.1038/s41598-022-07404-z

www.nature.com/scientificreports/

changed, such as the detected power at the PD. Therefore, the trained weights are robust against perturbations
in the system parameters.

We numerically investigate the dependence of the performance on the input bias in the MountainCar-v0
task. Figure 5 shows the numerical results of the maximum value of the average total reward as the input bias b
is changed for the MountainCar-v0 task. In Fig. 5a, the solid red curve represents the maximum moving average
of the total reward in 1000 episodes. The maximum total reward is averaged for ten trials, with each trial consist-
ing of 1000 episodes. The total reward is close to zero for a small input bias ( b ≤ 0.5 ). A large total reward value
is obtained for a large input bias ( b > 0.5 ). This result indicates that the input bias is necessary for solving the
task. The input bias with a value close to one is suitable for increasing the total reward. The result is related to
the normalized half-wave voltage ( Vπ ) of the MZM, where the normalized voltage is equal to one in our numeri-
cal simulation. The input bias nearly equal to one can produce the nonlinearity of the MZM ( cos2(·) ), and the
nonlinearity can assist in identifying different input states.

-200

-180

-160

-140

-120

-100

-80

0 50 100 150 200 250 300

To
ta
lr
ew

ar
d

Episode index

-200

-180

-160

-140

-120

-100

-80

0 50 100 150 200 250 300

To
ta
lr
ew

ar
d

Episode index

(a) (b)

-200

-180

-160

-140

-120

-100

-80

0 50 100 150

To
ta
lr
ew

ar
d

Episode index

(c)

Figure 4.   (a) Numerical and (b) experimental results of the MountainCar-v0 task. The black curve represents
the total reward for each episode. The moving average of the total reward is represented as the red curve. The
average is calculated from the past 100 episodes. The total reward of −200 indicates that the car does not reach
the top of the mountain. A larger value of the total reward indicates that the car reaches the top of the mountain
at a smaller number of steps. (c) The total reward for each episode, where the reservoir weight at the 180th
episode in (b) is used in experiment. The weight is not updated in (c). The blue dashed line corresponds to the
total reward of −110 that indicates that the task is successfully solved.

-200

-180

-160

-140

-120

-100

0 0.5 1 1.5

M
ax

.v
al
ue

of
to
ta
lr
ew

ar
d

Input bias b

-200

-180

-160

-140

-120

-100

0 0.5 1 1.5

M
ax

.v
al
ue

of
to
ta
lr
ew

ar
d

Feedback strength ��

b = 0.5

b = 0.7

b = 0.9

(a) (b)

Figure 5.   (a) Maximum of the average total reward as a function of the input bias b . The red solid (with
diamonds) and blue dashed (circles) curves represent the case with ( κ = 0.9 ) and without ( κ = 0 ) delayed
feedback. The average total reward is calculated using a moving window from the past 100 episodes. The error
bar represents the maximum and minimum values for 10 trials. (b) Maximum of the average total reward as a
function of the feedback strength κ . The input bias is set to be b = 0.9 , 0.7 , and 0.5 for the black solid (circles),
red dashed (diamonds), and blue dotted (squares) curves, respectively. The plotted value is the maximum of the
average total reward in 100 consecutive episodes. The error bar represents the maximum and minimum values
for 10 trials.

7

Vol.:(0123456789)

Scientific Reports | (2022) 12:3720 | https://doi.org/10.1038/s41598-022-07404-z

www.nature.com/scientificreports/

Furthermore, we investigate the effect of the time-delayed feedback in the numerical simulation. In Fig. 5a,
the blue dashed curve represents the maximum moving average of the total reward generated using the reservoir
without time-delayed feedback ( κ = 0 ). At the input bias of b = 0.85 , the total reward of − 130.29 is obtained.
Thus, the reservoir trains for the car to reach the top of the mountain even though the reservoir has no delayed
feedback. However, the performance is lower than in the case with delayed feedback (the solid red curve).
Therefore, the presence of the time-delayed feedback can enhance the performance of reinforcement learning.

For more detailed investigation, Fig. 5b shows the dependence of the total reward on the feedback strength κ .
Different values of the input bias are used for each of the three curves. For the small value of the input bias (blue
curve, b = 0.50 ), the total reward is almost equal to − 200 for different feedback strengths. This result indicates
that the adjustment of the feedback strength cannot enhance the performance when the input bias is too small.
For the black ( b = 0.90 ) and red ( b = 0.70 ) curves, a large value of the total reward is obtained at the feedback
strength of approximately one. However, the total reward decreases as the feedback strength increases over one.
When the feedback strength becomes larger than one, the temporal dynamics of the optoelectronic system
changes from a steady state to a periodic oscillation, though the reservoir has no input signal. The reservoir may
produce different response signals to the same driving inputs when the temporal dynamics of the reservoir is
periodic or chaotic. Therefore, the reservoir does not have consistency50, which is the reproducibility of response
signals in a nonlinear dynamical system driven repeatedly by a same input signal. If there is no consistency in
the response signals of the reservoir, the reservoir cannot successfully learn the Q function since different input
states cannot be identified. Therefore, the reservoir provides high performance at the vicinity of the bifurcation
point κ = 1 , called the edge of chaos. In reservoir computing, it has been reported that the condition of the edge
of chaos can enhance the performance in many studies51. In addition, our results show that the performance for
reinforcement learning can be enhanced at the edge of chaos.

Discussion
We introduced an input bias for preprocessing the input state in reinforcement learning. The input bias has the
same role as a bias introduced in the general neuron models that controls the firing frequency. Our results show
that the input bias is necessary for solving the reinforcement learning tasks in our scheme. Here, the activation
function of the virtual node of the reservoir is cos2(·) , and an input bias is used to control the initial position of
cos2(·) function. For example, if the input bias is set near the extreme value of cos2ψ ( ψ = 0 , ±nπ/2 , and n is
an integer), the reservoir does not respond well with respect to the change in the input signal. In contrast, when
the input bias is set to a quadrature point ( ψ = ±π/4 ), the reservoir shows a large response with respect to the
change in the input signal. Therefore, it is possible to adjust the sensitivity of the virtual nodes to the input signal
by changing the input bias. In the presence of the input bias, different input states are distinguished well, which
enhances the performance of reinforcement learning based on reservoir computing. We show that input bias
has a significant effect on reinforcement learning in our scheme.

We emphasize that one action of reinforcement learning is potentially determined by the processing rate of
reservoir computing at a frequency of 4.2 MHz in our scheme, where one virtual network is constructed from a
time series with Nθ = 240 ns ( N is 600 and θ is 0.4 ns). Further, we increase the processing speed by decreasing
the node interval θ with a faster photonic dynamical system. In addition, the size of the trained parameters (600)
is smaller than that for deep neural networks (e.g., 480 Mega parameters for ImageNet15–17). The hardware imple-
mentation of photonic reservoir computing is promising for realizing fast and efficient reinforcement learning.

The number of training parameters is reduced in reinforcement learning based on reservoir computing,
compared with deep neural networks. However, reservoir computing may produce less performance than deep
neural networks for more complex tasks. Therefore, our future works are the application of our scheme to more
complex tasks and the comparison with conventional algorithms based on deep neural networks. In addition,
the effect of memory provided by the reservoir is an important issue. Memory capacity is one of the essential
characteristics of reservoir computing. The reservoir that incorporates past information to train the Q function
could perform better on the tasks that require long-term memory. Therefore, the investigation of the memory
effect of the reservoir on the performance of reinforcement learning is another research topic in the future work.

To summarize our study, we numerically and experimentally demonstrated the on-line implementation
of reinforcement learning based on optoelectronic reservoir computing, which consists of a laser diode, a
Mach–Zehnder modulator, and a fiber delay line. We demonstrated two benchmark tasks of the CartPole-v0
and MoutainCar-v0 tasks using our proposed scheme. The results show that the state-action value function in
reinforcement learning is trained, and their tasks are solved successfully using photonic reservoir computing. To
the best of our knowledge, this is the first on-line hardware implementation of reinforcement learning based on
photonic reservoir computing. In particular, reservoir computing is used to approximate the Q function, and the
output weights of the reservoir are trained with Q-learning. The high-dimensional mapping between the states
and Q values for reinforcement learning is trained by reservoir computing. The speed of one action is determined
by the processing rate of reservoir computing at 4.2 MHz (240 ns) in our experiment.

The hardware implementation of reinforcement learning based on photonic reservoir computing is promis-
ing for fast and efficient reinforcement learning as a novel photonic accelerator. Our scheme can be applied for
edge computing in real-time distributed control and adaptive channel selection in optical communications.

Methods
Details of training algorithm for reinforcement learning.  We present a training procedure for rein-
forcement learning in this section. We consider that a state in a reinforcement learning task is updated at every
step, and the step index is n . The update is repeated until termination conditions for the task are satisfied. One
episode consists of all steps until the task is completed. In the algorithm, the reservoir weight wa is initialized

8

Vol:.(1234567890)

Scientific Reports | (2022) 12:3720 | https://doi.org/10.1038/s41598-022-07404-z

www.nature.com/scientificreports/

with a value randomly sampled from a uniform distribution of [− 0.1, 0.1]. In each episode, the following pro-
cedure is repeated from the step index n = 1 until termination conditions are satisfied. The state of the task is
initialized, which is regarded as s1 . The input signal u(t) injected into the reservoir is generated by preprocessing
the state sn using Eqs. (1) and (2). The input signal u(t) is injected into the reservoir and the response signal of
the reservoir is obtained. A node state vn is extracted from the response signal. The Q value corresponding to
each action a is calculated from the node state vn and the reservoir weight wa using Eq. (3). The action a with the
highest Q value is selected at the step index n . The state in the task is updated using the selected action an . Then, a
reward rn+1 and the next state sn+1 is given. A set of the states, action, and reward (sn, sn+1, an, rn+1) is preserved.
The reservoir weight is updated using Eq. (4). The step index is updated from n to n+ 1 . The above procedure is
repeated until termination conditions are satisfied. The total reward is given from the sum of the rewards in all
steps. Algorithm 1 shows the pseudo code corresponding to the above procedure.

In the training process, we employ the experienced replay method52. In this method, the observed data (state,
action, and reward) are preserved in the memory, sampled randomly, and used for training. The randomly
sampled data is referred to as the mini-batch. The size of the mini-batch and the number of preserved data
are hyperparameters. Using the randomly sampled and preserved data for training may reduce the correlation
between the data used for training and exhibits easier convergence of the Q-learning. The number of memories
and the size of the mini-batch for experience replay are 4,000 and 256, respectively.

Moreover, we used the ε-greedy method for the action selection. The value of ε is reduced as the number of
episodes increases. The value of ε is updated by ε = ε0 + (1− ε0)exp

(

−kεnep
)

 , where nep is the episode index of
the reinforcement learning task and kε is the attenuation coefficient. The coefficient kε is fixed at kε = 0.04 here.
The value of ε converges to the value ε0 = 0.01 as the number of episodes increases.

Algorithm 1 Pseudo code for reinforcement learning based on photonic reservoir computing.

Initialize a reservoir weight with a value randomly sampled from a uniform distribution of [-0.1 0.1]

FOR to the number of episodes

Initialize a state in a reinforcement learning task

Set a total reward to 0

Initialize a step index = 1 for the task

REPEAT

Get the state in the task

Generate an input signal () from preprocessing the state using Eqs. (1) and (2)

Input () into the reservoir and extracted a node state from the response output of the reservoir

Calculate Q value for each action from the node state and the reservoir weight using Eq. (3)

Select the action with the highest Q value

Update the state to using the selected action and getthereward

Preserve a set

Update the reservoir weight from preserved sets using Eq. (4)

Add the reward to the total reward

Update to + 1

UNTIL termination conditions for the task are satisfied

Print the total reward

END FOR

Numerical model for an optoelectronic delay system.  Optoelectronic delay systems42 have been
studied for delay-based reservoir computing30,38,39, using the following delay differential equations43:

where x is the normalized output of MZM, τL and τH are the time constants describing the low-pass and high-pass
filters related to the frequency bandwidths of the system components, respectively, β is the feedback strength
(dimensionless), φ0 is the offset phase of MZM, u(t) is the input signal injected into the reservoir, and ξ(t) is
the white Gaussian noise with properties �ξ(t)� = 0 and �ξ(t)ξ(t0)� = δ(t − t0) , where �·� denotes the ensemble

(5)τL
dx(t)

dt
= −

(

1+
τL

τH

)

x(t)− y(t)+ βcos2
[

κx(t − τ)+
π

4
u(t)+ φ0

]

+ ξ(t),

(6)τH
dy(t)

dt
= x(t),

9

Vol.:(0123456789)

Scientific Reports | (2022) 12:3720 | https://doi.org/10.1038/s41598-022-07404-z

www.nature.com/scientificreports/

average and δ(t) is Dirac’s delta function. Table 2 shows the parameter values used. A personal computer (DELL,
CPU: Intel Core i7-7700 3.60 GHz, RAM: 16.0 GB, Windows 10) was used in numerical simulation.

Experimental setup.  Figure 2b shows the experimental setup used in the experiments. The system has no
delayed feedback for simple implementation, and the system corresponds to an extreme learning machine47.
A distributed-feedback laser diode (LD, NTT electronics, NLK1C5GAAA) with an optical wavelength of
1547 nm was used as the optical source. The lasing threshold of the LD was 11.6 mA, and the driving current
was 30.0 mA. The optical output of the LD was injected into a Mach–Zehnder modulator (MZM, EO Space,
AX-0MKS-20-PFA-PFA-LV-UL), where a bias controller (BC, IXBlue, MBC-AN-LAB) was inserted to stabilize
the operation bias of the MZM. The bias was stabilized at the quadrature point. Moreover, a modulation signal
was generated from an arbitrary waveform generator (AWG, Tektronix, AWG70002A, 25 GSample/s, 10 bit
vertical resolution) and transferred to the MZM after amplification by an electric amplifier (AMP, IXBlue, DR-
AN-10-HO). A photodetector (PD, Newport, 1554-B, 12-GHz bandwidth) was used to detect the optical signal
of the MZM, and the detected power was 0.280 mW on the condition of no modulation input. The detected
signal at the PD was transferred to a digital oscilloscope (OSC, Tektronix, DPO72304SX, 23 GHz bandwidth)
and sampled at 50 GSample/s.

The signal amplitude injected into the MZM and the half-wave voltage Vπ of the MZM are important for
successful computation. The signal amplitude is determined from the input scaling µ and the bias scaling b , the
output amplitude of the AWG, and the amplification gain of the AMP. The output amplitude of the AWG is 0.30 V
at the peak-to-peak value. The amplification gain of the AMP is typically 30 dB under small-signal conditions.
The half-wave voltage of the MZM was Vπ = 4 V. The input signal was preprocessed using Eq. (1) in the per-
sonal computer. The input scaling µ and the bias scaling b for preprocessing are fixed at µ = 0.50 and b = 0.40 ,
respectively. These parameter values are different from those used for the numerical simulation because the signal
amplitude in the experiments depends on these parameter values and the condition of the output amplitude of
the AWG. In our experiments, the values of µ = 0.50 and b = 0.40 produce an electric signal with an amplitude
nearly equal to the half-wave voltage of the MZM. The condition of the bias scaling b is consistent with the value
for successful computation in our numerical simulation (see Fig. 5).

Experimental online procedure for reinforcement learning.  In our experiment, the digital oscil-
loscope (OSC) and the arbitrary waveform generator (AWG) were controlled by the personal computer (PC).
Initially, the state of the reinforcement learning task was calculated using the PC. Then, an input signal was gen-
erated from the state by applying a masking procedure for reservoir computing. The input signal was generated
from the AWG. The signal was amplified by AMP and injected into the MZM. The optical output of the MZM
was modulated based on the injected signal. The optical signal was transformed into an electric signal at the PD.
The electric signal was acquired by the OSC and was then transferred to the PC. The node states of the reser-
voir were extracted from the signal. The output of reservoir computing was calculated from the weighted sum
of the node states and corresponded to the Q value for each action in a reinforcement learning task. An action
was selected based on the Q values, and the state of the reinforcement learning task was updated based on the
selected action. In addition, the reservoir weights were updated based on Q-learning. The above procedure was
repeated until the reinforcement learning task was terminated. This procedure for reinforcement learning was
executed under the control of OSC, AWG, and PC in an on-line manner.

In the experiment, pre- and post-processing are implemented in the personal computer although the reser-
voir is hardware-implemented. Therefore, the processing speed of the experiment is restricted to the software
processing in the personal computer. Here, the decision of an action was executed at about 0.5 s. The hard-
ware implementation of the pre- and post-processing in photonic reservoir computing has been studied53. The
processing speed can be accelerated by implementing the pre- and post-processing in hardware, such as field
programmable gate array (FPGA).

CartPole‑v0 task.  The CartPole-v0 task is a benchmark task for reinforcement learning given by the Ope-
nAI Gym47. In this task, we consider a pole attached by an un-actuated joint to a cart that moves along a fric-
tionless track with four states: cart position, cart velocity, pole angle, and pole velocity at the tip. These states are
initialized to uniform random values. The agent’s action is to push the cart to the right (+ 1) and left (− 1). The
goal of the task is to keep the pole upright during an episode with a length of 200 timesteps, and the task is con-

Table 2.   Parameter values used in numerical simulations.

Symbol Parameter Value

(2πτL)
−1 Low-pass cutoff frequency 12.5× 109 Hz

(2πτH)
−1 High-pass cutoff frequency 0.625× 106 Hz

τ Feedback delay time 239.6× 10−9 s

β Dimensionless gain 1.0

κ Dimensionless feedback strength 0.9

φ0 Bias point for MZM −0.25π rad

µ Scaling coefficient for input state 0.6

10

Vol:.(1234567890)

Scientific Reports | (2022) 12:3720 | https://doi.org/10.1038/s41598-022-07404-z

www.nature.com/scientificreports/

sidered solved when the pole remains upright for 100 consecutive episodes. A reward of + 1 is provided for every
time steps while the pole remains upright. The episode ends when the pole is more than 12° from the vertical or
the cart position moves more than 2.4 units or less than − 2.4 units from the center. The magnitudes of the cart
position and pole velocity were normalized to the range of [− 1.0, 1.0] before injecting into the reservoir. The
hyperparameters for reinforcement learning are fixed at α = 0.000400 and γ = 0.995 , respectively.

MountainCar‑v0 task.  The MountainCar-v0 task is provided by OpenAI Gym47. The goal of this task is for
a car to reach the top of the mountain by accelerating the car to the right or left. The observable states of the task
are the cart position and cart velocity. In the initial state, the cart position is randomly set from a uniform distri-
bution [− 0.6, − 0.4], and the cart velocity is fixed at zero. The agent’s action is to push the cart to the left, neutral,
and push the cart to the right. A reward of -1 is given for every step until an episode ended. An episode consists
of 200 steps and is terminated if the cart reaches the top of the mountain. The hyperparameters for reinforcement
learning are fixed at α = 0.000010 and γ = 0.995 , respectively.

Received: 18 October 2021; Accepted: 17 February 2022

References
	 1.	 Andrae, A. & Edler, T. On global electricity usage of communication technology: trends to 2030. Challenges 6, 117–157 (2015).
	 2.	 Haghighat, M. H. & Li, J. Intrusion detection system using voting-based neural network. Tsinghua Sci. Technol. 26, 484–495 (2021).
	 3.	 Zhang, J. & Xu, Q. Attention-aware heterogeneous graph neural network. Big Data Min. Anal. 4, 233–241 (2021).
	 4.	 Bie, Y. & Yang, Y. A multitask multiview neural network for end-to-end aspect-based sentiment analysis. Big Data Min. Anal. 4,

195–207 (2021).
	 5.	 Sutton, R. S. & Barto, A. G. Reinforcement Learning: An Introduction (The MIT Press, Cambridge, 2018).
	 6.	 Zhou, W. et al. Multi-target tracking for unmanned aerial vehicle swarms using deep reinforcement learning. Neurocomputing

466, 285–297 (2021).
	 7.	 Zhu, K. & Zhang, T. Deep reinforcement learning based mobile robot navigation: A review. Tsinghua Sci. Technol. 26, 674–691

(2021).
	 8.	 Sharma, P. et al. Role of machine learning and deep learning in securing 5G-driven industrial IoT applications. Ad Hoc Netw. 123,

102685 (2021).
	 9.	 Chen, X. et al. DeepRMSA: a deep reinforcement learning framework for routing, modulation and spectrum assignment in elastic

optical networks. J. Lightwave Technol. 37, 4155–4163 (2019).
	10.	 Badia, A. P. et al. Agent57: Outperforming the Atari Human Benchmark. Preprint at https://​arxiv.​org/​abs/​2003.​13350 (2020).
	11.	 Kaiser, Ł. et al. Model based reinforcement learning for Atari. in Proc of International Conference on Learning Representations

(ICLR) 2020 (2020).
	12.	 Vinyals, O. et al. Grandmaster level in StarCraft II using multi-agent reinforcement learning. Nature 575, 350–354 (2019).
	13.	 Mnih, V. et al. Human-level control through deep reinforcement learning. Nature 518, 529–533 (2015).
	14.	 Graves, A. et al. Hybrid computing using a neural network with dynamic external memory. Nature 538, 471–476 (2016).
	15.	 Thompson, N. C., Greenewald, K., Lee, K., & Manso, G. F., The computational limits of deep learning. Preprint at https://​arxiv.​

org/​abs/​2007.​05558​v1 (2020).
	16.	 Soltanolkotabi, M., Javanmard, A. & Lee, J. Theoretical insights into the optimization landscape of over-parameterized shallow

neural networks. IEEE Trans. Inf. Theory 65, 742–769 (2019).
	17.	 Xie, Q., Minh-Thang, L., Eduard, H., & Quoc V. L. Self-training with noisy student improves ImageNet classification. In Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 10687–10698 (2020).
	18.	 Schaul, T., Quan, J., Antonoglou, I., & Silver, D., Prioritized experience replay. Preprint at https://​arxiv.​org/​abs/​1511.​05952 (2016).
	19.	 Chang, H. & Futagami, K. Reinforcement learning with convolutional reservoir computing. Appl. Intell. 50, 2400–2410 (2020).
	20.	 Szita, I., Gyenes, V., & Lőrincz, A., Reinforcement learning with echo state networks. ICANN2006 4131, 830–839 (2006).
	21.	 Jaeger, H. & Haas, H. Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication. Science

304, 78–80 (2004).
	22.	 Lukoševičius, M. & Jaeger, H. Reservoir computing approaches to recurrent neural network training. Comput. Sci. Rev. 3, 127–149

(2009).
	23.	 Tanaka, G. et al. Recent advances in physical reservoir computing: a review. Neural Netw. 115, 100–123 (2019).
	24.	 Torrejon, J. et al. Neuromorphic computing with nanoscale spintronic oscillators. Nature 547, 428–431 (2017).
	25.	 Nakajima, K., Hauser, H., Li, T. & Pfeifer, R. Information processing via physical soft body. Sci. Rep. 5, 10487 (2015).
	26.	 Shastri, B. J. et al. Photonics for artificial intelligence and neuromorphic computing. Nat. Photon. 15, 102–114 (2021).
	27.	 Genty, G. et al. Machine learning and applications in ultrafast photonics. Nat. Photon. 15, 91–101 (2021).
	28.	 Moughames, J. et al. Three-dimensional waveguide interconnects for scalable integration of photonic neural networks. Optica 7,

640–646 (2020).
	29.	 Kitayama, K. et al. Novel frontier of photonics for data processing—photonic accelerator. APL Photon. 4, 090901 (2019).
	30.	 Paquot, Y. et al. Optoelectronic reservoir computing. Sci. Rep. 2, 287 (2012).
	31.	 Martinenghi, R., Rybalko, S., Jacquot, M., Chembo, Y. K. & Larger, L. Photonic nonlinear transient computing with multiple-delay

wavelength dynamics. Phys. Rev. Lett. 108, 244101 (2012).
	32.	 Bueno, J., Brunner, D., Soriano, M. C. & Fischer, I. Conditions for reservoir computing performance using semiconductor lasers

with delayed optical feedback. Opt. Exp. 25, 2401–2412 (2017).
	33.	 Duport, F., Schneider, B., Smerieri, A., Haelterman, M. & Massar, S. All-optical reservoir computing. Opt. Exp. 20, 22783–22795

(2012).
	34.	 Sugano, C., Kanno, K. & Uchida, A. Reservoir computing using multiple lasers with feedback on a photonic integrated circuit.

IEEE J. Sel. Top. Quantum Electron. 26, 1500409 (2020).
	35.	 Antonik, P., Marsal, N., Brunner, D. & Rontani, D. Human action recognition with a large-scale brain-inspired photonic computer.

Nat. Mach. Intell. 1, 530–537 (2019).
	36.	 Brunner, D., Soriano, M. C., Mirasso, C. R. & Fischer, I. Parallel photonic information processing at gigabyte per second data rates

using transient states. Nat. Commun. 4, 1364 (2013).
	37.	 Marchisio, A. et al. Deep learning for edge computing: current trends, cross-layer optimizations, and open research challenges. In

Proceeding of 2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI) 553–559 (2019).
	38.	 Larger, L. et al. Photonic information processing beyond turing: an optoelectronic implementation of reservoir computing. Opt.

Express 20, 3241–3249 (2012).

https://arxiv.org/abs/2003.13350
https://arxiv.org/abs/2007.05558v1
https://arxiv.org/abs/2007.05558v1
https://arxiv.org/abs/1511.05952

11

Vol.:(0123456789)

Scientific Reports | (2022) 12:3720 | https://doi.org/10.1038/s41598-022-07404-z

www.nature.com/scientificreports/

	39.	 Larger, L.et al. High-speed photonic reservoir computing using a time-delay-based architecture: Million words per second clas-
sification. Phys. Rev. X 7, 011015 (2017).

	40.	 Appeltant, L. et al. Information processing using a single dynamical node as a complex system. Nat. Commun. 2, 468 (2011).
	41.	 Soriano, M. C. et al. Optoelectronic reservoir computing: tackling noise-induced performance degradation. Opt. Express 21, 12–20

(2013).
	42.	 Larger, L. & Dudley, J. M. Nonlinear dynamics: Optoelectronic chaos. Nature 465, 41–42 (2010).
	43.	 Chembo, Y. K., Brunner, D., Jacquot, M. & Larger, L. Optoelectronic oscillators with time-delayed feedback. Rev. Mod. Phys. 91,

035006 (2019).
	44.	 Murphy, T. E. et al. Complex dynamics and synchronization of delayed-feedback nonlinear oscillators. Phil. Trans. R. Soc. A 368,

343–366 (2010).
	45.	 Ortín, S. et al. Aunified framework for reservoir computing and extreme learning machines based on a single time-delayed neuron.

Sci. Rep. 5, 14945 (2015).
	46.	 Stelzer, F., Röhm, A., Lüdge, K. & Yanchuk, S. Performance boost of time-delay reservoir computing by non-resonant clock cycle.

Neural Netw. 124, 158–169 (2020).
	47.	 Brockman, G. et al. OpenAI Gym. Preprint at https://​arxiv.​org/​abs/​1606.​01540 (2016).
	48.	 Kumar, S. Balancing a CartPole System with Reinforcement Learning - A Tutorial. Preprint at https://​arxiv.​org/​abs/​2006.​04938

(2020).
	49.	 Van Hasselt, H., Guez, A., & Silver, D. Deep reinforcement learning with double q-learning. In Proceedings of Thirtieth AAAI

Conference on Artifficial Intelligence (2016).
	50.	 Uchida, A., McAllister, R. & Roy, R. Consistency of nonlinear system response to complex drive signals. Phys. Rev. Lett. 93, 244102

(2004).
	51.	 Nakayama, J., Kanno, K. & Uchida, A. Laser dynamical reservoir computing with consistency: an approach of a chaos mask signal.

Opt. Express 24, 8679–8692 (2016).
	52.	 O’Neill, J., Pleydell-Bouverie, B., Dupret, D. & Csicsvari, J. Play it again: reactivation of waking experience and memory. Trends

Neurosci. 33, 220–229 (2010).
	53.	 Duport, F., Smerieri, A., Akrout, A., Haelterman, M. & Massar, S. Fully analogue photonic reservoir computer. Sci. Rep. 6, 22381

(2016).

Acknowledgements
This study was supported in part by JSPS KAKENHI (JP19H00868 and JP20K15185), JST CREST JP-MJCR17N2,
and the Telecommunications Advancement Foundation.

Author contributions
All authors contributed to the development and/or implementation of the idea. K. K. performed the numerical
simulations and analyzed the data. K. K. and A. U. contributed to the discussion of the results. K. K. and A. U.
contributed to writing the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to K.K.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2022

https://arxiv.org/abs/1606.01540
https://arxiv.org/abs/2006.04938
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Photonic reinforcement learning based on optoelectronic reservoir computing
	Results
	Reinforcement learning based on reservoir computing.
	Numerical and experimental results of reinforcement learning using benchmark tasks.

	Discussion
	Methods
	Details of training algorithm for reinforcement learning.
	Numerical model for an optoelectronic delay system.
	Experimental setup.
	Experimental online procedure for reinforcement learning.
	CartPole-v0 task.
	MountainCar-v0 task.

	References
	Acknowledgements

