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Tumors evade the immune system by inducing inflammation. In melanoma, tumor-derived
IL-1b drives inflammation and the expansion of highly immunosuppressive myeloid-
derived suppressor cells (MDSCs). Similar in many tumors, melanoma is also linked to
the downstream IL‐6/STAT3 axis. In this study, we observed that both recombinant
and tumor-derived IL-1b specifically induce pSTAT3(Y705), creating a tumor-
autoinflammatory loop, which amplifies IL-6 signaling in the human melanoma cell line
1205Lu. To disrupt IL-1b/IL-6/STAT3 axis, we suppressed IL-1b-mediated inflammation
by inhibiting the NOD-like receptor protein 3 (NLRP3) using OLT1177, a safe-in-humans
specific NLRP3 oral inhibitor. In vivo, using B16F10 melanoma, OLT1177 effectively
reduced tumor progression (p< 0.01); in primary tumors, OLT1177 decreased pSTAT3
(Y705) by 82% (p<0.01) and II6 expression by 53% (p<0.05). Disruption of tumor-derived
NLRP3, either pharmacologically or genetically, reduced STAT3 signaling in bone marrow
cells. In PMN-MDSCs isolated from tumor-bearing mice treated with OLT1177, we
observed significant reductions in immunosuppressive genes such as Pdcd1l1, Arg1,
Il10 and Tgfb1. In conclusion, the data presented here show that the inhibition of NLRP3
reduces IL-1b induction of pSTAT3(Y705) preventing expression of immunosuppressive
genes as well as activity in PMN-MDSCs.

Keywords: interleukin-1b, NLRP3, interleukin-6, signal transducer and activator of transcription 3, myeloid-derived
suppressor cells
INTRODUCTION

An evolving understanding of malignant tumor progression reveals that tumors evade the immune
system through several mechanisms including NK and T cell exhaustion (1, 2), regulatory T cell
induction (3, 4), expression of inhibitory receptors (5), tumor-associated macrophage alterations (6)
and recruitment of myeloid-derived suppressor cells (MDSCs) (7). Specifically, MDSCs facilitate
tumor immune evasion by inhibiting anti-tumor responses of both T and NK cells as well as
induction of regulatory T cells (8–10). MDSC expansion is mediated through chronic tumor-
org August 2021 | Volume 12 | Article 6613231
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associated inflammation (for example, pro-inflammatory
cytokines). MDSCs also suppress T cell anti-tumor actions via
programmed death-ligand 1 (PD-L1), arginase (Arg-1),
interleukin-10 (IL-10) and transforming growth factor beta
(TGF-b) (11, 12). In melanoma, patients with advanced stage
melanoma have elevated circulating levels of the proinflammatory
cytokines IL‐1b and IL‐6, which correlate with poor prognosis
(13, 14). Moreover, inflammatory cytokines such as IL‐1b and
IL‐6 have been associated with MDSCs expansion and activity
(15, 16). Nevertheless, the molecular mechanisms linking
inflammation to MDSCs expansion and immunosuppressive
gene regulation remain unclear.

In advanced stage cancers, IL-6 is highly associated with
disease progression (17–19). Canonically, IL‐6 binds to either
the membrane bound IL-6 receptor-a chain or soluble IL-6.
Subsequently, these complexes bind ADAM10 or ADAM17
resulting in JAK/STAT activation and gene transcription.
STAT3 is a transcription factor that regulates several unrelated
biological processes such as maintenance of stem cell
pluripotency, regeneration, autophagy, cell proliferation, and
wound healing (18). In several cancers including melanoma,
STAT3 is a prognostic marker predicting poor outcomes (20–
22). STAT3 functions take place with the phosphorylation of
tyrosine 705 (Y705) (23). Once phosphorylated, STAT3
dimerizes and enters the nucleus. There dimerized pSTAT3
binds specific DNA elements or binds with other transcription
factors, modulating their activity (termed tethering) (24).
Importantly, the trigger for Y705 phosphorylation is linked to
IL‐6 and Janus kinases.

Many tumors exhibit elevated levels of IL-6, which in turn
activate the JAK/STAT3 signaling cascade in infiltrating immune
cells, resulting in immunosuppressive activity (25–27).
Moreover, aberrant IL-6 production is strongly associated with
the expansion and activation of MDSCs (15, 19, 28).
Additionally, immunosuppressive activity of MDSCs, such as
IL-10 release, PD-L1 and arginase expression are tightly
associated with STAT3 phosphorylation linking the IL-6/
STAT3 axis to gene expression in MDSCs (29–32). However,
in the context of melanoma this cascade remains unknown.

Recently, we have reported constitutive NOD-like receptor
protein 3 (NLRP3) activation and NLRP3 inflammasome
formation in melanoma (16). NLRP3 is an intracellular pattern
recognition receptor; upon NLRP3 activation, the inactive IL‐1b
precursor is processed by caspase‐1 to active, mature IL‐1b (33).
Cytokines associated with MDSC expansion such as IL-6 are
induced by IL-1b (34–36). In this study, we investigate whether
NLRP3-dependent IL-1b production observed in melanoma
cells drives IL-6/STAT3 signaling and whether this influences
MDSC activity.
METHODS

Cell Culture
1205Lu and A357 human melanoma cells were cultured in
RPMI, supplemented with 10% FBS, 100 units/ml penicillin,
0.1 mg/ml streptomycin. Cells were maintained in a humidified
Frontiers in Immunology | www.frontiersin.org 2
5% CO2 atmosphere at 37°C. Cells were detached from flasks
using 0.25% Trypsin, 0.1% EDTA (Corning, Manassas, VA),
centrifuged and resuspended in complete media. The cells were
plated at 2.5x105 per well in a 24-wells plate and allowed to
adhere overnight. The following day, the media were replaced
with fresh RPMI, 10%FBS in presence and absence of the NLRP3
inhibitor OLT1177 (10 µM) (37). Supernatants were collected
after 48 hours. In a separate set of experiments, IL-1b was added
to the culture for stimulation (20 ng/ml; R&D Systems,
Minneapolis, MN). Supernatants were collected after 24 hours.
The murine melanoma cells B16F10 were cultured in DMEM
GlutaMax, supplemented with 10%FBS, 100 units/ml penicillin,
0.1 mg/ml streptomycin. B16F10 NLRP3 knockout cells (B16F10
nlrp3-/-) (Synthego, Redwood City, CA) were genetically edited
by CRISPR-Cas9 technology using the following guide RNA
sequence: UUCCUCUAUGGUAUGCCAGG. 48 hours post-
transfection editing efficiency was determined at 96%
compared to the control samples using the following PCR and
sequencing primers: F:TTTCCTGCCTCCATCTCCCA and R:
TTCAGTGAAGGCGGGTTTCC.

Cytokine Measurements
Cytokines were measured by specific DuoSet ELISAs according
to the manufacturer’s instructions (R&D Systems).

Western Blotting
1205Lu or A357 cells were cultured as previously described.
Primary tumor and bone marrow cells were collected from
tumor-tumor bearing. All cells were lysed in RIPA buffer
(Sigma, St. Louis, MS, USA) supplemented with protease
inhibitors (Roche, Indianapolis, IN), centrifuged at 13,000g for
20 min at 4°C and the supernatants were obtained. Protein
concentration was determined in the clarified supernatant using
Bio-Rad protein assay (Bio-Rad Laboratories, Hercules, CA).
Proteins were electrophoresed on Mini-PROTEAN TGX 4−20%
gels (Bio-Rad Laboratories) and transferred to nitrocellulose 0.2
mm (GE Water & Process Technologies, Feasterville-Trevose,
PA). Membranes were blocked in 5% rehydrated non-fat milk in
PBS-Tween 0.5% for 1 hour at room temperature. Primary
antibodies for STAT3 and pSTAT3(Y705) (CellSignaling,
Danvers, MA) were used in combination with peroxidase-
conjugated secondary antibodies. A primary antibody against
b-actin (Santa Cruz Biotechnology, Dallas, TX) was used to
assess protein loading.

In Vivo Model
Animal protocols were approved by the University of Colorado
Animal Care and Use Committee. Wild type C57/Black 6 mice
were purchased from The Jackson Laboratory (Bar Harbor, ME,
USA). B16F10 (2 x105) and B16F10 nlrp3-/- (2 x105) cells were
mixed with Matrigel (Corning) and then implanted
subcutaneously (s.c.) in the hind quarter of mice. Mice were
sacrificed 15 days after the plug instillation for molecular and
cellular analysis. Tumor growth was recorded every three days.
On day5 mice were treated daily by gavage of the NLRP3 specific
inhibitor OLT1177 (generic dapansutrile, Olatec Therapeutics,
LLC, New York, NY) at a concentration of 600mg/kg or the JAK
August 2021 | Volume 12 | Article 661323
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inhibitor AZD1480 (Selleckchem, Houston, TX) (50mg/kg),
starting on day 5 after melanoma cell implantation.
Alternatively, OLT1177-enriched diet was used where denoted.
Tumor volume was calculated using the formula V =1/2
(LxWxH) where V is tumor volume in cubic millimeters
(mm3). Dimensions were measured by electronic caliper on
restrained mice. Tumors volumes were determined without
knowledge of the experimental groups. Primary tumors and
bone marrow were then assessed via western blotting or gene
expression as described above.

MDSC Isolation
PMN-MDSCs were isolated from bone and spleen of tumor-
bearing described above and isolated using flow cytometry.
Briefly, single-cell suspensions of bone marrow and spleens
cells harvested and strained through 40 micron filters and were
stained using anti-CD45 Pe/Cy7 (BioLegend, San Diego, CA),
anti-CD11b BV785 (BioLegend), anti-Ly6G PacBlue
(BioLegend), anti-Ly6C PerCp/Cy5.5 (BioLegend).

T Cell MDSC Co-Culture
PMN-MDSCs were isolated from spleen of tumor-bearing mice
described above using magnetic columns specific for MDSC
isolation (Miltenyi Biotec, Germany). Naïve CD8+ T cells were
isolated from spleen of non-tumor bearing mice using Mojosort
kit (BioLegend) per manufacturer’s instructions. Isolated CD8+
T cells were then stained with VPD solution. 50,000 T cells were
then co-cultured with 50,000 MDSCs and in 96-well plates
coated with 5ug/mL anti-CD3/28 and incubated for 3 days. On
day 3, supernatants were removed and assessed for cytokines and
T cell proliferation was determined by flow cytometry.

Gene Expression
Primary tumors or PMN-MDSCs (flow cytometry) were collected
as described above. RNA was then isolated using Trizol (Thermo
Fisher Scientific, Waltham, MA) and synthesized in cDNA using
SuperScript III First-Strand (Thermo Fisher Scientific).
Quantitative PCR (qPCR) was performed on cDNA using
Power SYBR Green PCR master mix (Thermo Fisher Scientific)
on Biorad CFX96 Real time system. Gene expression was assessed
for the following mRNAs: Socs3 (forward 5’-ATTTCGCTTCGG
GACTAG-3’ and reverse 5’-AACTTGCTGTGGGTGACCAT-3’),
Klf4 (forward 5’-CGGGAAGGGAGAAGACACT-3’ and reverse
5’-GAGTTCCTCACGCCAACG-3’), Pdcd1l1 (forward 5’-GCTC
CAAAGGACTTGTACGTG-3’ and reverse 5’-TGATCTG
AAGGGCAGCATTTC-3’), Arg1 (forward 5’-CTCCAAGCCA
AAGTCCTTAGAG-3’ and reverse 5’- AGGAGCTGTCATT
AGGGACATC-3’), Il10 (forward 5’-CTTACTGACTGGCAT
GAGGATCA-3’ and reverse 5’-GCAGCTCTAGGAGCAT
GTGG-3’) and Tgfb1 (forward 5’- ATGTCACGGTTAGG
GGCTC-3’ and reverse 5’-GGCTTGCATACTGTGCTGTA
TAG-3’).

Public Database Gene Expression Analysis
Normalized gene expression data from the TCGA and project
were downloaded from the gene expression profiling interactive
analysis (GEPIA).
Frontiers in Immunology | www.frontiersin.org 3
RESULTS

Interleukin-1b Induces pSTAT3 (Y705) in
Human Metastatic Melanoma Cells
We have previously shown that metastatic melanoma cells
display constitutively active NLRP3 resulting in spontaneous
IL-1b production and release (16). Thus, we sought to assess
whether tumor-derived IL-1b induces the IL-6/STAT3 signaling
axis in melanoma cells. As shown in Figure 1A, we found that
stimulation of the human metastatic melanoma 1205Lu cells
with recombinant IL-1b increased IL-6 after 24 hours compared
to the vehicle-treated control cells (p<0.001). Next, we assessed
the effect of IL‐1b on STAT3 activation. IL-1b significantly
increased pSTAT3(Y705) (Figures 1B, D), whereas there was
no induction of total STAT3 in the same cells (Figures 1C, D).
We then determined whether reduction in IL‐1b production via
NLRP3 inhibition influenced IL‐6 production and STAT3
phosphorylation. For this experiment, we used the synthetic,
small molecule OLT1177, a specific NLRP3 inhibitor, which is
safe and effective in humans (37, 38). Spontaneous IL‐1b
production in 1205Lu cells was reduced 74% with NLRP3
inhibition by OLT1177 at 48 hours, confirming our previously
published data (16) (Figure 1E, p<0.001). The inhibition of
NLRP3 activation and the subsequent suppression of IL‐1b
production resulted in a 28% reduction in IL‐6 production
(Figure 1F, p<0.001). Analysis of the same cell lysates revealed
a significant decrease in Y705 phosphorylation of STAT3
(p<0.05) without affecting the total levels of the transcription
factor (Figures 1G–I). These results were confirmed in another
human metastatic melanoma cell line, A357. Consistently,
Supplemental Figures 1A–I show that IL-1b induction of IL-
6/STAT3 axis is indeed consistent amongst different metastatic
melanoma cell lines.

These findings reveal that NLRP3‐dependent, tumor-derived
IL-1b induces autocrine IL-6 production, which leads to
activation of canonical/nuclear functions of STAT3.

NLRP3 Inhibition Disrupts IL-1b-Induced
IL-6/STAT3 Signaling in the Tumor
Micro-Environment
To confirm our in vitro findings in vivo, we used the murine
melanoma cell line B16F10. Briefly, mice were implanted with
B16F10 and on day 5 daily oral treatment of OLT1177 or saline,
in the control group, was started. As shown in Figure 2A, tumor
size was reduced by 49% compared to vehicle treated mice
(p<0.01). These data are in line with our previous reports, mice
treated with OLT1177 revealed a 2-fold reduction in tumor
volume compared to vehicle (p<0.01) (16). As shown in
Supplement Figure 2A, daily treatment with the non-specific
JAK inhibitor, AZD1480, exhibited a similar reduction in tumor
growth when compared to vehicle. Western blot analysis of the
primary tumors revealed that treatment with either OLT1177 or
AZD1480 reduced constitutive STAT3 levels by 31% and 29%,
respectively, but did not reach statistical significance
(Figure 2B). In contrast, there was a marked and highly
significant (p<0.01) reduction in Y705 phosphorylated STAT3
August 2021 | Volume 12 | Article 661323
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by OLT1177 (82%) and AZD1480 (80%) compared to vehicle
(Figures 2C, D). No changes in Y705 phosphorylation of STAT3
were observed between OLT1177 or AZD1480 treatments
(Figures 2C, D).

We next examined the JAK-dependent, IL‐6/STAT3 axis
controlled by NLRP3. Genetic analysis of tumors from mice
treated with OLT1177 or AZD1480 showed reduced gene
expression of Il6 in comparison to the control group (both
p<0.05) (Figure 2E). In humans, analyses of the TCGA dataset
revealed positive mRNA correlations from cutaneous melanoma
biopsies for expression of NLRP3 and IL‐6 (p=4.86e-20), IL‐6 and
the STAT3 target gene Socs3 (p=1.82e-62), IL-1b and Socs3
(p=1.71e-31) (Supplemental Figures 2B–D). Overall, these data
confirm the in vitro observation and suggest the induction of IL‐
6/STAT3 following NLRP3 inflammasome activation as an
integral driver of melanoma progression.
Frontiers in Immunology | www.frontiersin.org 4
Tumor-NLRP3 Drives IL-6/STAT3
Signaling in the Bone Marrow
We previously observed that tumor NLRP3-dependent IL-1b
production increases bone marrow production of both IL-1b and
IL-6 (16). Therefore, we sought to assess whether tumor-associated
NLRP3 activity also affects the IL-1b/IL-6/STAT3 axis in host
myeloid cells. To investigate this, mice were implanted with
B16F10 and treated as described in Figure 2A. On day 15 when
tumors are in exponential growth, bone marrow cells were analyzed
by Western blot. As shown in Figures 3A–C, tumor-bearing mice
receiving OLT1177 exhibited significantly less constitutive STAT3
(p<0.05) and pSTAT3(Y705) (p<0.05) in the bone marrow
compared to vehicle-treated mice. Next, we confirmed the role of
tumor-derived NLRP3 by implanting wild-type B16F10 or B16F10
deficient of NLRP3 (B16F10 nlrp3-/-). After 15 days, we analyzed
bone marrow-derived cells as described above. As shown in
A C D

E F

B

G IH

FIGURE 1 | Interkeukin-1b induces pSTAT3(Y705) in human melanoma cells. (A) Mean ± SEM of IL-6 production from 1205Lu cells stimulated with IL-1b after 24
hours (N=3). (B) Mean ± SEM of STAT3/b-actin ratio for 1205Lu cells shown in (A) (N=3). (C) Mean ± SEM of pSTAT3(Y705)/b-actin ratio for 1205Lu cells shown in
(A) (N=3). (D) Representative western blot images from (B, C). (E) Mean ± SEM of IL-1b production from unstimulated 1205Lu cells treated with OLT1177 after 48
hours (N=3). (F) Mean ± SEM of IL-6 production from unstimulated 1205Lu cells treated with OLT1177 after 48 hours (N=3). (G) Representative western blot images
from (H, I). (H) Mean ± SEM of STAT3/b-actin ratio for 1205Lu cells shown in (G) (N=3). (I) Mean ± SEM of pSTAT3(Y705)/b-actin ratio for 1205Lu cells shown in
(G) (N=3). *p < 0.05, ***p < 0.001.
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Figures 3D–F, bone marrow-derived cells from mice implanted
with B16F10 nlrp3-/- cells revealed significantly less total STAT3
(p<0.05) and pSTAT3(Y705) (p<0.05) compared to the cells isolated
from mice implanted with wild-type B16F10. In addition to our
published data (16), these results posit NLRP3 as a key driver of
STAT3 in melanoma-associated inflammation.

pSTAT3(Y705) Regulates PMN-MDSCs
Immunosuppressive Gene Expression
Inhibition of tumor-derived NLRP3 results in reduced PMN-
MDSCs expansion from the bone marrow and less infiltrating
Frontiers in Immunology | www.frontiersin.org 5
MDSCs in the TME (16). Thus, we sought to determine if the
reduction in IL-6/STAT3 activation observed following NLRP3
inhibition (Figure 3) affects expression of genes associated with
the immunosuppressive activity of PMN-MDSCs. Mice were
implanted with B16F10 and on day 5 treated with daily oral
OLT1177 or saline. PMN-MDSCs from tumor-bearing mice
treated with vehicle or OLT1177 were isolated from the bone
marrow and spleen using flow cytometry and assessed for gene
expression (Supplemental Figure 3). As shown in Figure 4A,
bone marrow and spleen-derived PMN-MDSCs from mice
treated with OLT1177 revealed a substantial reduction in the
A B

C

E

D

FIGURE 2 | NLRP3 inhibition disrupts IL-1b-induced IL-6/STAT3 signaling in the TME. (A) Tumor growth in mice treated with saline control (Vehicle) or OLT1177
(OLT1177) (N=8/group). (B) Mean ± SEM of STAT3/b-actin ratio in primary tumors of mice described in (A) (N=6). (C) Mean ± SEM of pSTAT3(Y705)/b-actin ratio in
primary tumors of mice described in (A) (N=6). (D) Representative western blot images from (C, D). (E) Mean ± SEM of relative mRNA expression Il6 from primary
tumors. ns (not significant), *p < 0.05, **p < 0.01.
August 2021 | Volume 12 | Article 661323

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Tengesdal et al. IL-1b/IL-6/STAT3 Axis Regulates MDSC Immunosuppression
expression of genes associated with nuclear STAT3 activity,
namely, Socs3 and Klf4, confirming reduced STAT3 activity.
These same cells were also assessed for the expression of
immunosuppressive genes, such as pdcd1l1 (PD-L1), Arg1
(Arginase 1), Il10 (IL-10) and Tgfb1 (TGF-b1). With the
exception of Il10, these genes were significantly reduced in the
bone marrow of mice treated with OLT1177, for example,
Pdcd1l1 (86%, p<0.01), Arg1 (80%, p<0.01) and Tgfb1 (65%,
p<0.05) (Figure 4B). In the spleen (Figure 4C), we also observed
significant decreased levels of Pdcd1l1 (74%, p<0.01), Arg1 (83%,
p<0.01) and Tgfb1 (69%, p<0.05) as well as a non-significant
decrease in, Il10. To confirm the role of STAT3 in these NLRP3-
mediated changes of PMN-MDSCs, tumor-bearing mice were
treated with AZD1480 and PMN-MDSCs were assessed as
described above. As shown in Supplemental Figures 4A, B,
PMN-MDSCs obtained from AZD1480-treated mice exhibited
decreased immunosuppressive gene expression compared to
vehicle, similar to that observed in OLT1177-treated mice. We
next compared relative gene expression from bone marrow-
derived PMN-MDSCs to spleen-derived PMN-MDSCs.
Frontiers in Immunology | www.frontiersin.org 6
Figures 4D, E depicts fold-change increases in immuno
suppressive gene expression upon migration in the peripherical
tissues as well as relative Cq values. Overall, these data show that
inhibiting tumor-NLRP3 alone is sufficient to reduce IL-6/
STAT3 activation, resulting in the reduction of immuno
suppressive gene expression in PMN-MDSCs.

We next examined the effect of NLRP3 inhibition on MDSCs
function in ex vivo conditions. Briefly, naïve CD8+ T cells were
isolated from non-tumor-bearing mice and co-cultured with
spleen MDSCs isolated from tumor-bearing mice fed standard
or OLT1177 diet. On day 3, T cell proliferation was determined
using flow cytometry and supernatants were assessed for T cell
associated cytokines. Figure 4F depicts the levels of IL-2, IFNg
and TNFa secretion from the co-cultures described above.
Supernatants from co-cultures containing MDSCs isolated
from mice treated with OLT1177 revealed significantly higher
levels of IL-2 (p<0.05), IFNg (p<0.05) and TNFa (p<0.01)
compared to co-cultures containing MDSCs from mice fed the
standard diet (Figure 4F). Consistently, T cell proliferation was
significantly higher in co-cultures containing MDSCs isolated
A CB

C FE

FIGURE 3 | Tumor-NLRP3 drives IL-6/STAT3 signaling in the bone marrow. (A–C) Mice were implanted with B16F10 and treated with saline control (Vehicle) or
OLT1177 (OLT1177), on day 15 bone marrow was assessed via western blot. (A) Representative western blot images from (B, C). (B) Mean ± SEM of STAT3/b-
actin ratio in bone marrow of mice described in (A–C) (N=6). (C) Mean ± SEM of pSTAT3(Y705)/b-actin ratio in bone marrow of mice described in (A–C) (N=6).
(D–F) Mice were implanted with B16F10 or B16F10 NLRP3-/- cells, on day 15 bone marrow was assessed via western blot. (D) Representative western blot images
from (E, F). (E) Mean ± SEM of STAT3/b-actin ratio in bone marrow of mice described in (D–F) (N=6). (F) Mean ± SEM of pSTAT3(Y705)/b-actin ratio in bone
marrow of mice described in (D–F) (N=6). *p < 0.05.
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from mice treated with OLT1177 (Figure 4G). Taken together,
these data suggest tumor-NLRP3 as a potential target to suppress
MDSCs, which ultimately dampen cytotoxic T cell functions.
DISCUSSION

Although it is well established that tumor-induced inflammation
drives immunosuppression (4, 8), specific molecular mechanism(s)
that account for the inflammation are not fully understood. In this
study, we elucidated a novel mechanism that demonstrates how
NLRP3 activity in melanoma drives inflammation resulting in
increased expression of immunosuppressive genes in MDSCs.
Using a mouse model of melanoma, we report here that NLRP3
activation induces IL‐1b-mediated IL‐6 production resulting in
STAT3 activation. We also observed that with specific inhibition
of NLRP3, both tumor volume and STAT3 signaling in the TME are
significantly reduced. These observations are consistent with the
concept of tumor-derived inflammation promoting tumor
progression and that IL-1b induces IL-6/STAT3 activation in
melanoma. As depicted in Figure 5 and in line with our previous
findings, tumor-derived constitutive NLRP3 activity induces IL-1b
Frontiers in Immunology | www.frontiersin.org 7
and IL-6 in bonemarrow and spleen cells (16), we show that tumor-
bearing mice treated with OLT1177 reveal reductions in both total
STAT3 as well as pSTAT3 (Y705) in bone marrow cells. We
conclude an NLRP3-mediated autoinflammatory loop drives IL-6/
STAT3 regulated immunosuppressive gene expression. Thus,
NLRP3 is a therapeutic target to reverse canonical STAT3
mediated cancer promotion.

The implication of tumor-derived NLRP3 driving IL‐1b-IL‐6-
STAT3 signaling was confirmed in mice implanted with NLRP3
deficient B16F10 cells (B16F10 nlrp3-/-). Using NLRP3 deficient
B16F10 cells, we observed similar reductions of STAT3 and
pSTAT3 (Y705) comparable to those of OLT1177 treatment.
Upon knock-down of NLRP3 in the tumor, IL-1b processing is
arrested and, therefore mature IL-1b-induced IL-6/STAT3 axis is
no longer being amplified. With reduced IL‐1b activity, there
is less tumor-derived IL-1b and IL-6 activity on bone marrow
cells and ultimately decreased STAT3 activity in this cell
population (Figure 5), supporting our previous findings that
tumor-NLRP3 activity induces IL-1b and IL-6 in the bone
marrow (16).

Linking tumor-NLRP3 induction of IL-6/STAT3 to
immunosuppression, we assessed PMN-MDSCs in bone
A CB

D E F G

FIGURE 4 | pSTAT3(Y705) regulates PMN-MDSCs immunosuppressive gene expression. Mice were implanted with B16F10 and treated with saline control (Vehicle) or
OLT1177 (OLT1177), on day 15 PMN-MDSCs were isolated from bone marrow and spleen. (A) Mean ± SEM of relative mRNA expression of Socs3 and Klf4 from PMN-
MDSCs isolated from bone marrow or spleen of tumor-bearing mice described above (N=2, pooled from 4 mice/group. 2 independent experiments). (B) Mean ± SEM of
relative mRNA expression of Pdcd1l1, Arg1, Il10 and Tgfb1 from PMN-MDSCs isolated from bone marrow of mice described above (N=2, pooled from 4 mice/group. 2
independent experiments). (C) Mean ± SEM of relative mRNA expression of Pdcd1l1, Arg1, Il10 and Tgfb1 from PMN-MDSCs isolated from spleen of mice described
above (N=2, pooled from 4 mice/group. 2 independent experiments). (D) Fold change of relative mRNA expression of Pdcd1l1, Arg1, Il10 and Tgfb1 from PMN-MDSCs
isolated from spleen compared to PMN-MDSCs isolated from bone marrow. (E) Cq values (in duplicate) depicting raw rtPCR data described in (D). (E) Co-culture of
naïve CD8+ T cells with MDSCs isolated from tumor-bearing mice treated with saline control (Vehicle) or OLT1177 (OLT1177). (F) Mean ± SEM for IL-2, IFNg and TNFa
production from co-culture described in (E) (N=3). (G) T cell proliferation from co-culture described in (F) (N=3). ns (not significant), *p < 0.05, **p < 0.01.
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marrow and spleen from tumor-bearing mice treated with
OLT1177. Disruption of STAT3 transcriptional activity was
associated with the reduction of STAT3 target genes Socs3 and
Klf4. Mice treated with OLT1177 revealed the IL‐1b-dependent
role of STAT3 in promoting the levels of immunosuppressive
genes. We show marked reductions in Pdcd1l1, Arg1, Il10 and
Tfgb1 in PMN-MDSCs from bone marrow and spleen of tumor-
bearing mice. In order to show the role of JAK-mediated STAT3
phosphorylation in PMN-MDSCs, we treated mice with
AZD1480 and observed similar reductions in gene expression
as we observed with OLT1177 treatment. These findings
implicate IL-1b-dependent IL-6/STAT3 signaling as an integral
driver of tumor-induced inflammation that promotes
immunosuppressive gene expression of PMN-MDSCs. These
data also provide new insights into therapeutic approaches to
disrupt tumor immune evasion offered by NLRP3 inhibitors in
melanoma (Figure 5).

Cytokines produced by tumors change not only immune cell
function in the TME, but also the expansion and activation of
Frontiers in Immunology | www.frontiersin.org 8
myeloid cells in the bone marrow (19, 29, 39). We recently
reported that constitutively active NLRP3 in melanoma cells
induces IL-1b and IL-6 in the host, resulting in the expansion
of MDSCs (16). In line with those findings, in the present study
we demonstrate that elevated IL-6 induces STAT3 activation,
which is an established pro-tumor mechanism present in many
cancers for MDSC activation as well as gene expression (32, 36).
Of note, other STATs have been implicated in melanoma
progression, such as STAT5 (40). This prior study showed
activity of STAT5 was mediated in park by JAK1, of which IL-6
is a known activator, therefore we cannot rule out other STAT
activity. Notably, activation of STAT3 in cancer has mostly been
attributed to loss of function of STAT3 regulatory genes, but not
by increased activity of upstream inducers of IL-6 such as NLRP3
(36, 41, 42). Here, we link NLRP3 activity in melanoma cells to
the IL-1b induced-IL‐6/STAT3 axis, thus providing an additional
mechanism to target STAT3 signaling in melanoma. Our study
also expands on this pathway in that NLRP3 inhibition reduces
transcriptional activity of STAT3; thus we observed markedly
FIGURE 5 | Representative IL-1b/IL-6/STAT3 axis in melanoma induced immunosuppression. (1) Constitutively active NLRP3 inflammasome. (2) NLRP3-mediated
cleavage of pro-IL-1b to mature IL-1b. (3-4) Secreted IL-1b binds the IL-1R receptor leading to increased IL-6 transcription. (5-6) IL-6 secreted by melanoma cell
binds IL-6R. (7) JAK/STAT3 signaling cascade leads to phosphorylation of STAT3 and induces transcriptional activity leading to more IL-6 production. (8) Tumor-
derived IL-1b and IL-6 travel to bone marrow and promote hyperactivation of IL-1b/IL-6/STAT3, further inducing melanoma-associated inflammation and activation of
MDSCs. (9-10) IL-6 signaling in PMN-MDSCs results in nuclear localization of STAT3 and upregulation of immunosuppressive genes.
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lower gene expression in PMN-MDSCs, namely: Pdcd1l1
(PD-L1), Arg1, Il10 and Tgfb1. Moreover, NLRP3 inhibition
reduced the immunosuppressive potential as shown by
increased T cell proliferation and production IL-2, IFNg and
TNFa in co-culture. These findings suggest PMN-MDSCs are
reliant on tumor inflammatory signals for upregulation of
immunosuppressive genes, which in turn, dictate function.

This concept is of particular importance for immunotherapy.
Levels of MDSCs have been proposed as a predictive marker for
response to immunotherapy (43, 44). Specifically, in melanoma
Pdcd1l1, the gene encoding Programed Death-Ligand1 (PD-L1), is
highly expressed in MDSCs and elevated levels of circulating
MDSCs may serve as an indicator of checkpoint inhibition and
reduced tumor growth (44–47). However, a recent study reported
that anti-PD-1 therapy increased melanoma-NLRP3 activity,
resulting in increased PD-L1 expression in the tumor (48).
Nevertheless, upon knockdown of tumor-derived NLRP3, tumor
progression markedly slowed with anti-PD-1, resulting in decreased
PMN-MDSC infiltration into the TME (47). Alternatively, we
observed NLRP3 activation in B16F10 metastatic melanoma
independent of anti-PD-1 therapy. Importantly, a consequence of
NLRP3 activation in the tumor are alterations in the systemic host
immune response, a concept that is highly relevant in
immunotherapeutic approaches targeting inflammatory tumors.
Here, we report how tumor-NLRP3 activity promotes IL-6/
STAT3 signaling in the bone marrow, which then regulates
immunosuppressive gene expression in PMN-MDSCs resulting in
a defunct cell population.

As STAT3 phosphorylation by the JAK1/2 is well known in
cancer, we used AZD1480, which suppress JAK1/2 (49, 50), to
demonstrate that phosphorylation of STAT3 at Y705 is dependent of
JAK1/2. We show the reduction in pSTAT3 (Y705) in Figure 2 and
observed a significant reduction in B16F10 tumor growth in mice
treated with AZD1480 (Supplemental Figure 1A). Several JAK1/2
inhibitors are used to treat autoimmune diseases such as rheumatoid
arthritis, psoriasis, psoriatic arthritis and ulcerative colitis.
Tofacitinib, ruxolitinib, baricitinib and upadacitinib are JAK1/2
inhibitors also used in alopecia areata (51, 52). JAK1/2 inhibitors
reduce several cytokines; among these are IL-2, IL-15, IL‐12/23 IL‐6,
IFNg, IFNa, IL‐10 and G‐CSF. Upon binding to their respective type
1 and type 2 receptors, JAKs are recruited to the cytosolic domains
resulting in the phosphorylation of STATs, initiation of transcription
and subsequent biological activities of the respective cytokines. In
human peripheral blood mononuclear cells from healthy donors,
JAK inhibitors added in vitro reduced STAT3 (Y705)
phosphorylation (53). Although the benefit of reducing STAT3
phosphorylation at Y705 results in suppression of transcriptional
activation of several cytokines in autoimmune diseases, this
mechanism is also valid in treatment of cancer. For example,
myeloproliferative neoplasms such as chronic lymphocytic
leukemia (54) and solid tumors such as colorectal cancer (55) are
treated with JAK inhibitors. In patients with autoimmune diseases or
cancer, JAK inhibitors are associated with serious side effects such as
anemia, nausea, vomiting, weight loss, myalgia, herpes zoster,
neutropenia and low levels of circulating lymphocytes.
JAK inhibitors are also a risk for life-threatening thromboembolic
events such as deep venous thrombosis and pulmonary embolism
Frontiers in Immunology | www.frontiersin.org 9
(56). Upadacitinib treatment in rheumatoid arthritis resulted in
hepatic dysfunction in 7.6% of the patients (57). By comparison,
patients treated with oral OLT1177 for gout flares (38) or heart
failure (58) report no side effects but rather an increase in well-being.

Altogether, these findings reveal how metastatic melanoma cells
amplify IL-6 signaling through an NLRP3-mediated auto
inflammatory loop, which in turn, drives IL-6/STAT3 regulated
immunosuppressive gene expression in PMN-MDSCs. The
proposed pathway elicits NLRP3 as a therapeutic target to reverse
canonical STAT3 mediated mechanisms of cancer promotion.
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Supplementary Figure 1 | (A) Mean ± SEM of IL-6 production from A357 cells
stimulated with IL-1b after 24 hours (N=3). (B) Mean ± SEM of STAT3/b-actin
ratio for 1205Lu cells shown in (A) (N=3). (C) Mean ± SEM of pSTAT3(Y705)/b-
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actin ratio for A357 cells shown in (a) (N=3). (D) Representative western blot
images from (B, C). (E) Mean ± SEM of IL-1b production from unstimulated
A357 cells treated with OLT1177 after 48 hours (N=3). (F) Mean ± SEM of IL-6
production from unstimulated A357 cells treated with OLT1177 after 48 hours
(N=3). (G) Representative western blot images from (H) and (I). (H) Mean ±
SEM of STAT3/b-actin ratio for A357 cells shown in (G) (N=3). (I) Mean ± SEM
of pSTAT3(Y705)/b-actin ratio for A357 cells shown in (G) (N=3). *p < 0.05,
***p < 0.001.

Supplementary Figure 2 | (A) Tumor growth in mice treated with saline control
(Vehicle) or AZD1480 (AZD1480) (N=8/group). (B) Correlation
between NLRP3 and IL‐6 expression in human cutaneous melanoma (SKCM)
TCGA datasets (N=363). (C) Correlation between of IL-6 and SOCS3 expression in
human cutaneous melanoma (SKCM) TCGA datasets
Frontiers in Immunology | www.frontiersin.org 10
(N=363). (D) Correlation between of SOCS3 and IL-1b expression in human
cutaneous melanoma (SKCM) TCGA datasets (N=363).

Supplementary Figure 3 | FACs gating strategy depicting PMN-MDSCs
populations that were isolated bone marrow of tumor-bearing mice.

Supplementary Figure 4 | Mice were implanted with B16F10 and treated with
saline control (Vehicle) or AZD1480 (AZD1480), on day 15 PMN-MDSCswere isolated
from bone marrow and spleen. (A) Mean ± SEM of relative mRNA expression of
Pdcd1l1, Arg1, Il10 and Tgfb1 from PMN-MDSCs isolated from bone marrow of mice
described above (N=2, pooled from 4 mice/group. 2 independent experiments).
(B) Mean ± SEM of relative mRNA expression of Pdcd1l1, Arg1, Il10 and Tgfb1 from
PMN-MDSCs isolated from bonemarrow of mice described above (N=2, pooled from
4 mice/group. 2 independent experiments). *p < 0.05, **p < 0.001, ***p < 0.001.
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