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ABSTRACT The chemical modification of ribonucleotides plays an integral role in the
biology of diverse viruses and their eukaryotic host cells. Mapping the precise identity,
location, and abundance of modified ribonucleotides remains a key goal of many studies
aimed at characterizing the function and importance of a given modification. While
mapping of specific RNA modifications through short-read sequencing approaches has
powered a wealth of new discoveries in the past decade, this approach is limited by inher-
ent biases and an absence of linkage information. Moreover, in viral contexts, the challenge
is increased due to the compact nature of viral genomes giving rise to many overlapping
transcript isoforms that cannot be adequately resolved using short-read sequencing
approaches. The recent emergence of nanopore sequencing, specifically the ability to
directly sequence native RNAs from virus-infected host cells, provides not just a new
methodology for mapping modified ribonucleotides but also a new conceptual frame-
work for what can be derived from the resulting sequencing data. In this minireview,
we provide a detailed overview of how nanopore direct RNA sequencing works, the com-
putational approaches applied to identify modified ribonucleotides, and the core concepts
underlying both. We further highlight recent studies that have applied this approach to
interrogating viral biology and finish by discussing key experimental considerations and
how we predict that these methodologies will continue to evolve.
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Since the discovery of pseudouridine (c ) in 1957 (1), over 170 chemically modified ribo-
nucleotides have been identified (2). Despite this, our knowledge of the function and

modulation of modified ribonucleotides is generally sparse, with a few important exceptions.
Within the eukaryotic cell, all major RNA species harbor modified ribonucleotides (3–9), with
rRNAs and tRNAs among the most heavily modified species (reviewed in references 10 and
11). To date, the best characterized and most widely studied RNA modification is N6-methyl-
adenosine (m6A), first discovered in 1975 (12, 13). This modification is found in mRNA (12),
long intergenic noncoding RNAs (lincRNAs) (14), primary microRNAs (pri-miRNAs) (7), and
rRNAs (15, 16). For mRNAs, miRNAs, and lincRNAs, m6A is installed cotranscriptionally in the
nucleus by a methyltransferase complex minimally comprising METTL3 and METTL14 and
enhanced by WT1 associated protein (WTAP) and a range of RNA polymerase II accessory
proteins (17–19). m6A is recognized and bound by multiple YTH family members (YTHDF1-3,
YTHDC1-2) along with a variety of hnRNPs and multiple members of the IGF2BP family
(20–23). m6A is considered a reversible modification and may be removed by the demethy-
lases ALKBH5 and FTO (24–26). While installation of m6A generally occurs in DRACH (D = A/
G/U; R = G/A; H = A/C/U) sequence contexts, most DRACH sequences are not modified (27).
m6A has been implicated in regulating numerous diverse cellular processes involved in RNA
maturation and function, including splicing, polyadenylation, export, translation, and decay
(24, 28–32). Beyond m6A, other important mRNA modifications include pseudouridine (c ),
N6,29-O-dimethyladenosine (m6Am) (26, 33–36), 5-methylcytidine (m5C) (37, 38), 1-methyla-
denosine (m1A) (39–41), 7-methylguanosine (m7G) (42–44), and 29-O-methylation (Nm)
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(45–47). For an extended overview of these, we direct the reader to the MODOMICS data-
base resource (http://genesilico.pl/modomics) (2).

Unsurprisingly, the influence of RNA modifications on viral biology is complex, and many
viruses have evolved exquisite mechanisms for interacting with RNA modification pathways.
For viruses which replicate in the nucleus, m6A installed on host and viral mRNAs has been
shown to have both proviral and antiviral effects (48). These include regulating viral gene
expression in the context of HIV-1 (49–51), impairing nuclear processing and export in sim-
ian virus 40 (SV40) (52, 53), modulating the splicing ability of adenoviral transcripts (54), pre-
venting m6A installation on beta interferon-encoding mRNAs to inhibit type 1 interferon
responses (55, 56), and regulating the life cycle of Kaposi’s sarcoma-associated herpesvirus
(KSHV) (57–60). The installation of m6A on the RNAs of viruses which replicate in the cytoplasm
similarly confers proviral or antiviral effects such as interfering with replication of severe acute
respiratory syndrome coronavirus-2 (SARS-CoV-2) (61, 62) and enterovirus 71 (63). Other RNA
modifications, including pseudouridine, m5C, Nm, m6Am, N1-methylguanosine (m1G), and
N4-acetylcytidine (ac4C), have all been shown to be installed on viral mRNAs (reviewed in
references 64 and 65), while modifications such as m5C, m1A, Nm, m7G, m1G, and m6Am
have variously been identified on the genomes of several RNA viruses (66). These modifica-
tions all play fundamental roles in viral life cycles. As with the analysis of eukaryotic cells,
the location and abundance of modified ribonucleotides have typically been mapped
using short-read sequencing and/or mass spectrometry approaches. For one of the most
comprehensive overviews to date on the roles of RNA modifications in viral biology, we
recommend a recent review by Baquero-Perez et al. (65).

While several techniques enable the identification of RNA modifications on individual
RNA isoforms, many of these are low throughput and thus useful only in certain contexts
(67). This changed in 2012, when the first high-throughput sequencing approaches for tran-
scriptome-wide mapping of m6A were published (27, 68). Termed meRIP-Seq (methylated
RNA immunoprecipitation sequencing) or m6A-Seq (m6A sequencing), these techniques
combine immunoprecipitation with antibodies against m6A and subsequent short-read
(Illumina) sequencing to enrich for RNA fragments containing m6A, prepared in parallel with
either a nonspecific or no immunoprecipitation control. Once sequenced, reads from m6A-
containing RNA fragments are enriched over the background control at m6A sites and pro-
vide a resolution range of 50 to 200 nucleotides (nt). These studies were the first to deter-
mine that m6A modifications are both abundant and enriched within long internal exons
and in 39 untranslated regions (UTRs). This was later followed by newer antibody-dependent
protocols such as miCLIP-Seq (m6A individual-nucleotide-resolution cross-linking and immu-
noprecipitation sequencing) (3), which was used to map m6A sites at nucleotide-level resolu-
tion. Despite the great success of these protocols, it should be noted that antibody-based
approaches suffer from artifacts associated with off-target capture (69). The development of
antibody-independent methods such as DART-Seq (deamination adjacent to RNA modifica-
tion target sequencing) (70), Sequencing of RNA digested via m6A sensitive RNase (MAZTER-
Seq) (71), m6A-label-seq (a metabolic labeling method to detect mRNA m6A transcriptome-
wide at base resolution) (72), m6A-SEAL (an antibody-free, FTO-assisted chemical labeling
method) (73), and m6A-SAC-seq (m6A-selective allyl chemical labeling and sequencing) (74)
provide a useful set of orthologous m6A-specific methodologies for mapping the locations
at which m6A is installed. While impressive, these techniques remain constrained by the
biases and nonbiological variation associated with short-read sequencing approaches (69,
75), as well as the loss of linkage that comes from fragmenting individual RNA molecules.
Moreover, in a viral context, short-read sequencing is generally not suitable for disentangling
the complex overlapping RNA isoforms that are characteristic of most viral species (76).
While this does not preclude the use of the above discussed approaches to interrogate viral
biology, it does limit the conclusions that can be made. With this in mind, we define the
ultimate aim of RNA modification detection approaches as follows: to detect, at single-
level nucleotide resolution, the presence and identity of all modified ribonucleotides in-
stalled on a single RNA. By nature, short-read sequencing approaches cannot fulfill this
goal. Indeed, the optimal way to accomplish this would require direct full-length
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sequencing of RNAs in such a way that the position and identity of any modified ribo-
nucleotides with a given RNA can be discerned.

NANOPORE DIRECT RNA SEQUENCING

In 2017, Oxford Nanopore Technologies (ONT) described a first approach to sequencing
the full length of native RNA molecules extracted from a cellular context (77). They termed
this technique direct RNA sequencing (dRNA-Seq or DRS). The construction of DRS libraries
remains remarkably quick and simple at ;2 h. The standard approach utilizes 250 to 500 ng
of isolated poly(A) RNA as input for a ligation reaction in which a double-stranded DNA adap-
tor is ligated to the 39 end of the poly(A) tail (77). Variations to this approach include the use
of custom adaptors that allow targeting of specific nonpolyadenylated RNAs (78) or the use of
poly(A) and rRNA depletion prior to artificial polyadenylation and capture, e.g., to capture nas-
cent transcription (79). Following ligation, a reverse transcription step produces an RNA-cDNA
duplex that stabilizes the RNA strand and reduces secondary structure formation before a sec-
ond ligation allows the attachment of an engineered motor protein that allows nanopore
docking and unwinding of the RNA-cDNA duplex. The DRS library is subsequently loaded
onto a flow cell for sequencing. The flow cell contains an electrically resistant polymer mem-
brane separating two electrodes, across which can be applied an electrical current. A series of
protein nanopores are embedded within the polymer, each with its own sensor chip that con-
tinuously records the flow of ions (ionic current) passing through the nanopore. Upon docking
with a nanopore, the motor protein unwinds the RNA-cDNA duplex, ratcheting the RNAmole-
cule through the nanopore in the 39-to-59 direction at a constant rate (;70 nt/s) (Fig. 1a). The
flow of ionic current is measured within the narrowest part of the nanopore by an ammeter
with contact points set a distance apart that roughly corresponds to 5 nucleotides (Fig. 1b).
Thus, at any given time, the ionic current recorded generally represents a function of 5 nucleo-
tides (5-mer). The composition of nucleotides in this 5-mer is subsequently derived by “base
calling.” Here, ionic current changes are segmented as discrete “events” in which the duration
(dwell time), amplitude (signal intensity), and variance are recorded. Machine-learning (ML)
(Fig. 2) algorithms (for an excellent review of ML geared toward biologists, see reference 80)
subsequently convert “events” into “base calls,”with each identified nucleotide being assigned
a probability score that denotes the predicted accuracy of the call. While several base calling
algorithms exist, the most commonly used is Guppy. Developed by ONT, Guppy uses a recur-
rent neural network (a form of deep learning [81]) trained on synthetic data sets comprising 5-
mers of all possible A, C, G, and T or U combinations to predict the underlying nucleotide
sequences with variable accuracy: 94 to 98% for DNA and 86 to 91% for RNA (82–84). At the
DNA level of Guppy base calling, the training data sets have recently undergone further
expansion to enable the native detection of specific DNA modifications (6mA and 5mC).
However, such support is not yet available for RNA modifications. This is due in part to the
vast numbers and diversity of RNA modifications (.170) that exist. Consider, for example, a 5-
mer of unmodified ribonucleotides (A, C, G, U). Here, there are 45 (1,024) potential sequence
combinations that must be considered during base calling. Add in just a few modified ribonu-
cleotides such as m1A, m6A, and pseudouridine, and the number of sequence combinations
changes to 75 (16,807). There thus remains a burden on finding alternative approaches
to detecting RNA modifications in DRS data sets, a challenge that has been embraced by
the wider scientific community. At the time of writing, nanopore DRS approaches had
been used to detect a wide range of RNA modifications, including m6A, internal m7G,
m5C, W, Nm, and 5-hydroxymethylcytosine (5hmC) (85). This was made possible by dis-
tinct analytical approaches that we broadly classify as “error rate” and “signal-level”
methodologies (Fig. 1c to f; Table 1).

INFERRING RNAMODIFICATIONS THROUGH BASE CALL ERROR RATES

The presence of modified ribonucleotides within an RNA has a marked effect on the ionic
flow passing through a nanopore, a feature that directly affects the accuracy of downstream
base calling. This generally manifests as an increased probability of one or more wrong nucle-
otides being assigned to a given 5-mer. By calculating the error rate (% incorrect base calls) at
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each position across a set of identical reads, one can identify hot spots of increased error rate.
However, hot spots may also originate from natural within-sample polymorphisms and the
presence of homopolymers, as well as stochastic factors. To correct for this, most error rate
approaches utilize a comparative strategy in which hot spots are considered real only if they
appear in a data set known to contain a given modification (e.g., m6A) compared to an

FIG 1 Overview of the nanopore direct RNA sequencing approach and RNA modification detection strategies. (a and b) DRS libraries comprise RNA-cDNA hybrids
that are unwound by a helicase when docked to a membrane-embedded nanopore. (a) The RNA strand is selectively pushed through the nanopore in a 39-to-59
direction, disturbing the general flow of ions through the pore. (b) Ammeters placed within the narrowest part of the pore measure changes in ionic flow (current),
which can subsequently be partitioned into sections attributed to the DNA adapter, poly(A) tail, and body of the sequenced RNA, here visualized as a squiggle plot
(124). (c and d) Putatively modified ribonucleotides are identified through either error rate or signal-level analyses. (c) Error rate analyses identify individual positions
within RNAs that show significantly different error profiles between two conditions (e.g., control versus treatment). Here, the proportion of reads containing the
correct nucleotide at a given position is shown in colors other than gray, while the proportion of reads containing erroneous bases at the same position is shown in
gray. The difference in calculated error rate is shown in gold. (d) Error profiles undergo statistical analyses in the form of 2 � 2, 2 � 3, or 2 � 5 contingency tables
that are subsequently corrected for multiple testing. M, match; MM, mismatch. (e) For signal-level analyses, the initial process of resquiggling assigns ionic flow
features (signal intensity, dwell time, etc.) to their corresponding nucleotides within individual reads. (f) These features either undergo a comparative analysis
(between data sets) or are evaluated using data from a prebuilt model generated by machine and/or deep learning.
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identical data set in which the modification is absent (Fig. 1c). This latter strategy is achieved
in many ways, including inhibition, silencing, or knockout of specific proteins, or else through
the generation of in vitro-transcribed (IVT) RNA. Putative modified ribonucleotides are subse-
quently identified through one or more statistical tests, usually based on contingency tables
(Fig. 1d), and the inclusion of biological replicates. At the time of writing, five softwares apply-
ing the error rate approached had been released (Table 1).

EpiNano was the first software to make use of the error rate approach by relying on a
supervised learning approach (in this case, a support vector machine algorithm trained on
synthetic m6A-modified and unmodified in vitro-transcribed constructs) to predict m6A modifi-
cations at RRACH motifs within yeast strains (86). This has since been replaced by a compara-
tive approach termed EpiNano-Error, which uses features such as base quality score, the
presence of indels, and/or mismatches to identify differences in error patterns between two
matched samples (i.e., control versus treatment) and was recently used to detect m6A within
circular RNAs (circRNAs) (87). Another tool, Eligos2, predicts modified sites by considering
the difference in error rate (between two conditions) at a given position as well as at the two
upstream and downstream flanking positions. Each position is tested using a Fisher exact test
on a 2 � 2 contingency table containing matches and mismatches (substitutions, insertions,
and deletions) (Fig. 1d). P values from each test are corrected via the Benjamini-Hochberg

TABLE 1 Nanopore-based RNA modification detection softwares and their characteristics

Analysis type and tool Modification(s) reporteda Modifications targetedb Approach Stoichiometry estimates Reference
Error rate
DRUMMER m6A Any Comparative No 54
Eligos2 m6A Any Individual/comparative No 88
JACUSA2 m6A Any Comparative No 90
DiffErr m6A Any Comparative No 89
EpiNano m6A,W Any Individual/comparative No 86

Signal level
Tombo m6A/m5C Any Individual/comparative No 92
MINES m6A m6A only Individual No 100
nanom6A m6A m6A only Individual No 101
nanoRMS W, Nm Any Comparative Yes 98
Nanocompore m6A,W Any Comparative No 96
m6Anet m6A m6A only Individual Yes 102
xPore m6A Any Individual/comparative Yes 97
Penguin W W only Individual No 105
Yanocomp m6A Any Comparative Yesc 99
NanoPsu W W only Individual Yes 106
DENA m6A m6A only Individual No 104

am6A, N6-methyladenosine; m5C, 5-methylcytosine;W, pseudouridine; Nm, 29-O-methylation.
bAny, theoretically capable of detecting any RNA modification that alters ionic current.
cStoichiometry estimates claimed but not evidenced at time of writing.

FIG 2 Brief overview of machine learning.
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method and an odds ratio test used to identify putatively modified positions. Synthetically
modified IVT RNA was initially used to make predictions on nine different RNA modifications
(m6A, m1A, c , m7G, inosine, hm5C, m5C, 5-methoxyuridine [5moU], and 5-formylcytosine
[f5C]), with resulting area under the receiver operating characteristic (ROC) curves (AUCs)
ranging from ;0.54 to 0.92 (i.e., poor to great). Eligos2 was subsequently used to demon-
strate that the sequence contexts of putative m6A sites identified in yeast and human data
sets were enriched for DRACH motifs (88). DRUMMER parses each position within a compar-
ative alignment into a 2 � 5 contingency table (Fig. 1d) that is evaluated using a G test and
an odds ratio test. The resulting P values are corrected for multiple testing, and a list of can-
didate sites are returned. Further filtering of data can be performed by estimating and cor-
recting for background noise. An early version of DRUMMER was used to identify m6A within
adenovirus type 5 and mouse transcriptome data sets (54). Conceptually similar to
DRUMMER, DiffErr also parses comparative alignments into a series of 2 � 5 contingency
tables, one per position in the alignment. A G test is applied and, where P is,0.05, a G test
for homogeneity between replicates of the same condition is performed. Positions at which
the G test score between replicates is higher than the G test score between conditions are
excluded, and the remaining positions undergo multiple testing correction. Sites with an
adjusted P value of ,0.05 and a log fold change (logFC) of .1 in control versus treatment
samples are classified as methylated. The authors applied DiffErr to study m6A in Arabidopsis
thaliana with 66% of predicted sites being within five bases of a miCLIP peak (89).

While each of the above tools can theoretically detect any RNA modification that pro-
duces current fluctuations during nanopore sequencing, JACUSA2 is presently limited to
m6A detection. JACUSA2 considers three potential events that may arise from errors (substi-
tutions, insertions, deletions) and examines only 5-mers with a central A (e.g., NNANN). This
results in a 30-feature matrix (3 events, 5 k-mers, 2 conditions) that subsequently undergoes
dimensionality reduction to identify characteristic patterns of m6A modifications. Using a
comparative approach, the authors identified multiple m6A sites located in DRACH sequence
contexts, and when this was extended to focus on the EEF2 gene locus, they reported both
a novel and previously identified m6A site (90).

INFERRING RNAMODIFICATIONS THROUGH CHANGES IN SIGNAL INTENSITY

Signal-level approaches detect modified ribonucleotides by directly leveraging the raw
electrical signal information collected during nanopore sequencing runs. As a first step, every
signal-level approach requires “resquiggling” of the data. Resquiggling describes the process
by which the raw signal for each individual read is dissected into “events” that are overlaid
onto read alignments by using specialist algorithms included in the nanopolish (91) and
Tombo (92) packages (Fig. 1e). The resulting signal information is used to either (i) train a
model or (ii) perform comparative analyses between two experimental conditions (Table 1).
Training a model uses the k-mer information and signal intensities as features and requires a
list of known modification statuses to make a prediction. Software packages invoking this
method thus have the benefit of running without a control sample, if the experimentally
desired model already exists. However, such training models require input data that can be
obtained only through orthologous data sets (e.g., miCLIP) or manual curation from online
databases (e.g., REPIC [93]). By contrast, the comparative approach compares signal data from
two distinct data sets (e.g., treatment versus control) to identify sites at which signal informa-
tion deviates. Signal-level analyses are considered to have far greater potential than error rate
approaches, and this has resulted in a wider range of tools being developed, again producing
a divide between (i) those that can theoretically detect any RNA modification that changes
the ionic flux and (ii) those that are specific for individual modifications (e.g., m6A).

Starting with the former category, Tombo supports the detection of both DNA and RNA
modifications (92). Three specific methods are available depending on the available data
sets: alternative, de novo, and sample comparison. For DRS data sets, the sample comparison
approach is specifically recommended and provides two models for analysis (i) model_sam-
ple_compare, and (ii) level_sample_compare. These methods compare two sets of reads to
identify differences at each reference position based on signal-level distributions by using
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standard univariate statistical tests, i.e., the KS test, the U test, and the t test. While the origi-
nal presentation of this tool focused on DNA modifications, Tombo has recently been used
to look at m5C modifications in the transcriptomes of porcine reproductive and respiratory
syndrome virus (94) and Arabidopsis thaliana (95). Nanocompore uses a comparative
approach to make RNA modification calls by initially grouping reads belonging to each ref-
erence transcript and then assigning their corresponding median signal intensity and dwell
time to each transcript position (96). The two conditions are compared on a positional basis
using either a univariate pairwise test or a bivariate classification method based on a two-
component (dwell time versus signal intensity) Gaussian mixture model (GMM), a form of
supervised learning. GMM clustering is followed by a logistical regression test which deter-
mines the significance in difference of reads between conditions. Finally, P values are cor-
rected for multiple testing. Synthetically modified oligonucleotides were used to benchmark
the accuracy of Nanocompore for numerous different modifications (including m6A, inosine,
c , m5C, and m1G) before analysis of m6A in yeast and human RNAs. Conceptually similar to
Nanocompore, xPore also uses a GMM to compare differences in signal intensity (but not
dwell time) between modified and unmodified data sets (97). However, it also adds in prior
information of a theoretical signal distribution of unmodified RNA to further guide the
Gaussian model. Using this model, signal properties such as the mean and variance are used
to estimate the fraction of modified reads and assign a modification probability. A two-step
intermediate filtering step is included to reduce false positives, with the remaining sites
undergoing a Z-test on differentially modified rates between samples. In their analysis of
m6A modified sites, the authors focused on positions with a central adenine (NNANN), using
DRS from wild-type (WT) and METTL3 knockout (KO) HEK293 T cells, and they obtained an
AUC of 0.86. However, when the analysis was extended to all k-mers, the rate of false posi-
tives increased. nanoRMS utilizes signal intensity, dwell time, and base quality/probability in-
formation to perform either unsupervised or supervised clustering that assigns reads into
modified and unmodified groups. When running a supervised clustering method, which is
generally suited to low-stoichiometry contexts such as m6A on mRNA, comparative data
sets (e.g., treatment versus control) are required. By contrast, unsupervised clustering is used
to predict RNA modifications in a single sample alone. The limitation is that this is generally
able to predict only specific RNA modifications in high-stoichiometry contexts, e.g., pseu-
douridine in rRNAs. In the original publication, nanoRMS processed comparative DRS data
sets to predict pseudouridine modifications within yeast RNAs and, further, identified two
new pseudouridines in yeast 15s mitochondrial rRNA (98). Finally, Yanocomp uses a compar-
ative analysis approach to identify modifications by using a 5-mer sliding window to fit a
multivariate GMM to separate data into modified and unmodified distributions (99).
Yanocomp has been successfully applied to the identification of m6A modifications within
the A. thaliana transcriptome, which showed a significant overlap with sites identified by
the orthologous miCLIP method.

In the category of modification-specific tools, four are designed specifically for the detec-
tion of m6A while two are designed to identify pseudouridine. The common feature of modifi-
cation-specific tools is that they use machine learning approaches to identify putatively modi-
fied sites. This strategy obviates the need for a comparative analysis (e.g., treatment versus
control) and may be particularly useful for screening data sets and generating preliminary
analyses. The first of these, MINES, specifically detects m6A modifications by harnessing
Tombo’s de novo algorithm by filtering putatively modified sites to keep only those located
within a 30-nucleotide window centered within a DRACH motif (100). This approach reduces
computational load but restricts the analysis to m6A modifications and indeed will not
detect m6A installed outside of DRACH motifs (e.g., DRACG). The stoichiometric values
obtained postfiltering were combined with publicly available miCLIP results to train a classi-
fier. The prediction accuracy of the classifier ranged from 67 to 83% and was heavily reliant
on DRACH sequence contexts. Nanom6A extracts features such as the median, mean, and
standard deviation of signal for each 5-mer and uses these to train an ensemble learning
model on RRACH motifs (101). To validate their model, they used Nanom6A to predict
modified and unmodified reads within a synthesized mRNA data set with known m6A
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and non-m6A ratios. Validation was extended in HEK293 cells by quantifying the loss of
m6A following METTL3 silencing. In addition, they used Nanom6A across different biolog-
ical systems with known locations of m6As and compared their results against those of
different biological/computational approaches. Here, 81% of m6A-modified mRNAs pre-
dicted by Nanom6A were validated by meRIP-Seq. At single-base resolution, 49% of m6A
predictions correlated with meRIP-Seq peaks. m6Anet uses a combination of signal- and
sequence-level features of DRS data sets to predict a probability of modification at each
individual site using a multiple instance learning framework (102). To train their model,
the authors used the HCT116 cell line with matched m6A-cross-linking-exonuclease
sequencing (m6ACE-Seq) (103)-obtained modification labels. This approach yielded an
AUC of 0.83 across DRACH motifs in two different human cell lines. DENA uses signal fea-
tures (mean, median, standard deviation, dwell time, and base quality) obtained from
Tombo resquiggling to train a neural network to make m6A modification calls (104).
Training data were obtained by analysis of A. thaliana DRS data sets, in which DiffErr (99)
was initially used to identify sites at RRACH motifs that contained a differential “error”
within 5 nucleotides between the WT and KO. Electrical signals at these sites from either
WT or KO reads were used as training labels, m6A or A, respectively. For the 12 possible
RRACH motifs, the AUC ranged from 0.90 to 0.97 on the test data set, along with 90% ac-
curacy by comparing these sites to m6A sites detected by miCLIP.

Penguin focuses on detection of pseudouridine and extracts 5-mers, mean, standard
deviation, and length of signal. 5-mers are further filtered to retain only those containing a
uracil at the center (105). A gold standard set of modified bases contained within HEK293
and HeLa cell lines were used as labels and were merged with the output from nanopolish.
Three unsupervised models were trained and used to benchmark the two cell lines, achiev-
ing accuracies between 85 and 93%. Similar results were achieved when training was done
specifically on HEK293 T cells and tested on an independent cell line (i.e., HeLa). NanoPsu
uses 12 different base calling error features to identify pseudouridine by using supervised
learning (106). To train the model, rRNAs isolated from human, yeast, Caenorhabditis elegans,
Drosophila melanogaster, and human fecal bacteria were split into two subsets. For each
sample, half underwent Illumina bisulfite sequencing to map pseudouridine sites (2,142 sites)
which were used as training labels, while the other half underwent nanopore DRS sequencing
to obtain training features. After filtering for pseudouridine sites that passed a read coverage
of 20, 640 modified and 689 randomly selected unmodified U sites were used for training.
This resulted in an AUC of 0.938 on the test data set, with downstream analysis on HeLa cells
(in the presence/absence of interferon treatment) further validating their results.

(CURRENT) LIMITS IN THE DETECTION OF MODIFIED RIBONUCLEOTIDES BY NANOPORE
SEQUENCING

Taken together, it is clear that a wealth of methodologies exist by which DRS data sets
can be used to identify putatively modified nucleotides. The choice of error rate versus sig-
nal-level approaches offers researchers semiorthologous approaches with which to analyze
the same data set. However, caution must be applied here, as a recent study demonstrated
that both error rate and signal-level approaches have “blind spots” that may result in poten-
tial false negatives (i.e., the presence of a modified nucleotide reported by error rate but not
signal-level approaches and vice versa) (98). Moreover, several of the above-mentioned tools
(xPore, m6Anet, nanoRMS, NanoPsu) offer stoichiometry estimates at the level of individual
isoforms, although the accuracy of these estimates remains questionable. In part, this is due
to the lack of an available “ground truth” data set in which the location and abundance of
all RNA modifications is known. Given the technical challenges and excessive cost associated
with generating such a data set, it seems unlikely that this issue will be rectified soon. When
considering which methodology/tool to use, it is worth noting that while powerful and gen-
erally easier to implement, error rate methodologies are limited to the level of RNA isoforms
rather than individual RNAs and their power is greatest where read depths are very high, as
sensitivity generally scales with depth of sequencing (107). Signal-level methodologies are,
at present, also limited to the level of RNA isoforms but require significantly lower read
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depths to make accurate predictions and retain the promise of allowing analysis of individ-
ual reads in the future. While none of these methods yet achieves the ultimate goal of iden-
tifying the presence and position of modified ribonucleotides within individual RNAs, their
potential remains far greater than short-read sequencing approaches. Indeed, the primary
difference remains that the experimental sides of short-read approaches (meRIP-Seq, miCLIP-
Seq, etc.) are long and complex while the subsequent computational analysis of sequencing
data is generally simple due to the existence of many well-established and robust pipelines.
By contrast, DRS data sets can be generated in just a few hours with little technical expertise
required. However, computational analyses are currently more complex due to a relative lack
of robust, well-validated pipelines.

NANOPORE-MEDIATED DETECTION OF RNAMODIFICATIONS IN VIRAL CONTEXTS

At the time of writing, just six of the above-described tools had been applied to the
analysis of viral DRS data sets: DRUMMER, Nanocompore, Eligos2, Tombo, MINES, and
m6Anet. The first reported use of DRS to examine RNA modifications in viral contexts
was published in 2019 by Viehweger and colleagues (108). Here, several subgenomic
RNAs (sgRNAs) of the human alphacoronavirus HCoV-229E were reported by Tombo to
contain 5-methylcytosine (m5C) in both the conserved leader sequence (LS) and down-
stream open reading frames (ORFs). The validity of the reported signal has not, at the
time of this writing, been confirmed by orthologous approaches (e.g., bisulfite sequenc-
ing). The subsequent emergence of the betacoronavirus SARS-CoV-2 in late 2019 led to a
rash of studies aiming to identify and characterize the role of RNA modification in coro-
navirus biology (109–114). First among these was a delineation of the SARS-CoV-2 tran-
scriptome architecture that included a description of 41 locations containing putatively
modified ribonucleotides (109). These sites were identified by Tombo through a compar-
ative analysis of native SARS-CoV-2 sgRNAs with 15 partially overlapping IVT fragments
that spanned the entire SARS-CoV-2 gRNA. Sequence analysis identified the most com-
mon motif at these locations to be AAGAA-like, and these were particularly enriched at
the 39 end of viral sgRNAs and more commonly on longer viral transcripts (gRNA, S, 3a,
E, and M) than shorter ones (6, 7a, 7b, 8, and N). Of note, the authors also performed a
comparative m5C analysis and observed numerous signal-level changes using pretrained
models. However, these changes were also observed in the unmodified (IVT) controls,
suggesting that these are false positives. A second study soon followed in which a small
number of sgRNAs from SARS-CoV-2 and the related human betacoronavirus HCoV-
OC43 were shown to harbor m6A modifications. The first of these utilized DRUMMER and
Eligos2 to perform comparative analyses of DRS data sets derived from SARS-CoV-2
(A5491ACE2) and HCoV-OC43 (MRC-5)-infected cells that were treated with either a spe-
cific METTL3 inhibitor or a noninhibiting control (110, 115). These data were validated
using the orthogonal meRIP-Seq methodology (61, 110) and also served to show that in-
hibiting the enzymatic activity of METTL3 led to reduced titers of both SARS-CoV-2 and
HCoV-OC43. The installation of m6A on a small number of SARS-CoV-2 sgRNAs was further
validated by additional studies (111, 112) using comparative DRS approaches allied with
Tombo, MINES, and m6ANet. Another recent study utilized Tombo to show that the SARS-
CoV-2 epitranscriptome remained stable during infection of Vero cells (113). While the iden-
tity of RNA modifications at the individual modified sites was not reported, the authors
noted that at least two sites appeared unique to the gRNA and were not found on sgRNAs.
The validity of these findings remains uncertain, however, due to a lack of orthologous con-
firmations. Finally, the presence of five pseudouridine modifications in the SARS-CoV-2 tran-
scriptome was revealed by comparative analysis of SARS-CoV-2 DRS data sets and synthetic
RNAs, two of which were confirmed through in vitro assays (114).

Beyond human coronaviruses, the use of nanopore DRS in detecting viral RNA modifica-
tions has thus far been limited, with just two studies published to date (54, 116). The first
examined the role of m6A in the life cycle of adenovirus serotype 5. Here, DRS data sets were
derived from adenovirus-infected A549 cells in which METTL3 was present or knocked out
(54). A comparative analysis of these data sets, which included two biological replicates per
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condition, was performed using alpha versions of DRUMMER and Nanocompore and at both
the exome and isoform levels. Both tools identified a large number of putatively modified
sites in both early and late viral transcripts, with the majority (;80%) reported by both tools
and located within DRACH motifs. Further analysis of the DRS data sets generated in the ab-
sence of METTL3 showed a significant reduction in the splicing efficiency of late viral RNAs.
The second study examined the role of m6A in the life cycle of herpes simplex virus 1 (HSV-1)
(116). Remarkably, HSV-1 induces relocalization of multiple host proteins associated with RNA
modifications from the nucleus to the cytoplasm and, with this, a loss of RNA modifications,
including m6A, from both host and viral mRNAs in a manner mediated by the viral ICP27 pro-
tein. The losses from human RNAs were determined by a comparative analysis of DRS data
sets derived from HSV-1-infected fibroblasts and IVT RNAs representing the human gamma
actin (ACTG1), while the loss of modified ribonucleotides from the viral RNAs was determined
by a comparative analysis of infections of normal human dermal fibroblasts (NHDFs) with an
HSV-1 wild type or an ICP27 null mutant. The comparative analysis was performed using an
alpha version of DRUMMER, which reported that only around 25% of modified sites were
located within or proximal to AC dinucleotides within DRACH motifs. It was thus inferred, but
not validated, that the remaining sites represent other modified ribonucleotides.

EXPERIMENTAL CONSIDERATIONS WHEN USING NANOPORE SEQUENCING TO
IDENTIFY RNAMODIFICATIONS

As is demonstrated above, the breadth and depth of computational approaches for
detecting modified ribonucleotides in nanopore DRS data present virologists with a wide
range of analytical options but also require a careful consideration of the underlying aims
of individual experiments and the resulting data quality. Based on our own experiences
with adenoviruses, herpesviruses, and betacoronaviruses, we have curated a list of the fol-
lowing parameters that we consider to be critical for consideration in the design and exe-
cution of nanopore-based RNA modification studies in viral contexts.

(i) Annotation quality. RNA modification detection tools require that DRS data sets are
aligned against the transcriptome of the organism of interest. In viral contexts, this remains
problematic, as very few viruses possess high-quality annotations. In the absence of such
annotations, alignment of DRS reads often produces a subset of artefactual results in which
the annotation for a given sequence read does not exist and leads to a subset of reads being
assigned to an alternative transcript isoform instead. This typically hinders RNA modification
analysis through the generation of false-positive and/or false-negative results. This can be
remedied by either (i) generating a new high-quality transcriptome annotation or (ii) limiting
the analysis to the exome level (i.e., aligning DRS data to the genome rather than the tran-
scriptome). The former remains a complex, time-consuming, but ultimately valuable under-
taking that can be partially accomplished using computational annotation tools such as
StringTie2 (117) and FLAIR (118). The latter approach is simple and quick and can be accom-
plished with tools such as DRUMMER, Eligos, and Yanocomp, albeit at the expense of sensi-
tivity and specificity (54).

(ii) Prefiltering of aligned read data. Regardless of whether pursuing exome- or
isoform-level alignments, filtering of DRS read alignments prior to RNA modification detec-
tion can significantly improve sensitivity and accuracy. Standard measures should include
screening for and removing adapter sequences from DRS reads, as well as removing second-
ary and supplementary alignments. This latter measure may also include rejecting individual
reads with multiple primary alignments (i.e., they cannot be uniquely assigned to a single
transcript isoform). A further step that is particularly relevant for isoform-level (i.e., transcrip-
tome) analyses involves removing all primary read alignments that do not extend to within
50 nt of the defined 59 end of a given transcript.

(iii) Biological replicates. The use of at least two biological replicates per condition
is recommended. Several tools have inbuilt support for such analyses (DRUMMER,
Eligos, Nanocompore, xPore, EpiNano), while others require additional scripting to
merge results from individual analyses. The principal benefit of including biological repli-
cates is to enhance the identification of consistently modified sites while also providing
measures of stochastic variation.
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(iv) Manipulating RNA modification abundance. Comparative analyses rely on
comparing conditions in which a given modified ribonucleotide is present at differing levels.
In our experience with m6A, inhibition of METTL3 enzymatic activity or the generation of
METTL3 conditional knockout cell lines significantly enhances sensitivity relative to RNA
silencing strategies. Error rate analysis tools are particular insensitive to RNA silencing strat-
egies, presumably due to reduced stoichiometric differences between conditions. The use of
IVT RNAs is another increasingly popular strategy, although this generally limits comparative
approaches to reporting the presence/or absence, but not the identity, of all modifications
within the RNA isoform being compared.

(v) The right tool for the right job. Choosing the right tool for a given analysis is a
complex process. Read depth is a critical factor for several tools (DRUMMER, Eligos) (88, 107).
Others favor specificity over sensitivity (EpiNano, m6Anet, MINES). Some (Nanocompore,
xPore, m6Anet) even allow for estimates of stoichiometry, although these require careful
orthogonal validation. Where possible, we recommend performing analyses with at least
two or more distinct nanopore RNA modification tools and comparing outputs. This can
help identify both false positives and false negatives that may arise from the intrinsic
biases of a given tool. Due to the ease of installation, comprehensive documentation, and
flexibility regarding how transcriptome alignments can be preprocessed, we have had par-
ticular success in viral contexts with DRUMMER, Nanocompore, and nanoRMS, although a
comprehensive formal comparison of all tools has not been undertaken.

OUTLOOK

The field of nanopore sequencing is moving rapidly, pushed by constant biological
and computational innovations. As noted above, native support for the identification of sev-
eral DNAmodifications was recently integrated into Guppy, and it is reasonable to expect sim-
ilar support for some RNA modifications (e.g., m6A) in the coming years. This is driven by
ongoing improvements in the DRS chemistry that will further reduce error rates and make
modified ribonucleotides easier to distinguish from their unmodified counterparts. Whether
such improvements will ultimately limit the utility of error rate approaches to RNA modifica-
tion detection remains uncertain. We further anticipate that computational approaches for
RNAmodification detection will increasingly focus on the accurate measurement of stoichiom-
etry, through both refinement of existing tools such as Nanocompore, xPore, and nanoRMS
and the development and release of novel tools.

In looking further toward the future, we expect that comparative analysis approaches for
profiling RNA modifications will eventually become defunct, replaced by a combination of
native detection during base calling and the use of advanced signal-level algorithms capable
of reporting multiple different types of RNA modifications within a single analysis (e.g., m6A,
m1A, pseudouridine, etc.). Such developments would also place within reach the ultimate
goal of identifying the presence, identity, and specific location of modified ribonucleotides
within individual RNA molecules.

To conclude in the context of viral RNA biology, the key limitation at present remains the
general lack of well-annotated transcriptomes. Without these, viral RNA modification studies
will be restricted to exome-level analyses that lack resolution. While resolving this will take
time, it is notable that an increasing number of studies are addressing this issue across the
viral spectrum (109, 119–123). Where high-quality transcriptome annotations already exist, it
is clear that RNA modification detection using nanopore sequencing has provided signifi-
cant advances that would simply not be possible using other approaches. This will only be
enhanced further in the future.
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