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Abstract

Along with improvement in electroencephalogram (EEG)-measurement technology, limita-

tions on the situations in which data can be recorded are gradually being overcome. EEG

measurement in real environments has become increasingly important as a means to moni-

tor brain activity in our daily lives, such as while playing consumer games in the living room.

The present study measured brain EEG activity while two players engaged in a competitive

consumer baseball game in conditions that closely resembled daily life. The recorded brain

activity was thus likely related to natural mental reactions and cognitive function that occur

in similar daily life activities. To measure the EEG from participants who freely moved while

playing the game, we developed EEG devices that incorporated a wireless time synchroni-

zation system using Global Positioning Satellite (GPS) signals. These devices stamped the

time obtained from the GPS signals onto each data sample, which was then used to syn-

chronize the data that were recorded by different devices. When the batter in the game

swung and missed, the error-related negativity component of the event-related EEG poten-

tial was strongly evoked in frontal electrodes of the participant controlling the batter. Further-

more, the error-related negativity was modulated according to who was winning and by how

much. Thus, here we have demonstrated "real-world" brain activity using a competitive con-

sumer game, which increases intrinsic participant motivation.

Introduction

Many people enjoy computer games all over the world. Traditionally, playing these types of

games has required special hardware. Smartphone technology has become dramatically more

sophisticated in recent years, allowing people to more easily play games. Players complete the

missions and goals prepared inside virtual gaming situations (e.g., beat the enemy, get a high

score or gather items). Previous studies have reported that people tend to play games because

they are spontaneously interested in and enjoy the games themselves, even without reward

money [1–3]. Therefore, computer games are useful as a means to enhance a participant’s

intrinsic motivation during an experiment.

In typical experiments that use electroencephalogram (EEG) machines to record brain

activity, visual stimuli usually only have simple physical properties. This is because it allows

PLOS ONE | https://doi.org/10.1371/journal.pone.0212483 February 28, 2019 1 / 19

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Yokota Y, Soshi T, Naruse Y (2019) Error-

related negativity predicts failure in competitive

dual-player video games. PLoS ONE 14(2):

e0212483. https://doi.org/10.1371/journal.

pone.0212483

Editor: Kiyoshi Nakahara, Kochi University of

Technology, JAPAN

Received: October 23, 2018

Accepted: February 3, 2019

Published: February 28, 2019

Copyright: © 2019 Yokota et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The minimal data set

underlying the results are within the manuscript

and its Supporting Information files.

Funding: This work was partially supported by

JSPS KAKENHI grant number 18H03282 (YN) and

16K21688 (YY) and supported by the HAYAO

NAKAYAMA Foundation for Science & Technology

and Culture grant number H28-A2-25 (YY); https://

www.jsps.go.jp/english/index.html; http://www.

nakayama-zaidan.or.jp/. The funders had no role in

study design, data collection and analysis, decision

to publish, or preparation of the manuscript.

http://orcid.org/0000-0001-8789-0429
https://doi.org/10.1371/journal.pone.0212483
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0212483&domain=pdf&date_stamp=2019-02-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0212483&domain=pdf&date_stamp=2019-02-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0212483&domain=pdf&date_stamp=2019-02-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0212483&domain=pdf&date_stamp=2019-02-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0212483&domain=pdf&date_stamp=2019-02-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0212483&domain=pdf&date_stamp=2019-02-28
https://doi.org/10.1371/journal.pone.0212483
https://doi.org/10.1371/journal.pone.0212483
http://creativecommons.org/licenses/by/4.0/
https://www.jsps.go.jp/english/index.html
https://www.jsps.go.jp/english/index.html
http://www.nakayama-zaidan.or.jp/
http://www.nakayama-zaidan.or.jp/


the identification of specific brain activity that changes depending on the limited stimulus

property (e.g., stimulus intensity). Therefore, participants rarely find these kinds of experi-

ments with simple stimuli to be fun. Although these kinds of basic experiments are very

important in the field of neuroscience for discovering mechanisms that underlie human brain

function, they are not suitable for revealing "real-world" brain activity that occurs in our daily

lives when we experience fun events.

However, a fun and interactive game is problematic because players are simultaneously

exposed to numerous factors related to the events occurring in the game. Therefore, analyzing

which information is specific to newly obtained brain activity related to a game event is diffi-

cult. This can be overcome if we use brain activity markers for which generative mechanisms

have already been reported. Then, we are able to identify the functional information reflected

by the brain activity while playing games. Indeed, recent studies have measured brain activity

while participants played games [4–6]. These studies used custom-developed games because

they could deliver precise timing of game-event onsets to a playing log for EEG data analysis.

However, these custom-developed games were very simple. At the same time, while high-qual-

ity consumer games are complex and enable players to operate freely, we cannot obtain an

accurate data log, and detecting game events with precise timing is a problem. Because of the

advantage of realism and the fact that consumer games have the added advantage of enhancing

intrinsic participant motivation, we developed a data-recording hardware system that can

extract game events from a consumer game with precise timing and measure "real-world"

event-related potentials (ERPs) when people play the game in an ordinary life context.

We used a commercial baseball game in which two players compete. In a single-player

game setting with the computer as the opponent, players become bored once they arrive at a

winning strategy. In a competitive game setting, establishing a specific winning strategy is rela-

tively difficult because the players continuously change their strategies in response to each

other. Thus, the desire to defeat a human opponent should enhance a participant’s intrinsic

motivation when playing competitive games. The advantage of using the baseball game is that

we can control the physical properties of the visual stimuli between batters and pitchers.

Because players controlling the batters and the pitchers (referred to as batters and pitchers)

observe the same game screen at the same time, the physical properties of the visual stimuli are

same for the two players throughout the experiment. Furthermore, because the players pay

attention to the positions of the ball and the bat marked by the cursor, the attended areas of

the screens can be controlled for each player separately. Under these physical conditions,

strikes and balls should evoke different cognitive responses and different brain activity.

The present study focused on the error-related negativity (ERN), an ERP relating to error

events [7,8]. The ERN is evoked between 0 and 100 ms after an error occurs, peaking at about

50 ms post-error. The ERN is highly versatile because it is independent of task and age [9–12].

Moreover, motivational and personal factors are reflected in the magnitude of the ERN. Previ-

ous study found that larger ERNs were evoked when participants focused on accuracy rather

than response speed for their task responses [8]. Punishment resulted in larger ERNs to errors

than did reward [13], and larger ERNs have been found in participants who are more absorbed

in the task [14]. Regarding the relationship between personal factors and ERN magnitude,

larger ERNs have consistently been observed in anxious participants [15]. Additionally, the

ERN is sensitive to individual error responses that depend on personal factors such as consci-

entiousness [16], socialization [17], and self-efficacy [18,19]. The ERN does not occur when

participants do not notice their own mistakes.

Therefore, we expected that the ERN amplitudes related to game-event errors would be

modulated according to gaming situations such as score difference. In particular, we predicted

that batter ERN would be modulated according to the magnitude of the mistakes that the
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batter noticed or felt when a strike was called. As mentioned above, because the ERN can be

modulated by personal factors, we assessed personal factors using self-reporting question-

naires. We used the Barratt Impulsiveness Scale 11 (BIS11[20,21] to quantify impulsivity, and

the Behavior Inhibition/Activation System (BIS/BAS) scales [22,23] to quantify the tendency

to avoid unpleasant future behavioral consequences and the motivational preference for favor-

able results. Then, we investigated the relationship between the ERN and these factors. We

also focused on P300, a positive potential at approximately 300 ms after stimulus presentation

[24]. The P300 reflects various cognitive processes such as the engagement of attention [25–

27]. We therefore expected that the amounts of attention on the batting/pitching results should

affect P300 amplitude. In summary, we used a competitive consumer game to increase intrin-

sic participant motivation, and focused on ERN and P300 surrounding game events.

Materials and methods

A system for extracting game events from a consumer game

We developed a wireless data-recording system that can measure the EEG from participants

who are freely moving while playing the game and also precisely extract the timing of game

events from consumer games. A schematic illustration of the recording system is shown in Fig

1. This system consists of three subsystems.

The first subsystem is a wireless time synchronization system using Global Positioning Sat-

ellite (GPS) signals. Typical neuroscience studies use the event-synchronization method in

which a trigger signal from a stimulus is input to an external port of an EEG device, allowing

stimulus onset to be recorded accurately with millisecond resolution. Additionally, simulta-

neous EEG measurements from multiple people (as in the present study) should share the trig-

ger signal among separate EEG devices. In other cases, the trigger signals are generally

transmitted via a wired cable to the devices. However, wired connections restrain participant

movement. For this study, we therefore developed an EEG device and external input device

that can receive GPS signals and establish wireless synchronization between EEG data and

external input data. The GPS signal contains time information, and the time accuracy has

greater than millisecond resolution. Our device can add a time-stamp for each sampled

datum, which can then be used to synchronize the EEG and external data that were recorded

by different devices. We used a separate EEG device (GPS-EEG) for each player and one exter-

nal input device (GPS-EXT) for acquiring trigger signals.

The second subsystem is the system that for recording every video frame of the consumer

game. The gaming hardware and the monitor were connected by a composite signal cable. The

composite video signal includes 60 Hz rise-up vertical synchronization signals according to

the screen refresh rate (60 Hz). By synchronizing the video camera for recording the game

screens with the vertical synchronization signals, we could record every video frame of the

game screens. The composite signal was separated into three branches. The first branch was

connected to the monitor. The second branch was connected to the video camera for record-

ing the game screen. We used a video camera (MCM-4304; Micro Vision Co., Ltd., Niigata,

Japan) that could synchronously record the video based on the vertical synchronization signal

extracted from the composite signals. The recorded video was monochrome with a resolution

of 320 × 240 pixels. The vertical synchronization signal that was extracted from the third out-

put branch was sent to the GPS-EXT device.

The third subsystem is a synchronization signal generator. Using the two subsystems men-

tioned above, the vertical synchronization signal and EEG can be synchronized via the time-

stamp based on the GPS signal. However, this information cannot be used to judge which

video frames recorded by the camera correspond to which vertical synchronization signals

Error-related negativity predicts failure in competitive dual-player video games

PLOS ONE | https://doi.org/10.1371/journal.pone.0212483 February 28, 2019 3 / 19

https://doi.org/10.1371/journal.pone.0212483


recorded by GPS-EXT device. To solve this problem, we added a synchronization signal to the

video frame and GPS-EXT device at the start and end of the game. The synchronization signal

was generated by manually pushing a button. When the button was pushed, the device trans-

ferred the synchronization signal to the GPS-EXT device, and an LED light was simultaneously

turned on and the light was recorded by the camera. These three system components enabled

us to synchronize all game events with the EEG data obtained while playing the game. A sche-

matic illustration of the time synchronization system is shown in Fig 2.
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Fig 1. Wireless synchronization system among Electroencephalograms (EEGs), External devices (EXT), and the consumer game using a GPS signal. This

system can extract the onset time of game events from a composite video signal.

https://doi.org/10.1371/journal.pone.0212483.g001
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Experimental devices

EEG data were measured by a wearable data-recording system comprising a GPS-EEG device

that could be attached to custom-designed headgear (Sawamura Prosthetics and Orthotics Ser-

vice, unique development, JPN). The GPS-EEG device had 8-channels with active dry elec-

trodes for EEG recording and Bluetooth signal transportation (Miyuki Giken, original

development based on Polymate Mini AP108 [W52-D50-H20 mm, 80 g], JPN). The headgear

allowed dry EEG electrodes (Unique Medical, unique development, Japan) [28] at the fronto-

central (FC3, FCz, FC4) and occipital sites (O1, O2). To measure electrooculograms (EOGs),

two electrodes were placed on the forehead and right temple of each participant. All recorded

signals were referenced to the left mastoid and the ground electrode was placed on the right

mastoid. Data were sampled at 500 Hz.

We used the PlayStation 3 (Sony, CECHH model) and Jikkyō Powerful Pro Yakyū 2013

(Konami Digital Entertainment Co., Ltd., JPN) as the consumer hardware and software,

respectively. This game software is a popular Japanese baseball video game. Participants sat on

a couch and observed the monitor located 170 cm in front of them.

Participants

We recruited the participants from the public. As a result, nineteen participants (17 male, 2

female; age range: 21–40 years) took part in this study. However, since there were so few
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Fig 2. A schematic illustration of time adjustment. All EEG and EXT signals are time-stamped with information obtained from the GPS signal. We adjusted

the time information between EEG data and the recorded movies using the vertical synchronization signal (VSS) signal that was extracted from the composite

signal.

https://doi.org/10.1371/journal.pone.0212483.g002
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female participants, their data were excluded from the present study’s analysis. All participants

had normal hearing and normal or corrected-to-normal vision. Participants had never played

the baseball game that we used in this study. Participant pairs who played the game competi-

tively were acquaintances. Participants provided informed written consent after the details of

the procedure had been explained and before the experiment. All experimental procedures

were approved by the Ethical Committee for Human and Animal Research of the National

Institute of Information and Communications Technology. All experiments were performed

in accordance with the ethical standards described in the Declaration of Helsinki.

Experimental procedure

All participants practiced before the EEG experiment until they learned how to operate the

game. Nippon Professional Baseball has two professional baseball leagues (Central and Pacific

Leagues). In this experiment, the participants used the teams comprising the all-star represen-

tatives from each league. The participants played three nine-inning games in the EEG experi-

ment to increase the number of game-event trials, without any restrictions on physical

movement.

Psychological measures

To assess intrinsic motivation for playing the game, we administered a self-reporting question-

naire. Because intrinsic motivation must be evoked and intention has to be directed towards

completing goals, these behaviors are quite different from the impulsivity often observed in

negative behaviors, such as non-attention, non-planning, and non-controlling behaviors.

Therefore, we also recorded impulsivity traits using the Barratt Impulsiveness Scale 11 (BIS11

[20,21] and Behavior Inhibition/Activation System (BIS/BAS) scales [22,23].

Behavioral impulsivity was evaluated with the BIS-11. The BIS-11 focuses on three impul-

sivity traits: attentional (AI: 5, 6, 9, 11, 20, 24, 26, 28; 8–32 scores), motor (MI: 2–4, 16, 17, 19,

21–23, 25, 30; 11–44 scores), and non-planning (NPI: 1, 7, 8, 10, 12–15, 18, 27, 29; 10–40

scores). Participants responded to each question using a four-point Likert-like scale (4 = very

true for me; 3 = somewhat true for me; 2 = somewhat false for me; 1 = very false for me).

Behavioral properties related to inhibition and activation regulate the avoidance of unpleas-

ant future behavioral consequences and the motivational preference for favorable results,

respectively, and were assessed with the BIS/BAS scales [22,23]. The BIS component (No. 2, 8,

13, 16, 19, 22, 24; 7–28 scores) evaluates avoidance of unpleasant future behavioral conse-

quences. The BAS assesses motivational preference for favorable results, consisting of drive

(D: 3, 9, 12, 21; 4–16 scores), reward responsiveness (RR: 4, 7, 14, 18, 23; 5–20 scores), and fun

seeking (FS: 5, 10, 15, 20; 4–16 scores). The participants scored each item with a four-point

Likert-like scale (4 = very true for me; 3 = somewhat true for me; 2 = somewhat false for me;

1 = very false for me).

After the end of the game, participants filled out the Game Experience Questionnaire

(GEQ) [29,30], which is a self-evaluation of game experience. The GEQ consists of the follow-

ing three modules: ‘Core’ (33 items), ‘Social Presence’ (20 items), and ‘post-game’ (20 items).

The Core module assesses game experience with scores on seven components: ‘immersion’ (6

items; e.g., “It was aesthetically pleasing”), ‘flow’ (5 items; e.g., “I forgot everything around

me”), ‘competence’ (5 items; e.g., “I felt skilful”), ‘positive affect’ (5 items; e.g., “I felt happy”),

‘negative affect’ (4 items; e.g., “It gave me a bad mood”), ‘tension’ (3 items; e.g., “I felt

annoyed”), and ‘challenge’ (5 items; e.g., “I thought it was hard”). The Social Presence module

assesses psychological and behavioral involvement of the player with other social entities using

scores on three components: ‘empathy’ (6 items; e.g., “I empathized with the other(s)”),
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‘negative feelings’ (5 items; e.g., “I felt jealous about the other(s)”), and ‘behavioral involve-

ment’ (6 items; e.g., “My actions depended on the other(s) actions”). The post-game module

uses scores on four components to assess how players felt after they had stopped playing: ‘posi-

tive experience’ (6 items; e.g., “I felt like a victory”), ‘negative experience’ (6 items; e.g., “I felt

bad”), ‘tiredness’ (2 items; e.g., “I felt exhausted”), and ‘returning to reality’ (3 items; e.g., “I

found it hard to get back to reality”). Participants scored each item with a five-point Likert

scale (4 = extremely; 3 = fairly; 2 = moderately; 1 = slightly, 0 = not at all).

EEG data analyses

EEG analyses were performed using MATLAB (MathWorks, Inc., Natick, MA, USA). A digital

finite impulse response bandpass filter (1–20 Hz, order 500) was applied to the continuous

EEG data. Subsequently, we used the informax ICA installed in the EEGLAB toolbox [31] to

perform an independent component analysis that removed eye-movement artifacts. We then

extracted the EEG data and movie frames between the start and end of each game based on the

synchronization signal (Fig 2).

A schematic illustration of the onset criteria for game events is shown in Fig 3. We visually

identified the onset of ball event and two kinds of strike events. A swinging strike is an event in

which the batter swung the bat, but the batter did not hit a ball thrown by pitcher. A called

strike is another type of strike event in which the pitcher threw the ball into strike zone, but

the batter did not swing the bat. We did not analyze other events such as hits, fouls, or errors.

For swinging strikes (Fig 3A), on the basis of the previous frame (Fig 3A upper), we cannot

judge whether the bat hits the ball. However, from the next frame (Fig 3A lower), we can judge

this event as a swinging strike. Therefore, we selected the frame (Fig 3A lower) in which the

batter had swung and missed the ball as the event onset. For called strikes and balls (Fig 3B

and 3C), on the basis of the previous frame (Fig 3B and 3C upper), we cannot judge whether

the ball has entered the strike zone. However, from the next frame (Fig 3B and 3C lower), we

can judge this event as a called strike or ball, as the strike zone appears in this frame. Therefore,

we used this frame (Fig 3B and 3C lower) as the event onset.

For each EEG channel, the EEG data were divided into 1000 ms epochs (−400 to +600 ms)

based on the ball/strike event onsets. Epochs containing data with maximum absolute ampli-

tudes greater than 70 μV at any of the channels (FC3, FCz, FC4, O1, or O2) were excluded

from subsequent analyses. Baseline correction was performed using the averaged amplitude

from −600 to −400 ms. In this study, five of the seventeen participants played games against

two opponents. For these five participants, we only analyzed the data collected from their first

experiment.

Statistical analyses

We used R version 3.5.1 [32] for statistical analysis of EEG data. For ERP amplitude, we

employed a linear mixed model (LMM) using the lme4 package and the lmerTest package for

statistical analysis. We defined a Game Event (ball, swinging strike, or called strike) and Player

Position (batter or pitcher) as fixed effects. We defined a Participant and the Participant’s Age

as random effects. Our LMM model was: EEG components ~ Game Event � Player Position +

(1 | Participants) + (1 | Participant’s Age). For the calculated LMM model, we used analysis of

variance (ANOVA) using the anova function of the stats package in R. For post-hoc analysis,

we calculated pairwise differences of the least-square means for factor pairs of interest using

the difflsmeans function. The p values were corrected for multiple comparisons using the Bon-

ferroni method. We used the average ERP values obtained at FC3, FCz, and FC4 for statistical
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A B C

Fig 3. A schematic illustration of the onset criteria for the three ball/strike events. We visually identified the onset of game events from the

recorded movies.

https://doi.org/10.1371/journal.pone.0212483.g003

Table 1. Numbers of rejected epochs (ball, swinging strike, and called strike) and percentages of rejected epochs for all participants.

Position Batter Pitcher

Event ball Swinging strike Called strike ball Swinging strike Called strike

No.1 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

No.2 0 (0%) 1 (1.03%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

No.3 0 (0%) 1 (1.19%) 2 (16.7%) 0 (0%) 1 (1.35%) 0 (0%)

No.4 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

No.5 0 (0%) 0 (0%) 1 (20%) 0 (0%) 0 (0%) 0 (0%)

No.6 0 (0%) 1 (3.12%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

No.7 0 (0%) 1 (3.70%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

No.8 0 (0%) 1 (1.30%) 1 (4.17%) 2 (2.90%) 0 (0%) 3 (6.38%)

No.9 1 (2.33%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

No.10 0 (0%) 0 (0%) 1 (4.00%) 0 (0%) 0 (0%) 0 (0%)

No.11 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

No.12 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

No.13 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

No.14 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

No.15 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 2 (3.92%)

No.16 4 (11.4%) 9 (13.8%) 0 (0%) 3 (7.70%) 0 (0%) 4 (12.5%)

No.17 1 (2.17%) 3 (6.52%) 0 (0%) 3 (4.48%) 2 (8.00%) 1 (3.70%)

Averaged rejected percentage 0.937% 1.80% 2.63% 0.886% 0.550% 1.56%

https://doi.org/10.1371/journal.pone.0212483.t001
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analysis, because these are the locations at which error-related ERPs have most commonly

been observed.

We used MATLAB 2015b for statistical analysis of self-evaluation questionnaires. Partici-

pants filled out the BIS11 and BIS/BAS self-evaluation questionnaires related to their personal-

ity (behavioral inhibition and activation) and the GEQ, which was related to their subjective

experience of the games. To determine the relationship between these evaluations and brain

activity, we calculated the correlation coefficient between the questionnaire scores and the

ERP amplitudes. For the BIS11, we used 2nd order factors (attentional, motor, and non-plan-

ning) for calculating the correlation. For the GEQ, we used each GEQ item to calculate the cor-

relation with brain activity. Data analysis of the GEQ was conducted for 13 participants.

Because five participants did not complete the GEQ questionnaire after the experiment, data

analysis of the GEQ was conducted for 12 participants.

Results

In this study, epochs containing data with maximum absolute amplitudes greater than 70 μV

in any of the channels (FC3, FCz, FC4, O1, or O2) were excluded. The numbers of rejected

epochs (ball, swinging strike, and called strike) and the percentages of rejected epochs are

shown for all participants in Table 1. The maximum percentage of rejected epochs was 20%.

However, 11 participants had no rejected trials. The average rejected percentage across all par-

ticipants was less than 3%. The grand-averaged ERPs for each event (ball, swinging strike, and

called strike) for batters and pitchers at the five electrodes are shown in Fig 4 and S1 Table. Fig

4A shows the results when batting, and Fig 4B shows the results when pitching. We confirmed

a large negative potential before event onset (−200 to 0 ms) and a large positive potential after

event onset (+250 to +350 ms) for swinging strikes. Thus, we defined these two ERP compo-

nents as pre- and post-onset components. The grand-averaged negative and positive potentials

of pre- and post-onset components are shown in Fig 5 for the batting and pitching conditions.

The results represent the average values at FC3, FCz, and FC4. Error bars indicate the standard

error.

For the pre-onset components, an ANOVA revealed a main effect of Game Event (F2, 16 =

16.9, p< 0.001, η2 = 0.19) and a significant interaction between Game Event and Player Posi-

tion (F2, 16 = 8.96, p< 0.001, η2 = 0.10). Subsequent post-hoc tests revealed significant differ-

ences in ERP amplitudes for different conditions, such that swinging strikes elicited a larger

negative potential than balls or called strikes in batters (t = 7.04, p< 0.001; t = 4.32, p< 0.01),

and called strikes elicited a larger negative potential than balls in batters (t = 2.73, p< 0.05).

For the post-onset component, an ANOVA revealed a main effect of Game Event (F2, 16 =

11.3, p< 0.01, η2 = 0.11) but no significant interaction. Subsequent post-hoc tests also revealed

significant differences in ERP amplitudes for different conditions, such that swinging strikes

elicited a higher amplitude than balls or called strikes in batters (t = 3.35, p< 0.01; t = 2.78,

p< 0.05) and swinging strikes elicited a higher amplitude than balls or called strikes in pitch-

ers (t = 2.83, p< 0.05; t = 2.59, p< 0.05).

The pre-onset component was most strongly evoked in batters just before the completion

of a swinging strike. Because batters and pitchers saw the same screen, the difference in brain

activity associated with the pre-onset component can be attributed to error processing by the

batter rather than any difference in visual stimuli. Thus, we identified this negative potential in

the batting condition as the ERN.

The post-onset component was most strongly evoked for swinging strikes, and we did not

observe any differences for batters or pitchers, or any interaction. This result suggests that the

post-onset component is unlikely to reflect error processing. Because the post-onset
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component was a positive potential around 300 ms after event onset, we identified this poten-

tial as the P300.

The mean value, standard deviation, and Cronbach’s alpha for each sub-scale of the self-

report questionnaires are shown in Table 2. We investigated whether the magnitude of the

FC3 FCz FC4

O1 O2

FC3 FCz FC4

O1 O2

ball

swinging strike

called strile

A

B  

ball

swinging strike

called strike

0 200 400ms-200-400

5µV

-5µV

0 200 400ms-200-400-600

5µV

-5µV

-600

  batter

pitcher

Fig 4. Grand-averaged ERPs for each event (ball, swinging strike, and called strike) for batters and pitchers at the

five electrodes. The yellow rectangles indicate the time window for statistical analysis. (A) Grand-averaged ERPs for

batters. ERN can be seen before the onset of swinging strikes. P300 can be seen after the onset of all events. (B) Grand-

averaged ERPs for pitchers. P300 can also be seen after the onset of all events.

https://doi.org/10.1371/journal.pone.0212483.g004
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ERN correlated with scores on the self-evaluation personality and game questionnaires. The

results are shown in Fig 6, Table 2, and S2 Table. None of the BIS11 or BIS/BAS scores were

significantly correlated with ERN amplitude. Although there was no significant correlation

between GEQ scores and ERN, we found a trend for ERN amplitude to be smaller for higher

values of ‘positive affect’ (p = 0.0558, r = 0.565).

We also investigated the correlations between ERN amplitude and average final score dif-

ference for all three games. The results are shown in Fig 7 and S3 Table. When the score differ-

ence was within ±10, the negative potential of the ERN decreased when players were winning

and increased when they were losing. Because the ERN changed linearly according to score

differences within ±10, we fitted the ERN and scoring difference within a range of 10 points

using weighted linear regression. We used the inverse of the variance of the score difference

for all three games as the weight parameter. The average score differences and standard devia-

tions for all three games are shown in Table 3. The results showed a significant correlation

between smaller ERN amplitude and higher score difference (p< 0.001). ERN might be line-

arly modulated depending on who is winning the game and the relative score difference.

Discussion

This study used a competitive-type consumer baseball game as an experiment task and mea-

sured brain EEG activity while participants played the game in conditions approximating

those in normal daily life. We focused on two ERPs, the ERNs for batting errors and the P300

for attentional processing. A subjective evaluation of the game was obtained with the GEQ

questionnaire and personality factors such as behavioral inhibition and activation were

obtained with BIS11 and BIS/BAS scales. We investigated the relationship between these sub-

jective evaluations and the ERPs for strike/ball events.

Strong ERN was observed in the fronto-central electrodes of the batter during the 200 ms

before swinging strikes, but not in those of the pitcher. Thus, ERN amplitude differed signifi-

cantly between batting and pitching conditions, and was not due to the influence of physical
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(post-onset component)
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Fig 5. Statistical results for ERN and P300 analysis. (A) Statistical results for ERN. Error bars indicate the standard error. We observed significant

differences in ERN amplitude of batters between each event type. (B) Statistical results for P300. Error bars indicate the standard error. We observed

significant differences in the P300 amplitudes of batters and pitchers between swinging strikes and balls.

https://doi.org/10.1371/journal.pone.0212483.g005
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stimulus properties. Rather, it reflected the neural processing of errors that are experienced by

missing the ball. The interesting finding is that the ERN was already observed about 200 ms

before the error event onset. Therefore, we hypothesize that this ERN reflects the predicted

error of one’s own batting, even when the miss has not yet occurred. This hypothesis is sup-

ported by another study in which ERN was reported to reflect error-prediction processes [33].

Our finding clearly showed that ERN is elicited by not only by actual errors but also by pre-

dicted errors represented in our minds.

P300 was mainly observed in the fronto-central electrodes of both batters and pitchers

about 300 ms after swinging strikes. Because we did not find a significant difference in P300

between conditions, we can say that P300 does not represent error-specific brain activity. In

this baseball game, the swing is the event that attracts the most attention from for both players.

Therefore, we presume that P300 brain activity represents selective attention to salient and

important events.

ERN was the most prominent ERP component in this study. Previous studies have argued

that ERN reflects mismatch processing between response selection and execution [7]. Studies

have also reported that the error detection system reflects cognitive and emotional responses

to the deviation from predicted results [8,34]. In this study, ERN was observed about 200 ms

before the error event onset. At that time, the ball was flying to the batter and had not yet

Table 2. Mean value, standard deviation, and Cronbach’s alpha for each subscale of the self-report questionnaire and correlational data between ERN amplitude

and each score.

Variable Cronbach’s Correlation of ERN amplitude

M SD alpha p r
BIS 11

attention 2.142 0.340 0.399 0.241 -0.301

motor 1.88 0.319 0.523 0.165 -0.353

nonplanning 2.36 0.428 0.569 0.0703 -0.449

BIS/BAS

bis 2.33 0.499 0.413 0.924 0.0251

reward 2.80 0.542 0.690 0.831 -0.0560

drive 2.37 0.781 0.750 0.0910 -0.423

fun seeking 3.00 0.782 0.726 0.371 -0.232

Game experience

competence 1.76 0.944 0.875 0.123 0.470

immersion 1.44 0.755 0.783 0.816 0.0755

flow 2. 45 0.873 0.790 0.501 0.216

tension 1. 20 1.10 0.913 0.303 -0.325

challenge 1. 54 0.697 0.613 0.972 0.0113

negative affect 0. 792 0.429 0.433 0.210 -0.390

positive affect 2.77 0.640 0.902 0.0558 0.565

Social presence

empathy 1.57 0.717 0.803 0.715 0.118

involvement 1.66 0.937 0.752 0.540 -0.197

negative feelings 2.53 0.762 0.828 0.590 0.173

Post-game

positive experience 1. 40 0.695 0.653 0.129 0.464

negative experience 0.347 0.315 0.499 0.402 -0.267

tiredness 0.958 0.652 0.701 0.256 -0.356

returning to reality 0.537 0.582 0.614 0.579 -0.179

https://doi.org/10.1371/journal.pone.0212483.t002
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Fig 6. Correlation of ERN amplitude before swinging strikes with scores from the self-evaluation questionnaires

(BIS11, BIS/BAS, and GEQ). We found a trend for ERN amplitude to be smaller for higher values of ‘positive affect’.

https://doi.org/10.1371/journal.pone.0212483.g006
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rectangle were used for fitting. ERN might be linearly modulated depending on who is winning the game and the

relative score difference.
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Table 3. Average score difference and standard deviations of for all three games for all participants.

Participants Average score difference SD

No. 1 -0.3333 1.53

No. 2 5.6667 3.51

No. 3 -4.0000 3.61

No. 4 13.7 6.66

No. 5 -0.667 1.53

No. 6 4.00 1.00

No. 7 2.67 1.53

No. 8 -21.3 5.51

No. 9 0.333 -1.53

No. 10 -5.67 -3.51

No. 11 21.0 -15.9

No. 12 -3.00 -4.00

No. 13 4.00 -3.61

No. 14 -7.67 -2.31

No. 15 0.667 -1.53

No. 16 -4.00 -1.00

No. 17 -2.67 -1.53

https://doi.org/10.1371/journal.pone.0212483.t003
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reached the catcher’s mitt. For batting behaviors in a baseball game, the batter must predict the

future location of the ball thrown by the pitcher. However, if the actual pitch’s course is differ-

ent from the predicted ball course, neural processing related to misjudging the path of the ball

might appear as ERN. However, because the pitcher cannot predict the batter’s tactics, the

pitcher will not recognize his own mistake before the event onset. Therefore, we did not find

larger ERN amplitudes before the event onset in video game pitchers. We assume that ERN is

not observed in pitchers in real baseball games.

We observed a positive potential around 300 ms after the event onset. Although we inter-

preted this component as P300, it might actually be related to error positivity (Pe). Pe is a posi-

tive potential associated with errors that occurs after ERN [7,35]. Pe reflects additional

processing after errors and is fundamentally different from error detection or response check-

ing, which is reflected in the ERN [36]. Pe is similar to P300 in that it has the same polarity, is

maximal at central-parietal sites, and peaks around 300 ms after error onset. Thus, Pe is often

interpreted as a second P300. However, some studies suggest that Pe reflects a delayed stimu-

lus-evoked P300 complex, which contributes to a seemingly response-locked ERP (see [37]).

Despite this debate regarding Pe and P300, the positive potential around 300 ms after event

onset in this study should be considered as P300. This is because the peak was observed in

both players after swinging strikes. If this had been Pe, the amplitude would have been higher

in batters than in pitchers. However, because these positive potentials did not differ, we inter-

pret this potential as P300 for the cognitive processes such as attention to the judgement of the

pitch. Note that Pe might have been buried inside the P300, but hidden because its influence

on error processing was small. However, complete separation of Pe and P300 is difficult in this

study and further research will be necessary to clarify the influence of Pe.

In this study, the ERN was evoked in the swinging strike events. However, we also con-

firmed that for the batters, called strikes elicited larger negative potentials than balls. Called

strikes are classified as omission errors as the batter did not swing the bat when they should

have. Although several clinical studies have reported behavioral results related to omission

errors, very few studies have focused on EEG activity in these situations [38]. Although we did

not observe a significant difference in ERN for called strikes between the batters and pitchers,

we might have obtained omission-related ERN because the competitive baseball game

increased error rates as well as participant’s intrinsic motivation, which might result in higher

sensitivity to errors.

We also performed correlation analyses between ERN amplitude and self-reported evalua-

tion scores obtained from BIS11, BIS/BAS, and the GEQ. We did not observe any significant

correlation between ERN and BIS11 scores or any BIS/BAS item. These results suggest that the

error-related potentials were not modulated by personality factors such as impulsivity or that

variation in these traits was small across participants. The relationship between impulsive

behaviors and ERN modulation is a topic currently under debate [39,40]. Past studies report

that impulsive behavior does not necessarily lead to ERN modulation [41–44]. Concluding

that impulsivity is directly involved in the modulation of ERN potentials is therefore difficult.

For the GEQ items that evaluated the game experience, we found a trend for smaller ERN to

be associated with larger scores for positive affect (p = 0.0558, r = 0.565). These findings sug-

gest that ERN is suppressed when participants feel positive about the game, possibly because

their optimism affects their perception of errors. This argument is also supported by the other

results. Correlation tendencies were not found in items that represent negative feelings about

the game (p> 0.1). It appears that items based on positive expression are predisposed to

extract participant evaluations of the game.

There was a significant correlation between ERN and score differences in the range of ±10.

When the score difference was within ±10, the negative potential of the ERN was suppressed
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when players were winning, but increased when they were losing. When players were losing,

they cared more about making batting mistakes, and their neural response to swinging strikes

was higher. In contrast, if players were winning, they should be less concerned. Therefore,

even after a swing and miss, the game situation (i.e., winning) might not change, and the batter

did not feel that the error was very serious. However, when players were losing or winning by

a large margin (for example, 10 points), there was a different relationship between the score

difference and ERN. It may be too early to draw the conclusion that the ERNs obtained with

score differences of 10 points or more were changed linearly. When players were losing by a

large margin, they likely lost motivation for the game. Even after a mistake, they might not

have felt disappointed, which led to a weaker ERN. Conversely, when players were winning by

a large margin, they might tend to underestimate batting difficulty and expect to hit with a

high probability. If they swung and missed in this case, the deviation between predicted out-

come and result would be large because they expected to hit the ball. Thus, swinging strikes

might elicit a higher ERN magnitude. This hypothesis is supported by previous studies [33,45]

in which the correlation between task performance and ERN were investigated. These studies

reported that higher ERN amplitude was observed when the success rate was high. Conversely,

when the success rate remained low, the ERN became relatively small. Thus, ERN may be

modulated by intrinsic motivation, which is adaptively modulated by gaming situations.

This study has some limitations. First, we did not observe any significant correlations

between ERN and personal factors. However, we found a significant correlation between the

average score difference for three games and the ERN. In the baseball game, the win-lose situa-

tion for the player changes depending on the game score. The ERN might have changed

according to the win/lose situation, rather than personal factors. Thus, the present study does

not lead to the conclusion that personal factors do not change the magnitude of ERNs. Second,

although we suggested that ERNs changed linearly according to the score difference, we

assumed that ERNs obtained with score differences of 10 points or more changed nonlinearly.

However, we did not observe a sufficient number of ERN data to validate this hypothesis.

Third, most of the participants were male. Although the relationship between gender differ-

ences and ERN modulation is currently under debate, previous studies reported that ERN was

affected by sex differences [46–48]. Therefore, we are unable to discuss the effects of sex differ-

ences on the current results. Fourth, we did not take the current base-path situation into con-

sideration. For example, when batters commit swinging strikes, the feeling when they have

runners in scoring position with two outs, is quite different from that when they have no run-

ners on base with no outs. Future investigation is necessary to examine the relationship

between the context of batting errors and ERN.

Conclusions

We showed that ERN and P300 were evoked by ball/strike errors in a competitive consumer

baseball game. P300 was evoked for swinging strikes, with no significant differences between

batters and pitchers. We interpret this to mean that P300 reflected cognitive processes such as

attention to the pitch outcome. In contrast, ERN for batters differed depending on the score

difference. Because ERN amplitude was modulated by the relative score of the game, it can be

a good metric for evaluating intrinsic motivation to play a game. We can provide entertain-

ment content that matches the degree of difficulty appropriate for the user. If we can use ERN

modulation to estimate the progress of a player’s skill and his/her degree of boredom, we can

develop better learning and training methods for various types of games. The present experi-

mental setting using a consumer game was able to increase intrinsic motivation to play the

game and has helped us learn more about ERN modulation.
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