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Dissection of voltage-gated sodium channels
in developing cochlear sensory epithelia

Dear Editor,

Hair cells (HCs) clustered in cochlear sensory epithelia
produce spontaneous spike and evoked action potentials
during the developmental stage of auditory, which rely on
many ion channels, such as Ca2+ channels, K+ channels and
Na+ channels (Housley et al., 2006; Marcotti et al., 2003). As
the dominant molecule acting in action potentials in most of
excitable cells, Na+ channels (VGSCs) were deemed to be
indispensable in the spontaneous and evoked action po-
tentials of HCs (Marcotti et al., 2003). The inward Na+ cur-
rents recorded from hair cells, shorten the time to reach the
action-potential threshold (Eckrich et al., 2012). However,
little was known about the tissue- or developmental ex-
pression and the molecular structural information of Na+

channel subtype in hair cells, which extremely restricts the
understanding of physiological mechanisms related to
hearing development.

To examine whether there exist any novel sodium channel
subtype in cochlear hair cells, the sensory epithelia locating
in premature mouse cochlea was carefully dissected and
used for the identification of VGSCs in cochlear hair cells.
Three pairs of degenerate primers derived from conserved
region of mammalian VGSCs (Table S2), as well as their
invertebrate counterparts (from Drosophila, cockroach,
housefly and mosquito), were used for detecting the ho-
mologous sequence of cochlear VGSCs. All the resultant
sequences were matched to the known mammalian VGSC
subtypes (Nav1.1–1.9, data not shown), indicating that no
novel sodium channel subtype could be found in cochlea.
Subtype-specific primers corresponding to conserved re-
gions of Nav1.1–1.9 were designed and used to probe and
quantify the abundance of VGSCs expressed in cochlea
(Table S1). Analysis of these cDNA fragments ranging from
115 to 340 bp revealed that all the known VGSC subtypes
could be detected in cochlea though in a less expression
level than that of Cav1.3 (Fig. 1A).

Co-expression of multiple Na+ channel isoforms has been
described not only in neurons from the brain but also in pri-
mary sensory receptors of the mammalian cochlea. Nav1.7
has been suggested as the main carrier of INa in mouse inner
hair cells because of the distinct biophysical and pharmaco-
logical properties (Marcotti et al., 2003). Both Nav1.1 and

Nav1.6 were identified through immunohistochemistry on cell
membrane of rat hair cells, while Nav1.2 was localized to the
unmyelinated efferent axons and terminals (Eckrich et al.,
2012). Nav1.6 with high expression in sensory epithelia is
considered as the developmental regulator involved in the
frequency of action potential activity and hair cell maturation.
In this study, four sodium channels mentioned above were
found with pronounced expression, providing further evi-
dence of these subtypes in regulating action potential (Eck-
rich et al., 2012; Marcotti et al., 2003). Nevertheless, Nav1.4,
Nav1.5, Nav1.8 and Nav1.9, were found to be expressed in
relatively low levels in cochlear sensory epithelia (Fig. 1A).

To obtain a clear view on the structural features of
cochlear VGSCs, specific primers were designed to clone
the coding sequences (CDS) of all the VGSCs identified
(Table S2). The sequences of cochlear Nav1.1 and Nav1.4
were identical with that of counterparts in other mouse tis-
sues. The other seven full-length VGSCs or structural vari-
ants comprised 5298 and 6021 bp (Genebank number:
KM373687-373700), encoding for 1765 and 2006 amino
acids.

According to the generally acceptable nomenclature
(Goldin et al., 2000), the cochlear VGSCs mentioned above
were named as CbmNav1.x, in which the subscript letter ‘bm’

indicates the originated tissue of cochlear VGSCs and ‘1.x’
indicates the corresponded mammalian Nav counterparts.
For instance, cochlear VGSC corresponding to Nav1.2 was
named CbmNav1.2. Hereinafter, alternative splicing or RNA-
editing variants that belong to CbmNav1.2 were named as
CbmNav1.2a, CbmNav1.2b…, respectively. When mapping
these sequences of CbmNav1.x to the mouse genome, it was
found that CbmNav1.x were subjected to diverse point mu-
tations, fragment insertions and deletions brought by the
alternative splicing and RNA-editing events, most of which
sit in functionally significant regions (Fig. 1B). All the editing
sites and alternative splicing sites were double checked by
pyrosequencing to remove any interference of RT-PCR er-
rors. The sites location and nucleotide substitution patterns
of all the alternative splicing and RNA-editing variants were
shown in Table 1.

Two variants of CbmNav1.2 differed by a single exon 6
exhibited the same alternative splicing site (Fig. 1C and 1D),
which maybe resulting in functional enhancement as
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observed in hNav1.2adu (Xu et al., 2007). Likewise, cochlear
hair cells expressing alternatively splicing variant of
CbmNav1.2 may display more excitable ability. R608G,
A709V, Q513L and D586G identified in CbmNav1.2 locating
at intracellular loop between DI and DII were potentially
adjacent to the phosphorylation sites may greatly influence

the channel activity (Chahine and O’Leary, 2014). RNA-
editing sites I417V, E1439G and F1765S were located in
extracellular loop between S5 and S6 of CbmNav1.2, relating
to ionic permeability and selectivity (Fig. S1).

Nav1.3 is mainly expressed in CNS during the early
development stage (Hains et al., 2003). In rNav1.3 or
hNav1.3, extensive alternative splicing sites, such as 12v1,
12v2 and 12v3 (rat), as well as 12v1, 12v2, 12v3 and 12v4
(human) in DI-II intracellular loop were identified to be im-
portant for channel kinetics (Thimmapaya et al., 2005). Al-
ternative splicing site of 12v2 was also detected in
CbmNav1.3 (Fig. 1F). A missense mutation, K494R, was
found in intracellular loop between DI and DII in both variant
CbmNav1.3a and CbmNav1.3b. Similar to rNav1.2, a mis-
sense mutation D208S of CbmNav1.3 at extracellular loop
between S3 and S4 of the DI was caused by alternative
splicing on Exon 6A or Exon 6B (Fig. 1C and 1D). All of
these mutations might have substantial impact on phos-
phorylation and gating properties of the channel.

To date, seven alternative splicing variants of Nav1.5 in-
cluding Nav1.5a (exon 18 deletion), Nav1.5b (exon 17 and

Figure 1. Molecular characteristics of sodium channels

expressed in cochlear sensory epithelia. (A) Quantitative

analysis of nine subtypes of sodium channels expressed in

cochlear sensory epithelia. The mRNA encoding for TTX-R Nav
channels (mNav1.5, mNav1.8 and mNav1.9) were detected of

lower expression level, the mRNA copy numbers of TTX-S Nav
channels were shown at high level. (B) The schematic diagram

of the sodium channel topology showed RNA editing and

alternative splicing sites of CbmNavs. RNA editing sites were

illustrated with circles icon; and alternative splicing sites were

highlighted with square icon. See Table 1 for details on these

mutations. (C–H) Alternative splicing events occured in

cochlear sodium channels.

Table 1. Common and unique amino acid changes in fifteen CbmNav variants

CbmNav1.2 CbmNav1.3 CbmNav1.5 CbmNav1.6 CbmNav1.7 CbmNav1.8 CbmNav1.9

t-a V924Da M783Kabc

t-g D488Eb W357Gab

t-c V1580Aa

F1765Sb
F259La

F777Sa

F1363La

I1636Ta

F1619Sb

L1967Pb

C934Rab

I1037Tab

F1643Sab

F1134Lab F724Sabc

F1140Lb

L1229Pb

a-g I417Vb

D586Gb

R608Ga

N1047Db

E1439Gb

K494Ra D322Ga

Q859Ra

M801Vb

E1062Gb

E1386Gb

E1904Gb

D522Gab

K805Rab
I627Vabc

E971Gc

N983Dc

Y1029Cb

a-t Q513Lb N782Ia

g-a V1290Mb G824Sab

g-t V379Labc

c-t A709Va

Substitution N209Dab D208Sb VS206TTb

NIK209
FVDb

L215Vb

P234Sb

I207Vb

N212Db
L201Vab

N206Dab

Deletion 1080–1133ab 1272–1312b 1266–1306b

647–657ab

Insertion 625VSQab 1031Qb

Amino acid sequences of these variants (a, b and c represent different variant of each VGSC subtype) were compared with the genome

sequence of corresponding subtypes. Nucleotide bases of RNA editing events that correspond to these in the mNav genomic sequence were in

bold. Alternative splicing events included exons mutual repulsion resulting amino acid changes, exons kipping resulting amino acid deletion,

alternative 3′ splicing and alternatives 5′ splicing resulting amino acid deletion and insertion.
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exon 18 deletion), Nav1.5c (CAG inclusive variant), Nav1.5d
(exon 17 splicing), Nav1.5e (exon 6 splicing), Nav1.5f (exon
24 deletion) and C-terminal splice variants, have been re-
ported (Schroeter et al., 2010). According to the splicing
pattern, distribution and expressive proportion, these vari-
ants showed diversities in different species and different
tissues of same species. Of all the VGSC subtypes found in
mouse cochlear sensory epithelia, CbmNav1.5 was subjected
to the most intensive RNA-editing modification, among which
T-to-C and A-to-G were the two common nucleotide substi-
tution patterns, containing six editing sites each. Surprisingly,
CbmNav1.5 was substantially modified by alternative splicing
as well, resulting in two alternative splicing variants having
significant deletion at functionally important regions of the
channel: to have seven amino acid residues substitution at
DI S3–S4 extracellular loop were found in CbmNav1.5b. In
addition, CbmNav1.5a and CbmNav1.5b lost the entire exon
18 at DI-DIII intracellular loop which contained 54 amino acid
residues (Fig. 1E, Table 1). Notably, exon 18 deletion, en-
coding for 53 amino acids at the DII–DIII linker (residues
1078–1130 in hNav1.5), was the first reported splice variant
in the cardiac Na+ channel. This splicing variant showed a
pronounced species-specific expression pattern in mammals
(Blechschmidt et al., 2008).

Nav1.6 is widely expressed in both PNS and CNS
(Caldwell et al., 2000). A variant of hNav1.6 lost a part of S3
and the whole transmembrane S4 at DIII (Zubovic et al.,
2012a). Alternative splicing sites previously found in rNav1.6
and hNav1.6 were also appeared in CbmNav1.6b variants
which appeared as a loss of exon 21, taking away partial
sequence of DIIIS3 and the entire DIIIS4 (Fig. 1E). Our
finding identified the same deletion in CbmNav1.6b of mouse
cochlea (Fig. 1E). Deletion of exon 21 caused the loss of
voltage sensor S4, it may be a “fail-safe” mechanism that
produces a non-functional truncated protein (Plummer et al.,
1997).

Alternative splicing variants of Nav1.7 were found in dor-
sal root ganglia (DRG) neurons under neuropathic pain
conditions of rats (Dib-Hajj et al., 2013). In this study,
CbmNav1.7a and CbmNav1.7b were characterized by the
existence of exon 6B, differing at two amino acids (201V,
206D) in the D1/S3–S4 linker comparing to mNav1.7 (201L,
206N) (Fig. 1C and 1D). Previous study revealed that the
variant containing exon 6B had slower kinetics of inactivation
for negative potentials than that of the variant containing
exon 6A (Chatelier et al., 2008; Jarecki et al., 2009).
Meanwhile, exon 22 deletion was first observed in
CbmNav1.7b which was lacking partial sequence of DIIIS3
and the entire DIIIS4 (Fig. 1E), suggested that the truncated
protein maybe bear a similar protection mechanism to
Nav1.6 (Plummer et al., 1997; Zubovic et al., 2012b).

For CbmNav1.8, it was found five RNA-editing sites lo-
cated at the DI/DII pore region and intracellular loops. Nine
novel RNA-editing sites were identified in two CbmNav1.9
variant, eight of which were caused by the nucleotide
changes of adenine to guanine (Table 1). The alternative
splicing event caused a deletion of Glu at position 1031 of
CbmNav1.8b (Fig. 1H). Few cases have been approached as
for the functional consequences of these mutations.
Although several mutation sites in Nav1.8 and Nav1.9 vari-
ants were identified, whether these mutations may diversify
the function of channels will still need further researches.

Groundbreakingly, all known subtypes of sodium chan-
nels were identified in mouse cochlear sensory epithelia
before hearing onset, strongly indicating the indispensible
role in hearing development and formation. Moreover, some
structural variations of CbmNav were found, possibly en-
dowing distinct functions in order to adapt to the physio-
logically distinct properties for the cochlear VGSCs. This
work lays a foundation for further studies to understand the
roles of diverse CbmNav variants in shaping action potentials
in cochlea and regulating hearing development.
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