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PRECLINICAL STUDIES
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Summary
Introduction. Zerumbone is a phytochemical compound of the ginger plant Zingiber zerumbet with cytotoxic effects in vari-
ous cancer cell lines. To date, zerumbone has shown an antiproliferative effect in oral squamous cell carcinoma cells lines. 
However, the effect of combination with radiation or cisplatin in head and neck squamous cell carcinoma (HNSCC) is unclear. 
The aim of this study was to investigate the effect of zerumbone alone, and in combination with irradiation and cisplatin on 
HNSCC cell lines. Methods. The three HNSCC cell lines SCC25, Cal27 and FaDu were treated with zerumbone, radiation 
and/or cisplatin. Cell viability and clonogenic assays were performed. The interaction between zerumbone and radiation or 
cisplatin was evaluated using the combination index. Apoptosis was measured by flow cytometry and cell migration was 
assessed using a wound healing assay. Results. Treatment with zerumbone resulted in a dose dependent induction of cyto-
toxicity and apoptosis in all three cell lines. The combination with cisplatin revealed a synergistic to additive effect in Cal27. 
The clonogenic assay showed a significant radiosensitizing effect in all three cell lines. The wound healing assay showed 
a reduction of cell migration in Cal27. Conclusion. The natural compound zerumbone shows a cytotoxic and proapoptotic 
effect on HNSCC cell lines. Furthermore, zerumbone enhances the radiation effect in all three cell lines and thus may be a 
suitable candidate for combination therapy in HNSCC.
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Introduction

Head and neck squamous cell carcinoma (HNSCC) is the 
sixth most common cancer worldwide with an incidence of 
approximately 900.000 new cases per year [1]. The average 
5-year survival rate of HNSCC is 66%, but strongly depends 
on the tumor stage and location [1–3]. The majority of 
patients are diagnosed with a locally advanced stage which 
requires a multimodal therapy including surgery, irradiation 
and/or chemotherapy. However, treatment intensification 
comes at the cost of adverse effects and is therefore limited 

[2–4]. Hence, the identification of suitable new substances 
is required which show antiproliferative effects and ideally 
help to improve radio- and chemotherapy.

Natural sources play a great role in the discovery of many 
anticancer drugs. For instance, taxanes and vinca alkaloids 
were initially isolated from the madagaskar periwinkle and 
the Pacific yew tree bark, respectively [5]. The advantage 
of natural products is that they often interact with multiple 
targets. Thus, they are more promising to show an effect in 
the dysregulated tumor cell state with alterations in hundreds 
of genes. Additionally, they are generally safer to use, less 
expensive and more accessible [6].

Zerumbone is a natural compound of the ginger plant 
Zingiber zerumbet Smith. In Asian traditional medicine the 
plant is used to treat a wide variety of diseases and symp-
toms. The anticancer properties of zerumbone have been 
reported in several studies in vitro and in vivo in various 
cancers [7–9]. In contrast to the cytotoxic effect on can-
cer cells, zerumbone shows only minimal to no effect on 
normal cells [9–11]. Other properties of zerumbone are 
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anti-inflammatory, antioxidant, antiatheroslerotic, antino-
ciceptive, antimicrobial and hepatoprotective activities [8]. 
Reported mechanisms leading to the antiproliferative effects 
of zerumbone include the modulation of the Nf-κB path-
way, the mitochondrial pathway of apoptosis, upregulation 
of redox potential, inhibition of CXC chemokine receptor-4 
expression, PI3K-mTOR and TRAIL pathway [7–9].

The aim of this study was to investigate the effect of 
zerumbone in the HNSCC cell lines SCC25, Cal27 and 
FaDu especially in combination with (the standard therapeu-
tic options in HNSCC treatment) cisplatin and irradiation.

Materials and methods

Drugs

Zerumbone was obtained from Sigma Aldrich (St. Louis, 
MO, USA). It was dissolved in dimethyl sulfoxide (DMSO; 
Sigma Aldrich, St. Louis, MO, USA) as a 100 mmol/l stock 
solution and stored at -20 °C. Further dilution was done 
with RPMI medium immediately before treatment. Cisplatin 
(CIS) was taken from ready-to-use infusions.

Cell culture

The HNSCC cell line FaDu was obtained from the American 
Type Culture Collection (Manassas, VA, USA). Cal27 and 
SCC25 were obtained from the German Collection of Micro-
organisms and Cell Cultures (Braunschweig, Germany). The 
cell line FaDu derived from a human pharyngeal squamous 
cell carcinoma whereas SCC25 and Cal27 are from human 
squamous cell carcinomas of the tongue. The cell lines 
were kept in RPMI medium (Gibco BRL, Gaithersburg, 
MD, USA) supplemented with 1% penicillin–streptomycin 
(Gibco BRL, Gaithersburg, MD, USA) and 5% fetal bovine 
serum (Gibco BRL, Gaithersburg, MD, USA) in a humidi-
fied atmosphere with 5% CO2.

Cytotoxicity assay

A cytotoxicity assay was performed to assess the cytotoxic 
effect of zerumbone. 3 × 103 cells were seeded on 96-well 
plates in triplicates and incubated for 24 h. Subsequently, 
they were treated with 0—96  µM zerumbone. For the 
combination experiments, cells were treated with cisplatin 
0—32 µM or a combination of zerumbone and cisplatin 
(ratio 3:1) as well as with irradiation 0—8 Gy alone or in 
combination with zerumbone. 0,1% DMSO was used as 
vehicle control. After 72 h of incubation the percentage of 
living cells was assessed using the Cell Counting Kit-8 assay 
(CCK-8, Dojindo Molecular Technologies Inc., Rockville, 
MD, USA) according to the manufacturer’s protocol.

Flow cytometry analysis

To assess the induction of apoptosis, flow cytometry analy-
sis was performed. Briefly, 105 cells were seeded on 6-well 
plates and incubated for 24 h. Then, cells were treated 
with 0, 4, 8 and 16 µM zerumbone. After 24 h and 48 h, 
apoptosis and necrosis were measured using the Annexin-
V Apoptosis Detection Kit (Bender MedSystems, Vienna, 
Austria). Apoptosis was defined as Annexin + /propidium 
iodide − (Ann + /PI-) and necrosis/late apoptosis was defined 
as Ann − /PI + and Ann + /PI + .

Wound healing assay

Cells were seeded on 6-well plates and after reaching a con-
fluence of approximately 80%, a scratch was made using 
a 1 ml pipette tip. After washing twice with warm PBS, 
cells were treated with 0, 5, 10 and 20 µM zerumbone. Two 
regions per scratch were marked and photographed subse-
quently after the scratch and again after 24 h of incubation 
using CellSens Software (version 1.8.1, Olympus Corpora-
tion, Tokyo, Japan). The wound healing area was measured 
using ImageJ macro “MRI Wound Healing Tool” [12].

Irradiation

Irradiation was carried out using a 150 kV x-ray machine 
(Gulmay D3300, Gulmay Medical Ltd., Byfleet, UK) at a 
dose rate of 2 Gy/min at room temperature. The focus-object 
distance measured 52 cm and the field size was 20 × 20 cm. 
Thermoluminescence dosimeters were used for dosimetry 
assessment.

Clonogenic assay

The clonogenic assay was performed according to the proto-
col by Franken et al. [13]. Six-well plates were seeded with 
3 to 15 × 102 cells and incubated for 24 h. Next, cells were 
treated with 0, 2.5 or 5 µM zerumbone and/or irradiated with 
0, 2, 4, 6 or 8 Gy and incubated for 72 h. Afterwards, the 
medium was replaced with drug-free medium. 10 days later, 
cells were washed with phosphate-buffered saline, fixed with 
ethanol 96% and stained with crystal violet. Colonies con-
taining more than 50 cells were viewed as survivors and 
counted.

Statistical analysis

All experiments were carried out at least three independ-
ent times. The statistical analysis for cytotoxicity assays and 
flow cytometry were performed using GraphPad 5.0 soft-
ware by Prism® (GraphPad Software Inc., San Diego, CA, 
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USA). The interaction of zerumbone and cisplatin and short 
term combination with irradiation were analyzed using the 
Combination Index according to the Chou-Talalay method 
using CompuSyn software (ComboSyn Inc.) [14]. The clo-
nogenic assay was analyzed using a linear-quadratic model 
as described by Franken et al. [13]. Flow cytometry and 
wound healing assay were analyzed with GraphPad 5.0 
software by Prism® using one-way analysis of variance 
(ANOVA) and Tukey's multiple comparisons test. A p-value 
below 0.05 was considered as statistically significant.

Results

Zerumbone leads to inhibition of cell viability

The three HNSCC cell lines SCC25, Cal27 and FaDu were 
treated with zerumbone (0–96 µM) for 72 h and cell viabil-
ity was measured using CCK-8. Treatment with zerumbone 

showed a dose dependent inhibition of cell viability in all 
three cell lines (Fig. 1). Cal27 cells were most sensitive to 
zerumbone treatment with an IC50 at 4.42 µM, followed by 
FaDu cells with an IC50 at 8.60 µM. SCC25 was the least 
sensitive cell line with an IC50 at 9.22 µM.

Treatment with zerumbone induces apoptosis

Flow cytometry was performed to assess apoptosis and 
necrosis. Cells were seeded into 6-well plates, treated with 
0, 4, 8 or 16 µM zerumbone and incubated for 48 or 72 h. All 
three cell lines showed a dose-dependent increase of apop-
tosis and necrosis (Fig. 2). After 24 h of incubation, apop-
tosis was significantly increased in SCC25 at 16 µM, and in 
Cal27 at 8 and 16 µM. While the amount of necrosis was not 
affected in SCC25 and FaDu after 24 h, it was significantly 
increased in Cal27 at 16 µM. After 72 h, apoptosis was sig-
nificantly increased in SCC25 at 8 and 16 µM and FaDu at 

Fig. 1   Combination of zerum-
bone and cisplatin. (a) Cell 
viability after treatment with 
zerumbone (ZER), cisplatin 
(CIS) or the combination of 
both for 72 h. Treatment con-
centration is described on the 
x-axis in µM. (b) Combination 
Index: CI < 1 indicates synergy, 
CI > 1 antagonism and CI = 1 
represents an additive effect. 
Error bars represent the stand-
ard error of the mean
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16 µM. Furthermore, after 72 h necrosis was increased in all 
three cell lines at 16 µM and additionally in Cal27 at 8 µM. 
However, it should be noted that in this assay late apoptosis 
is not distinguishable from necrosis.

Wound healing assay

Cell migration was investigated using the wound healing 
assay. Cells were seeded onto 6-well plates and a scratch 

Fig. 2   Flow cytometry analysis of apoptosis and necrosis after (a) 
48 h and (b) 72 h of incubation with zerumbone. Percentage of apop-
tosis/necrosis were compared to the control. Error bars represent the 

standard error of the mean. *: p < 0.05; **p < 0.01; ***: p < 0.001; 
****: p < 0.0001

Fig. 3   Wound healing assay of (a) SCC25 and (b) Cal27. Cells were 
photographed immediately after performing the scratch (0  h) and 
after 24 h of incubation with 0, 5, 10 µM zerumbone. Percentage of 

migration after 24 h of incubation was assessed. Error bars represent 
the standard error of the mean
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was made prior to incubation with zerumbone at 0, 5, 10 and 
20 µM for 24 h. There was a notable difference in the wound 
healing capacity in SCC25 and in Cal27 at 10—20 µM. In 
Cal27 the wound healing area has closed by 53% in the control 
group and 31% at 10 µM zerumbone. In SCC25 the wound 
healing area has closed by 84% in the control group and 69% 
at 10 µM zerumbone (Fig. 3). Although there was a significant 
reduction of wound healing in SCC25 and Cal27 at 20 µM, the 
overall cell density has markedly decreased due to cytotoxicity 
(data not shown). Results of FaDu were not reproducible due 
to tissue tearing when performing the scratch.

Effect of zerumbone and cisplatin on cell viability

To determine a possible synergism with the chemothera-
peutic agent cisplatin, cells were treated with cisplatin and 
zerumbone simultaneously at a ratio of 3:1. In Cal27 the 
combination with zerumbone led to an enhanced effect of cis-
platin treatment. In SCC25 and FaDu zerumbone decreased 
the effect of cisplatin treatment. Next, the results were ana-
lyzed with the Combination Index (CI). CI < 1 indicates syn-
ergy, CI > 1 an antagonistic effect and CI = 1 represents an 
additive effect. Treatment combination in SCC25 and FaDu 

Fig. 4   Combination of zerumbone and irradiation. (a) Survival (%) 
after treatment with zerumbone and radiation for 72  h. (b) Experi-
mental CI values of zerumbone and radiation. CI < 1 indicates syn-
ergy, CI > 1 antagonism and CI = 1 represents an additive effect. Error 

bars represent the standard error of the mean. Significance levels 
were compared to the control group within the same radiation dose. 
*: p < 0.05; **p < 0.01; ***: p < 0.001; ****: p < 0.0001
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showed an antagonistic effect for all doses. The CI for Cal27 
revealed a synergistic to additive effect up to the combination 
of 4.88 µM zerumbone and 1.63 µM cisplatin (CI 0.65—
1.08) and an antagonism for higher doses (Fig. 1).

Effect of zerumbone and radiation on cell viability 
and colony formation

To assess the short-term effect, cells were treated with 
zerumbone (0—96 µM) and irradiation (0—8 Gy) for 72 h. 
Treatment with zerumbone enhanced the radiation effect 
in all three cell lines at different concentrations (Fig. 4). 
When analyzed with the CI a synergistic effect was found 
in SCC25 for 12 µM zerumbone and 2—8 Gy (CI 0.57—
0.68). Cal27 showed a slight to moderate synergism when 
6—12 µM zerumbone were combined with 2—4 Gy (CI 
0.80—0.95). FaDu showed a nearly additive or synergistic 
effect at 1.5—12 µM and 2—6 Gy (CI 0.71—1.1).

The long-term effect of combination treatment was 
assessed with the clonogenic assay. Treatment with zerum-
bone and/or radiation led to a decrease of clonogenic sur-
vival in all cell lines. Moreover, all three cell lines showed a 
significantly increased inhibition of colony formation at 2.5 
and 5 µM (all p < 0.001, Fig. 5) when analyzed with linear 
regression according to Franken et al. [13].

Discussion

HNSCC is one of the sixth most common carcinoma world-
wide and survival rate only marginally improved over the 
last decades. Thus, new treatment options are needed to 
improve overall survival. The investigation of natural prod-
ucts has led to the discovery of several well-known chemo-
therapeutic agents. The ginger plant Zingiber zerumbet is 
commonly used in traditional medicine in Asia to treat a 
wide variety of symptoms and diseases. Zerumbone is the 
major component of its essential oil and has been researched 
in many studies in vivo and in vitro. It shows a cytotoxic 
effect in cancer cell lines such as lung cancer [15], colorectal 
cancer [16], leukemia [11] and oral cancer [9]. However, it 
has minimal to no effect on normal cells [9, 16, 17].

In this study, the effect of zerumbone on the HNSCC cell 
lines SCC25, Cal27 and FaDu was investigated. Zerumbone 
showed antiproliferative effects in all three cell lines with 
IC50 values between 4.4—9.2 µM. Additional flow cytom-
etry analysis showed upregulation of apoptosis in all three 
cell lines. Migration was reduced in Cal27 at 10 µM. In 
concordance, Zainal et al. showed an antiproliferative effect 
in oral cancer cells between 0.8—4.9 µM and a proapoptotic 
and antimigratory effect [9].

Next, the combinatory effect of zerumbone and cisplatin at 
a ratio of 3:1 was investigated, since cisplatin is the standard 

chemotherapeutic agent in HNSCC treatment [18]. Combined 
treatment showed an antagonistic effect in SCC25 and FaDu. 
In Cal27 an additive to synergistic effect for low drug doses 
was found. However, for cancer therapy synergism at high con-
centrations is more useful in order to make the most of both 
substances [14]. Hence, we assume that zerumbone is no suita-
ble candidate for combination with cisplatin in HNSCC. So far, 

Fig. 5   Clonogenic assay of SCC25, Cal27, and FaDu cells. Cells 
were treated with 0, 2.5 or 5 µM zerumbone and subsequently irradi-
ated with 0, 2, 4, 6, or 8 Gy. All cell lines showed a significant inhi-
bition of colony formation when analyzed with the linear-quadratic 
model by Franken et al. (all p < 0.001). Error bars represent the stand-
ard error of the mean. The indicated significance levels were addi-
tionally analyzed using a two-way ANOVA. Treated cells were com-
pared to the control group within the same radiation dose. *: p < 0.05; 
**p < 0.01; ***: p < 0.001; ****: p < 0.0001
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only Hu et al. investigated the combinatory effect of zerum-
bone and cisplatin in vitro on lung cancer cells. In contrast to 
our study they demonstrated a significantly enhanced growth 
suppression when both substances were combined [15].

Another pillar of HNSCC treatment is radiotherapy. In this 
study, combination experiments of zerumbone and radiation 
showed an additive or synergistic effect at different concentra-
tions in all three cell lines. Furthermore, the clonogenic assay 
showed a significantly reduced colony formation by combi-
nation of both treatments. Likewise, a radiosensitizing effect 
was found in colorectal carcinoma [16], prostate cancer [19] 
and glioblastoma cells [20]. Underlying mechanisms include 
inhibition of radiation-induced activation DNA double-strand 
break repair via inhibition of ataxia-telangiectasia mutated 
(ATM) and DNA-dependent protein kinase, catalytic subunit 
(DNA-PKcs) [16, 19]. Furthermore, treatment with zerum-
bone alone and in combination with radiation induced cell 
cycle arrest in G2/M, the most vulnerable phase for radiation 
and depletion of the cellular antioxidant glutathione [16].

In conclusion, zerumbone shows a cytotoxic and proa-
poptotic effect, and inhibits cell migration in HNSCC 
cell lines. Moreover, this is the first study to describe 
a radiosensitizing effect of zerumbone in HNSCC cell 
lines. These results implicate that zerumbone might be an 
attractive treatment option in HNSCC especially in com-
bination with radiation. However, further preclinical and 
clinical studies are required to assess the full potential of 
zerumbone.

Abbreviations  CCK-8:  Cell Counting Kit-8; CIS:  Cisplatin; 
DMSO: Dimethyl sulfoxide; HNSCC: Head and neck squamous cell 
carcinoma; SEM: Standard error of the mean; ZER: Zerumbone
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