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Abstract
Many research studies have evaluated the effects of whole-body vibration exercise on muscular strength, standing balance, and
bone density, but relatively few reports have evaluated safety issues for vibration exercises. Knee flexion reduces acceleration
transmission to the head during static exercise. However, few studies have evaluated dynamic exercises. The purpose of this
investigation was to evaluate the transmission of acceleration to the head during dynamic squats. Twelve participants performed
dynamic squats (0�-40� of knee flexion) on a synchronous vertical whole-body vibration platform. Platform frequencies from 20 to
50 Hz were tested at a peak-to-peak nominal displacement setting of 1 mm. Transmissibilities from the platform to head varied
depending on platform frequency and knee flexion angle. We observed amplification during 20 and 25 Hz platform vibration when
knee flexion was <20�. Vibration from exercise platforms can be amplified as it is transmitted through the body to the head during
dynamic squats. Similarly, this vibration energy contributes to observed injuries such as retinal detachment. It is recommended
that knee flexion angles of at least 20� and vibration frequencies above 30 Hz are used when performing dynamic squat exercises
with whole-body vibration.
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Introduction

Whole-body vibration exercise (WBVE) has become a popular

modality and is found in homes, public gyms, and in the offices

of various health-care professionals. WBVE can lead to

improvements in strength,1 improved bone mineral density in

animal models,2 articular cartilage in human subjects,3 and

decreased risk of falls in the elderly.4,5 While these studies

report benefits of WBVE, others have reported mixed results

depending on the performance indicator.6-8

Several studies have investigated the safety of WBVE and

the response of the body to mechanical vibration.9-12 Occupa-

tional research has identified that prolonged exposure to whole-

body vibration has deleterious effects on the musculoskeletal

system.13,14 In particular, resonance, where the vibration is

amplified, may increase the risk of injury from mechanical

vibration. The head resonates at vibration frequencies below

30 Hz.9,15 Excessive mechanical energy transferred to the head

can cause retinal detachment, visual disruptions, and cognitive

impairment.16,17 Knee flexion angles (KFAs) greater than

20� can effectively dampen mechanical vibration reaching the

hip12 and head during static squat postures.9 Similar

attenuation of vibration reaching the hip has been reported for

slow squats12 but has not been evaluated for the transmission to

the head.

WBVE platforms are often used for dynamic

exercise.1,5,7,18-23 However, some evidence indicates that

WBVE using dynamic movements appear to lead to different

biodynamic responses than static exercises,12 and accordingly

dynamic exercises warrant additional research. The goal of this

research was to evaluate transmissibility to the head during

dynamic squats at 7 discrete input frequencies between 20

and 50 Hz from a WBVE platform. In addition, the

concentric and eccentric phases of the squat are evaluated to
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determine whether the musculature is limited in its capacity to

attenuate vibration during these different types of contraction.

This research may provide insight for safer prescription

of WBVE.

Materials and Methods

Participants and Study Design

Twelve healthy male volunteers 26.3 years of age (SD 2.1),

178.0 cm height (SD 6.0), and 79.5 kg weight (SD 11.5) were

recruited to participate in this study. This sample size was cal-

culated using commercially available software24 (G*power ver-

sion 3.1.9.3), based on 80% power to detect a large effect size

(0.8), with alpha¼ 0.05. Due to exclusion criteria, none of these

participants had a history of head trauma, cardiovascular dis-

eases, joint implants, or low back pain. The study was approved

by the research ethics board of the University of Western Ontario

and each participant provided informed consent by signing the

approved consent form. Participants completed a preliminary

session on the day prior to testing to familiarize them with the

postures, the vibrating exercise platform, and the attachment

protocol of the instrumentation. Participants were asked to report

any extreme discomfort or unusual symptoms; if these occurred

then the experiment would be stopped.

Participants were instructed not to partake in any physical

activity in the hours leading up to the experiment as muscular

fatigue could alter vibration transmissibility.25

All trials were performed on a commercial vibrating exercise

platform (WAVE® Manufacturing Inc, Windsor, ON, Canada)

that generated vertical vibration. Participants were exposed to

vibration at selected frequencies, 20, 25, 30, 35, 40, 45, and

50 Hz, at a nominal 1 mm displacement amplitude. Pilot testing

validated the frequency output of the platform to the nominal

frequency setting by calculating the frequency from time domain

data. Each trial lasted 30 s and a 2-minute rest period was provided

between each experimental trial to minimize muscular fatigue.

The sequence of the different vibration frequency trials was ran-

domized using a random number generator with a pick without

replacement scheme to ensure that confounding factors of learn-

ing effect and fatigue did not affect the experimental outcomes.

Dynamic Squat Exercise

To investigate the effects of dynamic lower extremity move-

ment on vibration transmissibility, participants performed

dynamic squats through a knee angle range of 0�-40�. This

range was selected to reflect commonly used KFAs reported

in WBVE,9,26 although some studies have assessed deeper

squats.21 The squat was timed to have a 4-second concentric

and 4-second eccentric contraction phase of the knee extensors.

This controlled the angular velocity of the flexion and exten-

sion phases of each squat. Participants were provided with

sport socks to wear during testing and performed the experi-

ment unshod as variations in footwear have different dampen-

ing properties.27 Participants were instructed to position their

feet shoulder width apart and maintain equal weight distribu-

tion between both feet. Each participant’s stance width was

measured and marked off on the platform to ensure that they

remained in the same position across all trials. There is some

evidence that changes in stance width and feet position can

affect transmissibility.28 To ensure that their feet did not slip

or move during testing, sand paper was secured to the surface

of the platform using double-sided tape.

A video camera (HDR-XR550; Sony, Tokyo, Japan) was

positioned 4-m away from the vibration platform to capture

real-time sagittal plane images of the participant (Figure 1A),

which were displayed on a monitor that was positioned in front

of the vibration platform in the participant’s field of view (Fig-

ure 1B). Participants were instructed to maintain an upright and

erect upper body posture and keep their gaze on the video

monitor during each experimental trial. A piece of acetate was

taped over the screen and their upper body posture was drawn

on with marker.

Knee angle data were displayed on a second video monitor,

also made visible to the participant, to provide updated feed-

back about their degree of knee flexion (Figure 1B). This feed-

back provided the participant with the necessary timing of their

dynamic squat. Trials were repeated if the participant had to

grasp the machine to maintain balance, lost their footing

noticeably from their original position, or if the participant did

not perform a trial in the prescribed manner.

Instrumentation

A tri-axial piezoelectric accelerometer (20 � 26 � 20 mm3,

total mass ¼ 20 g; Model# 356B08 PCB Piezotronics; Depew,

New York) was magnetically attached to the center of the top

surface of the platform to measure platform acceleration. Head

accelerations were measured using a triaxial accelerometer

(15 � 8 � 15 mm3; total mass ¼ 4 g; þ 2g peak acceleration;

Model#7523A1; Dytran Instruments Inc., St. Chatsworth, Cali-

fornia) attached to a head piece created from the liner of a

safety helmet. The accelerometer was positioned atop the

approximate center of the participant’s frontal bone (forehead).

The headpiece used a ratcheting mechanism to tighten the

headpiece around the head. The strap and accelerometer had

a combined mass of 98 g. This method has lower intra-subject

variability over the bite bar method.29 An electrogoniometer

(Model#SG150 Biometrics; Penny and Giles Inc, Santa Mon-

ica, California) was taped to the lateral aspect of the right knee

of all participants to monitor knee angle. During pilot testing,

the electrogoniometer was calibrated against a manual plastic

full circle goniometer with 18 cm arms and 1� measurement

increments; the largest error across various joint angles was 5�.
This measurement setup was also used in a previous publica-

tion investigating transmissibility during static squat WBVE.9

Data Acquisition and Processing

The two accelerometers and goniometer were assembled using

a BNC connector (Model BNC-2111; National Instruments;
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Austin, Texas) and sampled at 2000 Hz using a 16-bit analog-

to-digital converter (Model PCI-6221; National Instruments).

The raw acceleration data were smoothed using a second-order

low-pass Butterworth filter with a cutoff frequency of 120 Hz

and the DC offset was removed. Raw knee angle data were

smoothed using a second-order low-pass Butterworth filter

with a cutoff frequency of 20 Hz. Resultant accelerations were

calculated using the root sum square of the X, Y, and Z com-

ponents. This method was picked to represent the sum of total

energy generated at the platform and all measurement locations

on the body. The running root-mean-square (rms) value of the

signal was calculated using a 500-ms moving window. The

amount of energy contained in the vibration is related to the

average acceleration, thus rms is most commonly used for

quantifying the severity of human vibration exposure.30 Run-

ning rms values at the input (platform surface) and output

(head) were used to calculate “instantaneous” transmissibility

ratios (Equation 1).31

Transmissibility ¼ Running rms OUTPUT ðheadÞ
Running rms INPUT ðplatformÞ : ð1Þ

One dynamic squat maneuver was extracted for each trial

and was subsequently separated into the concentric and

eccentric components. The transmissibility data for each of

these components were binned into 4 knee joint flexion angle

categories: 0� to 10�, 10� to 20�, 20� to 30� and 30� to 40�. The

average transmissibility in each of these knee flexion cate-

gories was calculated for each participant. All data acquisition

and signal processing were performed using a custom written

program in LabVIEW (LabVIEW 2012; National Instruments;

Austin, Texas).

Statistical Analyses

Statistical analyses were performed using commercial software

(SPSS 25; IBM Corp., Armonk, New York). A repeated mea-

sures (RM) 3-way ANOVA was used to investigate the inter-

action of squat exercise phase, vibration frequency, and KFA

on platform-to-head transmissibility. Mauchly’s sphericity test

was performed, and Greenhouse-Geisser corrections were per-

formed if the assumption of sphericity was violated. Significant

interactions were followed up with 2-way and 1-way RM

ANOVAs, and post hoc tests with Bonferroni adjustments for

multiple comparisons, as appropriate. P < .05 was considered

significant for all tests.

Results

The platform-to-head transmissibility changed continuously

with KFA as the participants performed the dynamic squat

exercise (Figure 2). The vibration was amplified (transmissi-

bility > 1.0) with vibration frequencies of 20 and 25 Hz, for

shallow KFAs (<20� at 20 Hz, and <10� at 25 Hz; Figure 3).

Intersubject variability was larger at low vibration frequencies

and small KFAs (Figure 3).

The assumption of sphericity was not met for the vibration

frequency, KFA, and squat phase � KFA interaction

(P < .0005, P ¼ .001, P ¼ .008, respectively). Results of the

3-way ANOVA indicated that the 3-way interaction (squat

phase � vibration frequency � KFA interaction) was not

statistically significant (P ¼ .177). The KFA � vibration

frequency 2-way interaction was statistically significant

(P < .0005). The other 2-way interactions were not statistically

significant (P ¼ .897 and P ¼ .262, for the squat phase � KFA

Figure 1. A, Sagittal plane view of a participant standing on the synchronous vertical whole-body vibration platform. B, Illustration of the
postural feedback presented to the participant during testing. Video monitor (i) presents whole-body posture to the participant, while the
computer monitor (ii) provides knee angle feedback from the electro-goniometer.
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and squat phase � vibration frequency interactions, respec-

tively). The main effect of squat phase was significant

(P ¼ .025) with the transmissibility being larger during the

concentric phase (average transmissibility ¼ 0.484) than the

eccentric phase (average transmissibility ¼ 0.469).

One-way RMs ANOVAs were performed to evaluate trans-

missibility differences between the 7 vibration frequencies, for

each of the KFA ranges, and for the different squat phases.

These tests revealed consistent patterns for all of the KFA

ranges and squat phases: the transmissibilities were not signif-

icantly different between 20 and 25 Hz vibration frequencies,

and the transmissibilities were not significantly different

between the higher vibration frequencies (e.g., 30-50 Hz for

KFA 0�-10� for the concentric phase, and KFA 30�-40� for

both the concentric and eccentric phases, and 40-50 Hz

for KFA 0�-10� for the eccentric phase).

Discussion

This study measured the transmissibility from a commercially

available WBVE platform to the head during controlled dynamic

squats across a range of vibration frequencies. We observed that

the vibration to the head was amplified (transmissibility > 1.0)

for shallow KFAs at vibration frequencies of 20 and 25 Hz and

that the vibration amplitudes were attenuated for larger knee

angles (>30�). We observed that the head vibrations were atte-

nuated for vibration frequencies between 30 and 50 Hz for all

KFAs. Abercromby et al10 measured head acceleration across

varying degrees of knee flexion at 1 vibration condition (30 Hz

and 4 mm p-p). They found a linear decrease in rms head accel-

eration with increasing KFAs from 10� to 30�. Above 30� of

knee flexion, they found that the ability of the legs to reduce

head acceleration decreased. Our results found a similar reduc-

tion in head transmissibility as knee angle increased; however,

the reduction was nonlinear for lower frequency vibrations, and

we did not see an increase in transmissibility above 30� of knee

flexion. Some participants did show peaks in transmissibility as

they went through a certain range of knee flexion; however, this

was not consistent across all participants. The difference in

transmissibility between the eccentric and concentric phases was

statistically significant, but small (3.28%) and not considered

important relative to the influence of KFA and vibration fre-

quency. Accordingly, the results of the study illustrate that both

the eccentric and concentric phases have similar transmissibility

across knee angle ranges between 0� and 40�. There is no reason

to advocate an individual to use more of the concentric phase

versus an eccentric squat during WBVE.

At lower input frequencies (20-30 Hz), smaller KFAs

resulted in amplification of mechanical energy at the head. Our

findings with dynamic squat exercise are similar to those for

static KFAs.9,32 We found resonance of the head at these knee

angles during 20 and 25 Hz platform vibration. Approximately

20� of knee flexion appears to reduce the stiffness of the body

and cause a reduction in vibration transmission through the

body to the head. Vertical head transmissibility displays mul-

tiple peaks between 0.25 and 25 Hz.15,28 Previous literature has

reported that the eyeball resonates around 20 Hz, and disrup-

tions to visual perception have been reported between 20 and

25 Hz.17 A case report found that individuals with intraocular

prostheses can have had spontaneous dislocation after

WBVE.16 This indicates that energy reaching the head during

WBVE can be injurious and have detrimental impacts to vision.

Platform users should be advised to maintain at least 20� of

knee flexion during static and dynamic squats.

Platform to head transmissibility depends strongly on the

KFA. Accordingly, it is important that research using WBVE

should control KFA during static and dynamic squats and

should report the ranges of knee flexion. While some investi-

gations report KFAs,5,18-20 unfortunately many do not report

these details.1,4,7,21,22,33-36 Our findings show that the platform

vibrations can be attenuated or amplified as they are trans-

mitted through the skeleton, and the KFA is an important para-

meter that should be controlled and reported.

At frequencies of 40 Hz and higher, acceleration values at the

head remained below 50% that of the platform across all KFAs.

Frequencies above 30 Hz may be the safest for WBVE as at

these frequencies the vibration is localized primarily to the lower

extremity.11 These frequencies, used in previous training studies,

lead to documented changes in muscle activation20 and muscular

strength5,6,21 but may not be anabolic to the skeletal system.8,37

We observed greater intersubject variability at low frequen-

cies (20-25 Hz) and smaller knee angles (<20�). These findings

are likely related to differences in the segment resonant fre-

quencies between individuals,28 differences in shock-absorbing

capacity between individuals,38 as well as the large influence of

differences in posture.15

This investigation was limited to evaluating dynamic squats

during WBVE. This work complements our previous reports of

static squat exercises;9 we have previously reported measures

of vibration transmissibility to the head during static squat

exercises at KFAs of 0�, 20�, and 40�, using 7 platform vibra-

tion frequencies between 20 and 50 Hz, and at two peak-to-

peak displacement settings (1 and 2 mm nominal). While other

studies have measured vibration transmission to other parts of
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Figure 2. Platform to head transmissibility during dynamic squats at
30 Hz. The different lines represent the concentric and eccentric
squat phases for the individual participants.
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the skeleton, such as the hip and spine,39 and the ankle, knee,

hip, and spine,11 we have focused on transmission to the head.

We observed that mechanical vibration can be amplified as it is

transmitted through the skeleton and that knee flexion is an

important factor for limiting the amount of vibration energy

reaching the head. We have not evaluated exercises involving

vibration passed to the body while sitting on the platform (eg,

abdominal crunches or sit-ups),6 sitting off the platform with

feet on the platform,40,41 placing hands on the vibration plat-

form (eg, planks or push-ups),5,6,42-44 or performing bicep curls

and tricep extensions holding nylon straps attached to the

vibration platform.45 We advocate caution as these postures

may result in excessive vibration energy reaching the head as

the vibration is transmitted to the upper body, bypassing the

knees and the vibration attenuation that knee flexion provides.

Conclusions

This study found that the response to dynamic exercise is sim-

ilar to static postures: transmission of vibration to the head is
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reduced with KFAs greater than 20�. This finding is consistent

with previous research that larger knee angles should be advo-

cated when using WBVE platforms,11 especially at frequencies

below 30 Hz where resonance of the head is likely. There do

not appear to be large difference in transmissibility between the

eccentric and concentric phases of the squat. Our results add

further evidence that the head has a natural frequency between

20 and 30 Hz, and this frequency value may vary between

individuals and the posture adopted. Since excessive vibration

energy may have a detrimental effect on the visual,16,17 audi-

tory,46 and vestibular systems,47 these frequencies should be

avoided.
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