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Abstract

Motivation: Deep sequencing based ribosome footprint profiling can provide novel insights into

the regulatory mechanisms of protein translation. However, the observed ribosome profile is fun-

damentally confounded by transcriptional activity. In order to decipher principles of translation

regulation, tools that can reliably detect changes in translation efficiency in case–control studies

are needed.

Results: We present a statistical framework and an analysis tool, RiboDiff, to detect genes with

changes in translation efficiency across experimental treatments. RiboDiff uses generalized linear

models to estimate the over-dispersion of RNA-Seq and ribosome profiling measurements separ-

ately, and performs a statistical test for differential translation efficiency using both mRNA abun-

dance and ribosome occupancy.

Availability and Implementation: RiboDiff webpage http://bioweb.me/ribodiff. Source code includ-

ing scripts for preprocessing the FASTQ data are available at http://github.com/ratschlab/ribodiff.

Contacts: zhongy@cbio.mskcc.org or raetsch@inf.ethz.ch

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The recently described ribosome footprinting technology (Ingolia

et al., 2012) allows the identification of mRNA fragments that were

protected by the ribosome. It provides valuable information on ribo-

some occupancy and, thereby indirectly, on protein synthesis activ-

ity. This technology can be leveraged by combining the

measurements from RNA-Seq estimates in order to determine a

gene’s translation efficiency (TE), which is the ratio of the abun-

dances of translated mRNA and available mRNA (Ingolia et al.,

2011). The normalization by mRNA abundance is designed to re-

move transcriptional activity as a confounder of RF abundance. The

TEs in treatment/control experiments can then be compared to

identify genes most affected w.r.t. translation efficiency. For in-

stance, Thoreen et al. (2012) considered a ratio (fold-change) of the

TEs of treatment and control. However, what these initial

approaches only take into account partially is that one typically only

obtains uncertain estimates of the mRNA and ribosome abundance.

In particular for lowly expressed genes, the error bars for the ratio

of two TE values can be large. As in proper RNA-Seq analyses, one

should consider the uncertainty in these abundance measurements

when testing for differential abundance. For RNA-Seq, this has been

described in various ways often based on generalized linear models

taking advantage of dispersion information from biological repli-

cates (Anders et al., 2012; Drewe et al., 2013; Robinson et al.,
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2010). In Wolfe et al. (2014) and Zhong et al. (2015), a way to

adopt an approach for RNA-Seq analysis for this problem was

described that had several conceptual and practical limitations.

Here, we describe a novel statistical framework that also uses a gen-

eralized linear model to detect effects of a particular treatment on

mRNA translation. Additionally, our approach accounts for the fact

that two different sequencing protocols with distinct statistical char-

acteristics are used. We compare it to the Z-score based approach

(Thoreen et al., 2012), DESeq2 (Love et al., 2014) and a recently

published tool Babel (Olshen et al., 2013) that is based on errors-in-

variables regression. Shell and Python scripts for trimming RF adap-

tor, aligning reads, removing rRNA contamination and counting

reads are also included in the RiboDiff package.

2 Methods

In sequencing-based ribosome footprinting, the RF read count is nat-

urally confounded by mRNA abundance (Fig. 1A). We seek a strat-

egy to compare RF measurements taking mRNA abundance into

account in order to accurately discern the translation effect in case–

control experiments. We model the vector of RNA-Seq and RF read

counts yi
mRNA and yi

RF, respectively, for gene i with Negative

Binomial (NB) distributions, as described before (for instance, Love

et al., 2014; Drewe et al., 2013; Robinson et al., 2010): yi � NBðli;

jiÞ; where li is the expected count and ji is the estimated dispersion

across biological replicates. Here yi denotes the observed counts nor-

malized by the library size factor (Supplementary Section A).

Formulating the problem as a generalized linear model (GLM) with

the logarithm as link function, we can express expectations on read

counts as a function of latent quantities related to mRNA abun-

dance bC in the two conditions (C ¼ f0;1g), a quantity bRNA that re-

lates mRNA abundance to RNA-Seq read counts, a quantity bRF

that relates mRNA abundance to RF read counts and a quantity

bD;C that captures the effect of the treatment on translation. In par-

ticular, the expected RNA-Seq read count li
mRNA;C is given by the

equation logðli
mRNA;CÞ ¼ bi

C þ bi
RNA.

We assume that transcription and translation are successive cel-

lular processing steps and that abundances are linearly related. The

expected RF read count, li
RF;C, is given by logðli

RF;CÞ ¼
bi

C þ bi
RF þ bi

D;C. A key point to note is that bi
C is revealed to be a

shared parameter between the expressions governing the expected

RNA-Seq and RF counts. It can be considered to be a proxy for

shared transcriptional/translation activity under condition C in this

context. Then, bi
D;C indicates the deviation from that activity under

condition C, with bi
D;C ¼ 0 for C¼0 and free otherwise (See

Supplementary Section B for more details).

Fitting the GLM consists of learning the parameters bi and dis-

persions ji given mRNA and RF counts for the two conditions

C ¼ f0;1g. We perform alternating optimization of the parameters

bi given dispersions ji and the dispersion parameters ji given bi,

similar to the EM algorithm (Supplementary Sections B and C):

bi ¼ arg max
bi

‘glmðbijyi; jiÞ and ji ¼ arg max
ji

‘NBðjijyi; liÞ:

As experimental procedures for measuring mRNA counts and RF

counts differ, we enable the estimating of separate dispersion param-

eters for the data sources of RNA-Seq and RF profiling to account

for different characteristics (Supplementary Section E).

As in Anders et al. (2012), with raw dispersions estimated from

previous steps, we regress all ji given the mean counts to obtain a

mean-dispersion relationship f ðlÞ ¼ k1=lþ k0. We perform empir-

ical Bayes shrinkage (Love et al., 2014) to shrink ji towards f ðlÞ to

stabilize estimates (see Supplementary Section D). The proposed

model in RiboDiff with a joint dispersion estimate is conceptually

identical to using the following GLM design matrix protocol

þconditionþ condition : protocol (for instance, in conjunction with

edgeR or DESeq1/2).

In a treatment/control setting, we can then evaluate whether a

treatment (C¼1) has a significant differential effect on translation ef-

ficiency compared to the control (C¼0). This is equivalent to deter-

mining whether the parameter bD;1 differs significantly from 0 and

whether the relationship denoted by the dashed arrow in Figure 1A is

needed or not. We can compute significance levels based on the v2 dis-

tribution by analyzing log-likelihood ratios of the Null model

(bi
D;1 ¼ 0) and the alternative model (bi

D;1 ¼ 0).

3 Results and discussion

We simulated data with different dispersions applied to mRNA and

RF counts (see Supplementary Section F). We illustrate the perform-

ance of our method RiboDiff (with separate dispersion estimates) as

well as Babel and the Z-score method. Although conceptually

closely related to RiboDiff with joint dispersion estimates, we also

A B C

Fig. 1. (A) Graphical model representing RidoDiff (Gray circle: observable variables; empty circle: unobservable variables; black square: functions; r denotes biolo-

gical replicates; i denotes a gene and G is the number of genes). The dashed line denotes the relationship that we aim to test (see Methods for details). (B)

Receiver operating characteristic (ROC) curve of RiboDiff (with separate dispersions), edgeR and DESeq2 (with interaction model), Z-score method and Babel on

simulated data with large difference between dispersions of RF and RNA-Seq counts (see also Supplementary Fig. S-4). (C) Comparison of the distribution of TE

ratios of genes that were detected to have a significant change in translation efficiency by RiboDiff (w/joint dispersion), Z-score based analysis and Babel.

DESeq2 was very similar to RiboDiff (w/joint dispersion) and was omitted. Data was taken from GEO accession GSE56887 (Color version of this figure is available

at Bioinformatics online.)
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include DESeq2 and edgeR with a GLM that includes an interaction

term (GLM conditionþ protocolþ condition : protocol) to model

RNA-seq and RF counts. Figure 1B shows the receiver operating

characteristic (ROC) curve for a case with large dispersion differ-

ences between RF and RNA-seq counts. RiboDiff exhibits a superior

detection accuracy compared to edgeR, DESeq2, Babel and Z-score

method, which is less pronounced when RF and RNA-Seq disper-

sions are more similar (see Supplementary Fig. S-4). We obtained

close to identical results for RiboDiff with joint dispersion and

DESeq2 with interaction term, although edgeR with the same setting

is slightly better than RiboDiff with joint dispersion (data not

shown). Our experiments illustrate that it can be beneficial to use

the RiboDiff model with separate dispersions, in particular, when

the dispersions of RF and RNA-seq data differ considerably.

We also re-analyzed previously released ribosome footprint data

(GEO accession GSE56887). After multiple testing correction,

RiboDiff detected 601 TE down-regulated genes and 541 up-

regulated ones with FDR � 0.05, which is about twice as many as

reported previously. The new significant TE change set includes

more than 90% genes identified in the previous study. RiboDiff is

also compared to Z-score method and we find major differences (see

Fig. 1C). Supplementary Section G provides the evidences showing

that the Z-score based method is biased towards genes with low

read count, whereas RiboDiff identifies more plausible differences.

Babel identifies only very few genes with differential TE. We ran the

differential test of RiboDiff on a machine with 1.7 GHz CPU and 4

GB RAM, it took 23 min of computing time to finish (10 474 genes

having both mRNA and RF counts).

In summary, we propose a novel statistical model to analyze

the effect of the treatment on mRNA translation and to identify

genes of differential translation efficiency. A major advantage of

this method is facilitating comparisons of RF abundance by taking

mRNA abundance variability as a confounding factor. Moreover,

RiboDiff is specifically tailored to produce robust dispersion esti-

mates for different sequencing protocols measuring gene expres-

sion and ribosome occupancy that have different statistical

properties. The described approach is statistically sound and iden-

tifies a similar set of genes from a less developed method that was

used in recent work Wolfe et al. (2014). The release of this tool is

expected to enable proper analyses of data from many future RF

profiling experiments (e.g. Su et al., 2015). The described model

assumes that RNA-seq and RF samples are unpaired and it is fu-

ture work to extend the flexibility of the tool to a broader range of

experimental settings.
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