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Over the past five decades, tremendous effort has been devoted to
computational methods for predicting properties of ligands—i.e.,
molecules that bind macromolecular targets. Such methods, which
are critical to rational drug design, fall into two categories: physics-
based methods, which directly model ligand interactions with the
target given the target’s three-dimensional (3D) structure, and
ligand-based methods, which predict ligand properties given
experimental measurements for similar ligands. Here, we present a
rigorous statistical framework to combine these two sources of
information. We develop a method to predict a ligand’s pose—the
3D structure of the ligand bound to its target—that leverages a
widely available source of information: a list of other ligands that
are known to bind the same target but for which no 3D structure is
available. This combination of physics-based and ligand-based
modeling improves pose prediction accuracy across all major fami-
lies of drug targets. Using the same framework, we develop a
method for virtual screening of drug candidates, which outper-
forms standard physics-based and ligand-based virtual screening
methods. Our results suggest broad opportunities to improve pre-
diction of various ligand properties by combining diverse sources
of information through customized machine-learning approaches.

structural biology j drug design j artificial intelligence j antipsychotics j
virtual screening

B inding of small-molecule ligands to proteins is one of the
most fundamental processes in biology, and the great

majority of drugs exert their effects by binding to a target pro-
tein. Predicting properties of protein–ligand interactions—in-
cluding three-dimensional (3D) structures, binding affinities,
binding kinetics, selectivity, and functional effects—is critical
both for the rational design of effective medicines and for
addressing important questions in molecular biology. A great
deal of work has thus focused on the development of computa-
tional methods to predict these properties (1, 2).

Such computational methods generally fall into two catego-
ries. “Physics-based” approaches use a 3D structure of the
target protein and exploit an understanding of the physics of
protein–ligand interactions (3). “Ligand-based” approaches
use experimental measurements of a given property (e.g., affinity
at a particular target) for many ligands and employ pattern-
matching to predict the corresponding property for other
ligands (4, 5).

Can one combine these two paradigms and the orthogonal
sources of information they leverage in a systematic, principled
manner? This has proven challenging, particularly when mak-
ing predictions for ligands substantially different from those for
which experimental data are available. It is especially difficult
when one wishes to predict properties different from those
measured experimentally (e.g., to predict ligand properties that
are difficult to determine experimentally by exploiting experi-
mental data that is easy to collect).

Here, we present a rigorous statistical framework to combine
the distinct sources of information exploited by physics-based
and ligand-based approaches. Using this framework, we develop
ComBind, a method to improve prediction of a ligand’s binding
pose at a target protein by exploiting readily available nonstruc-
tural data. We use the same framework to develop ComBindVS,
a virtual-screening method that leverages both structural and
nonstructural data to predict ligand binding affinities.

Determining a ligand’s binding pose—the 3D coordinates
of the ligand’s atoms when bound to the target—is critical
for structure-based optimization of the ligand’s pharmacolog-
ical properties as well as for understanding how the ligand
influences its target. Medicinal chemists have long used the
binding pose of a lead compound—when available—as an
intuitive guide in choosing which analogs to synthesize and
assay (6–9). Binding poses also serve as starting points for
computational methods that predict ligand properties such as
affinity and selectivity (10–15). Indeed, knowledge of a ligand’s
binding pose is so advantageous that researchers in industry
and academia often spend months or years to solve an exper-
imental structure of a particular ligand in complex with a target
protein.

Because experimental structure determination is time con-
suming, expensive, and sometimes intractable, tremendous
effort has been invested in the development of in silico “docking”
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methods for predicting ligand binding poses (16–25). These
methods are physics based: given a structure of the target pro-
tein, they sample many candidate poses of a ligand and rank
these poses using scoring functions that approximate the ener-
getic favorability of each pose, typically by capturing inter-
atomic interactions such as hydrogen bonds and van der Waals
forces (Fig. 1A). Despite the development of dozens of dock-
ing software packages over the past five decades, binding pose
predictions are typically correct less than half the time for
ligands substantially different from those in the experimental
structures used for docking (SI Appendix, Table S1).

ComBind improves binding pose prediction by exploiting a
widely available type of nonstructural data: the identities of other
ligands known to bind the same target (Fig. 1B). Collecting such
data is typically far easier than structure determination. Indeed,
such data are routinely collected in drug development campaigns
and are already available in public databases such as ChEMBL
for most recognized drug targets (26).

How can a list of other ligands that bind to the target protein—
but whose binding poses are unknown—be used to improve
pose prediction? Medicinal chemists have long recognized that
distinct ligands tend to bind a given protein in similar poses.
Even ligands sharing no common substructure often form simi-
lar interactions with the target protein (Fig. 2A). This intuition
has a sound basis in physics. For example, the energetic favor-
ability of a protein–ligand hydrogen bond depends on the
mobility of the protein atoms involved and their ability to form
hydrogen bonds with water in the absence of the ligand (9).
These factors contribute similarly to binding of different
ligands but are difficult to predict from a static protein struc-
ture alone.

We use a large set of experimentally determined structures
to quantify the medicinal chemist’s intuition—in particular, to
determine the probability that binding poses for different
ligands will share various features. We use the results to define
the ComBind scoring function, which predicts the favorability
of a set of binding poses comprising one pose for each ligand
known to bind the target protein. By contrast, scoring functions
typically utilized by docking software assign a score to the pose
of a single ligand at a time; we thus refer to them as per-ligand
scoring functions. The ComBind scoring function takes into
account the similarities and differences between the poses of dif-
ferent ligands as well as the energetic favorability of each ligand’s
pose, as evaluated by a per-ligand scoring function. By using this
scoring function to predict the binding poses of a set of ligands

simultaneously, we can predict the pose of each ligand more
accurately, even when the ligands share no common scaffold and
none of their binding poses are known in advance.

ComBindVS uses the same sources of information—a struc-
ture of the target protein and a set of ligands known to bind the
target—for virtual screening. Here, we use the ComBind scoring
function not only to predict binding poses of known binders but
also to predict binding affinities of unrelated molecules.

We benchmark ComBind pose prediction by comparing its
results to 248 experimentally determined ligand binding poses
across 30 proteins representing all major families of drug tar-
gets. ComBind improves the pose prediction accuracy of state-
of-the-art docking software for all major drug target families.

We benchmark ComBindVS for virtual screening using the
Directory of Useful Decoys, Enhanced (DUD-E) benchmark
set (27), which includes diverse protein targets. ComBindVS
outperforms state-of-the-art structure-based docking and ligand-
based virtual-screening methods, as well as approaches that
combine the results of docking and ligand-based methods.
ComBindVS yields performance improvements even when the
candidate molecules are very different from the known binders,
making it suitable for discovery of novel chemotypes.

We also illustrate the use of ComBind to predict the previ-
ously unknown binding poses of several antipsychotics at the
D2 dopamine receptor (D2R), an important drug target for
which experimental structure determination has proven diffi-
cult. We validate ComBind’s predictions—which differ from
those of state-of-the-art docking software—using mutagenesis
experiments. These results reveal a structural motif that influ-
ences the subtype selectivity of D2R-targeted drugs and may
thus prove useful in optimization of these ligands. ComBindVS
also enables improved prediction of the effects of ligand modifi-
cations on binding affinity.

Our approach provides a principled manner to integrate
physics-based structural modeling with inference based on
experimental data for other ligands, including ligands that share
no common scaffold or substructure. Similar methods may
prove useful in combining physics-based modeling with ligand-
based approaches to improve prediction of various ligand prop-
erties by exploiting diverse sources of data.

Methods and Results
The methods that we introduce here can employ any per-ligand
scoring function and pose-sampling strategy, including those
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Fig. 1. ComBind leverages nonstructural data to improve ligand binding pose predictions. (A) Standard docking methods take as input the chemical
structure of the query ligand and the 3D structure of the target protein and predict a binding pose using a per-ligand scoring function. (B) ComBind addi-
tionally considers other ligands known to bind the target protein (whose binding poses are not known), resulting in more-accurate predictions. For
clarity, hydrogen and fluorine atoms are omitted from the 3D renderings.
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implemented in any standard docking package. We use the
commercial docking package Glide (20) for illustrative pur-
poses, because it is widely used in the pharmaceutical industry
and because it ranks among the most-accurate docking pack-
ages in comparative studies (28, 29).

Quantifying the Similarity of Binding Poses for Distinct Ligands. We
begin by quantifying the medicinal chemist’s intuition that
different ligands tend to adopt structurally similar poses when
binding the same target protein. We wish not only to measure
the similarity of correct poses of different ligands but also
to compare the similarity of correct poses to that of other
poses ranked highly by per-ligand docking software. We con-
sider two notions of similarity: similarity of protein–ligand
interactions and similarity in position of common ligand
substructures.

We compiled a set of 385 protein–ligand complex structures
for 28 target proteins representing all major classes of small-
molecule drug targets (SI Appendix, Table S2) (30). We docked
each of the ligands using Glide (19, 20) and selected the 100
most highly ranked poses for each ligand. To reflect practical
application of docking, we docked each ligand into an experi-
mental structure solved in the presence of a ligand distinct
from any of those being docked (“cross-docking”; SI Appendix,
Supplementary Text).

For all pairs of ligands for each target protein, we compute
the similarity between each pose of one ligand and each pose
of the other ligand. We use this data to calculate a probability
distribution over similarity values; we refer to this distribution
as the reference distribution.

We also compute similarities between each pair of correct poses
(again, one pose per ligand), in which a pose is considered correct

if it is within 2.0 Å RMSD to the experimentally determined pose.
We use these data to calculate a second probability distribution
over similarity values, the native distribution. When calculating
the native distribution, we use correct poses from the lists gener-
ate by Glide instead of using the experimentally determined poses
directly, such that the similarity statistics we calculate will be most
applicable to candidate poses considered during computational
pose prediction.

We evaluate pose similarity separately for different types of
protein–ligand interactions: hydrogen bonds, salt bridges, and
hydrophobic contacts (Fig. 2B and SI Appendix, Fig. S1A).
Given a pair of poses, we evaluate the similarity for each inter-
action type by cataloging the set of protein residues with which
each ligand forms an interaction of the given type and then
comparing the sizes of the intersection and union of these sets.
Their ratio (the Tanimoto coefficient) (31) increases when
shared interactions are formed and decreases when either
ligand forms an unshared interaction. To make this metric well-
defined when neither ligand forms any interactions of a particu-
lar type, we add pseudo counts. For all interaction types, the
native distribution exhibits higher similarity than the reference
distribution—that is, pairs of correct poses form more similar
interactions than other pairs of poses ranked highly by the per-
ligand scoring function (Fig. 2B).

We define substructure similarity as the RMSD of atom posi-
tions of the largest chemical substructure shared by a pair of
ligands (SI Appendix, Fig. S1B). We evaluated substructure sim-
ilarity for pairs of ligands that shared a substructure at least
half the size of the smaller ligand. For this similarity metric,
too, the native distribution exhibits higher similarity than the
reference distribution, indicating that the common substructure
tends to be more similarly positioned in pairs of correct poses

Substructure RMSD (Å)
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Fig. 2. Distinct ligands that bind to a given target protein often adopt similar binding poses and do so more frequently than predicted by a state-of-the-
art per-ligand docking method. (A) Chemically distinct ligands share key interactions with the mineralocorticoid receptor (Protein Data Bank IDs: 2AA2,
5L7E, and 5MWP). (B) Across a set of 3,115 ligand pairs, interaction similarities are generally higher in pairs of correct poses than in pairs of poses ranked
highly by a per-ligand scoring function. Shading depicts the per-target SEM. A.U.: arbitrary units. (C) Across a set of 690 ligand pairs with a shared
substructure, the substructure tends to be placed more similarly in correct poses than in other poses ranked highly by a per-ligand scoring function
(SI Appendix, Supplementary Text).
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than in other pairs of poses ranked highly by the per-ligand
scoring function (Fig. 2C).

These results suggest that the similarity of correct poses is not
adequately captured by a state-of-the-art per-ligand scoring func-
tion. In further support of this point, we also calculated probability
distributions of similarity between the poses that the per-ligand
scoring function ranks first for each ligand (SI Appendix, Fig. S2).
We found that these distributions also exhibited lower similarity
than the corresponding native distributions.

Derivation of a Statistical Potential for Sets of Binding Poses. We
used the similarity distributions described in the previous sec-
tion to derive a statistical potential that—instead of acting on
features of a single pose, as in previous docking software—acts
on a set of hypothesized poses, one for each ligand known to
bind the target protein:

where n is the total number of ligands, C is a constant, is the
frequency of the observed pose pair similarity in the native
distribution, and f ðpose pair similarity; referenceÞ is the fre-
quency of the observed pose pair similarity in the reference
distribution.

The first component evaluates the energetic favorability of
each ligand’s pose individually using a per-ligand scoring func-
tion (e.g., a scoring function used in Glide or another docking
software package). The summation is over ligands known to
bind the target protein, with “pose” referring to the hypothe-
sized pose for each ligand. The constant factor C depends on
the per-ligand scoring function employed and can be deter-
mined as described in SI Appendix, Supplementary Text. For
Glide, we set it to 1.

The second component rewards sets of poses with a degree of
similarity that is more often observed in correct poses than in
other poses ranked highly by the per-ligand scoring function.
Here, the outer summation is over pairs of distinct ligands known
to bind the target protein, and the inner summation is over the
similarity measures shown in Fig. 2 B and C: hydrogen bond simi-
larity, salt bridge similarity, hydrophobic contact similarity, and
substructure similarity. “Pose pair similarity” refers to the calcu-
lated similarity value of the given type for the hypothesized poses
of the given ligand pair. The “native distribution” and “reference
distribution” for each similarity type are determined as described
above. The resulting negative log likelihood ratios have the mathe-
matical properties of an energy, namely that an additive decrease
in energy corresponds to a multiplicative increase in likelihood
ratio, allowing for straightforward integration with standard
per-ligand docking scores, which are typically in units of energy
(SI Appendix, Fig. S3). For pairs of ligands that do not share a
substructure at least half the size of the smaller ligand, the sub-
structure similarity term is not included in the summation.

The second component acts as a correction to the first. If the
per-ligand scoring function were perfect, in the sense that it
could perfectly distinguish correct poses from incorrect ones,
the terms in the second component would consistently assume
values of zero. Because per-ligand scoring functions remain
imperfect—and in particular tend to underpredict the likeli-
hood that a set of ligands will adopt similar poses—the second
component typically assumes nonzero values.

ComBind: Structure Prediction Informed by Nonstructural Data.
The ComBind pose prediction method identifies a set of

binding poses—one for each of a set of ligands known to
bind the target protein—that minimizes the ComBind poten-
tial. More specifically, given a target protein and a query
ligand whose binding pose we wish to predict, we proceed
as follows:

1. Compile a set of other ligands known to bind the target pro-
tein (e.g., from a public database such as ChEMBL or from
ligands tested as part of a drug discovery project). We refer
to these as helper ligands.

2. Dock the query ligand and each helper ligand individually to
the target protein (with a per-ligand docking software pack-
age), generating many candidate poses and associated dock-
ing scores for each ligand.

3. Determine the set of poses—one per ligand—that minimizes
the ComBind potential. We use an expectation–maximization
algorithm for this purpose (SI Appendix, Supplementary Text).

As an illustrative example, we apply ComBind to predict
binding poses for ligands at the β1-adrenergic receptor (β1AR),
the primary target of the beta blocker drugs that are widely
used to treat heart attack, heart failure, and hypertension. We
selected 11 diverse ligands known to bind β1AR, including both
beta blockers and beta agonists. We docked 11 distinct ligands
to a crystallographic β1AR structure using Glide, producing up
to 100 candidate poses for each ligand. We then solved for a set
of poses—one per ligand—that minimizes the ComBind poten-
tial (Fig. 3A). The crystallographic β1AR structure used for
docking was determined in complex with a ligand distinct from
any of the 11 docked ligands. Crystallographic ligand poses
were not used in any way by Glide or ComBind.

Glide’s top-ranked pose was correct for four of 11 ligands,
whereas the pose selected by ComBind was correct for 10 of 11
ligands (Fig. 3B). In ComBind’s selected poses—as in experi-
mentally determined poses—most of the ligands form a salt
bridge with D121 and hydrogen bonds with S211 and N329
(Fig. 3C). In comparison, the poses ranked most highly by
Glide’s per-ligand scoring function exhibited more varied
hydrogen bonds and salt bridges (Fig. 3C).

We emphasize that ComBind does not require that all
ligands adopt similar poses or form similar interactions. Com-
Bind correctly predicts, for example, that two of these β1AR
ligands do not form a hydrogen bond with S211.

ComBind Outperforms a State-of-the-Art Method on a Diverse
Benchmark Set. We benchmarked ComBind on a set of 248
protein–ligand complexes representing all major families of
drug targets. We took several steps to mimic a real-world use
case. First, when predicting the binding pose of a query ligand
with ComBind, we used helper ligands selected from the public
ChEMBL database (26). We did not use any experimental
information on poses of helper ligands; indeed, for nearly all
helper ligands selected, poses have not been determined experi-
mentally. Second, we never used a target protein structure
determined in the presence of a ligand that shares a chemical
scaffold with the query ligand in order to avoid self-docking
and other “easy” cases in which one could predict the pose of
the query ligand by overlaying it on the crystallographic ligand
pose (SI Appendix, Supplementary Text). Finally, when predict-
ing ligand binding poses at a given target protein, we omitted
all structures involving that protein when constructing the dis-
tributions used to define the ComBind potential.

EComBindðPoses for a set of ligandsÞ ¼
C ∑

ligands

EdockðposeÞ � 1

ðn� 1Þ ∑
ligand pairs

∑
similarity types

log
fðpose pair similarity; nativeÞ

fðpose pair similarity; referenceÞ ,
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We evaluated two ways of choosing, from ChEMBL, helper
ligands for use in ComBind: 1) a diverse set of ligands with the
highest binding affinity (“high affinity”) and 2) the ligands sharing
the largest substructure with the query ligand (“congeneric”). Both
of these selection criteria lead to substantial performance improve-
ments over Glide (Fig. 4 and SI Appendix, Fig. S4), indicating that
ComBind could be applied effectively using either a diverse set of
ligands identified from a high-throughput screen or a congeneric
series of ligands generated during lead optimization.

ComBind’s performance improves with the use of more
helper ligands (up to 20, the maximum number that we tested)
(Fig. 4B and SI Appendix, Fig. S4B). Interestingly, ComBind
substantially outperforms Glide even when using only a single
helper ligand.

In the ComBind benchmark results described below (Fig.
4A), we used 20 helper ligands for each query ligand, selected
from ChEMBL by the high-affinity criterion. When computing
overall results, we averaged across target families, weighted the
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performance for each family by the fraction of US Food and
Drug Administration–approved drugs targeting that family (30).

On average, ComBind selects a correct pose for 57% of all
ligands and 70% of ligands for which at least one correct pose
was included among the list of candidates considered—a 30%

improvement over Glide in both cases (SI Appendix, Table S1).
ComBind improves pose prediction performance for all target
families considered. Even at the individual target level, we find
that use of ComBind hardly ever degrades performance: Com-
Bind only reduced performance for one of the 30 targets
considered, and this performance reduction was minor. Com-
Bind increased pose prediction accuracy both for targets with
shallow, poorly formed binding pockets and for targets with
deep, well-formed binding pockets (SI Appendix, Fig. S12).

ComBindVS: Deep Integration of Physics-Based and Ligand-Based
Modeling for Virtual Screening and Binding Affinity Prediction We
used the same statistical framework to develop ComBindVS.
Given a structure of the target protein, a set of ligands known to
bind the target (helper ligands), and a library of candidate mole-
cules to screen, ComBindVS proceeds as follows (SI Appendix,
Supplementary Text):

1. ComBind is used to predict poses for all of the helper
ligands.

2. For each candidate molecule, a pose is selected that mini-
mizes the ComBind score with respect to the helper ligands.

3. The ComBind score of each candidate molecule in its pre-
dicted pose is used as a prediction of its affinity relative to
other molecules. For virtual screening, the candidate mole-
cules are ranked by this score.

Notably, ComBindVS integrates physics-based and ligand-
based modeling not only to predict poses of candidate mole-
cules but also to predict relative affinities of these molecules
given their predicted poses. Virtual-screening campaigns using
per-ligand docking methods often search for candidate mole-
cules forming particular interactions believed to be important
for binding based on experimentally determined ligand poses
(32). ComBindVS estimates the importance of interactions
automatically from the helper ligands without requiring any
information on their binding poses.

ComBindVS Outperforms Physics-Based and Ligand-Based Modeling
at Virtual Screening. We compared the performance of Com-
BindVS to per-ligand docking, a state-of-the-art ligand-based
method (“chemical similarity”), and several strategies for inte-
grating the results of the two, on the DUD-E dataset (27) (SI
Appendix, Supplementary Text). For each of 102 diverse target
proteins, this dataset includes a structure of the target, a list of
molecules known to bind the target (“true binders”), and a list
of decoy molecules meant to be hard to distinguish from the
true binders. We evaluated the ability of each method to pick
out the true binders from the decoys as quantified by the
enrichment factor 1%: the number of true binders that the
method ranks in the top 1% divided by the expected number
given a random ranking.

We first considered cases in which the candidate molecules
are restricted to be very different from any of the helper ligands
(maximum Tanimoto coefficient < 0.2) in order to reflect the
use of virtual screening to discover novel chemotypes. Similar
filters are commonly applied in real virtual-screening cam-
paigns to avoid “rediscovering” variants of known binders (32).
In this regime, ComBindVS outperforms per-ligand docking by
more than 20% with a single helper ligand and by nearly 50%
with 11 helper ligands. The ligand-based chemical similarity
method consistently underperforms both per-ligand docking
and ComBindVS and provides little benefit when combined
with either of them (Fig. 5A and SI Appendix, Fig. S9E).

When considering ligands that are moderately similar to one
or more helper ligands (0.20 < maximum Tanimoto coefficient
< 0.30), chemical similarity information becomes more valu-
able, and the combination of ComBindVS and chemical simi-
larity gave the best results (Fig. 5B and SI Appendix, Fig. S9E).
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ComBindVS on its own substantially outperforms chemical
similarity, but the two are complementary, because Com-
BindVS evaluates ligands using their intermolecular interac-
tions, whereas the chemical similarity method considers the
presence of specific chemical groups.

Predicting Binding Poses and Affinities of Antipsychotics at the
D2R. To further illustrate the practical application of ComBind,
we predicted the binding poses of three antipsychotic drugs—
pimozide, benperidol, and spiperone—at their target, D2R.
Knowledge of these binding poses could aid ongoing efforts to
develop antipsychotics with improved pharmacological proper-
ties, including ligands that bind selectively to D2R over other
dopamine receptors (33, 34). Solving experimental structures of
D2R has proven difficult, despites decades of effort (35, 36). At
the time that we made these predictions, the only available
D2R structure was for D2R bound to risperidone (35), a ligand
substantially different from those whose poses we wished
to predict.

We predicted binding poses for pimozide, benperidol, and
spiperone as well as the tool compound mespiperone using
both Glide and ComBind (SI Appendix, Supplementary Text).
For spiperone and mespiperone, ComBind and Glide predict
similar poses. For pimozide and benperidol, however, Com-
Bind’s predictions are different from Glide’s: a fluorobenzene
ring of each compound is positioned near the top of the bind-
ing pocket by Glide and near the bottom by ComBind (Fig. 6 A
and B and SI Appendix, Fig. S6 A and B).

To test ComBind’s predictions, we designed mutagenesis
experiments. First, we tested a series of mutations of Ser193
(S193), which is positioned uncomfortably close to the second
fluorobenzene ring of pimozide in ComBind’s predicted pose
but not in Glide’s (Fig. 6C). Indeed, mutating S193 to a larger
residue (Val or Leu) decreases pimozide’s affinity, while mutat-
ing S193 to a smaller residue (Ala) increases pimozide’s affin-
ity. Such effects are not observed for benperidol, which is
identical to pimozide except that it lacks the fluorobenzene ring
that contacts S193 in pimozide (Fig. 6D). Indeed, benperidol’s
affinity actually increases when S193 is mutated to a larger resi-
due. These results are consistent with ComBind’s predicted
poses but not with Glide’s: Glide predicts that pimozide and
benperidol position nearly identical chemical groups in essen-
tially identical positions near S193. Additional experiments
involving mutation of residues surrounding the top and bottom
of the binding pocket also support ComBind’s predictions (SI
Appendix, Fig. S6C).

Shortly before submission of this manuscript, a haloperidol-
bound D2R crystal structure appeared (37). Haloperidol shares
a common substructure with the ligands that we considered,
and this substructure is positioned similarly in in the crystal
structure and in ComBind’s predictions, further supporting the
accuracy of these predictions.

Our predicted poses suggest that a previously unrecognized
structural motif contributes to selective binding to D2R. The
antipsychotics that we studied have picomolar affinity at
D2R and bind more tightly to D2R than to the D3 dopamine
receptor (D3R). Haloperidol, by contrast, binds with weaker
(nanomolar) affinity and is not selective for D2R over D3R.
Comparison of the binding poses reveals that the primary dif-
ference in the protein–ligand interactions is that the antipsy-
chotics we studied—but not haloperidol—place a ring structure
in the “extracellular vestibule,” located above the orthosteric
site where dopamine binds. The extracellular vestibule has
much higher sequence diversity among the different dopamine
receptors than does the orthosteric site, supporting the hypoth-
esis that ligand interactions with this region contribute to selec-
tivity. Optimizing ligands to strengthen these interactions could
lead to drugs with greater selectivity for D2R.

We also assessed the accuracy of ComBindVS in predicting
the binding affinities of a set of spiperone analogs. Using only
our four original ligands as helper ligands, ComBindVS pre-
dicted the experimentally measured relative binding affinities
significantly more accurately than per-ligand docking (R2 =
0.30 and 0.12, respectively, P = 0.001; Fig. 6 E and F). For 94%
of the 83 analogs, ComBindVS correctly predicts whether the
affinity is higher or lower than that of spiperone, whereas per-
ligand docking makes this prediction correctly for 48% of the
analogs. ComBindVS may therefore provide a useful guide to
optimizing such ligands for affinity or to avoiding a substantial
loss of affinity while optimizing for other properties.

Inspection of individual ligands suggests that ComBindVS’s
improved performance stems both from more-accurate bind-
ing pose predictions and from directly leveraging the interac-
tions formed by the helper ligands for scoring (SI Appendix,
Fig. S10). Interestingly, ComBindVS correctly predicts that
addition of hydrophobic groups to the secondary amine of
spiperone increases ligand affinity, even though this addition
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decreases interaction similarity to all the helper ligands
(SI Appendix, Fig. S11).

Discussion
We have introduced a statistical potential that acts on a set of
structures for different ligands in complex with a given protein
rather than on a single structure. We have used this potential to
develop ComBind and ComBindVS, methods that improve the
accuracy of binding pose prediction and affinity prediction by
leveraging the knowledge that certain other ligands bind the
target, even when these other ligands have unknown binding
poses and are very different from the molecules of interest.

Importantly, ComBind and ComBindVS do not assume that
all ligands considered bind in similar poses. Instead, they con-
sider both the favorability of each individual ligand’s pose, as
evaluated by a per-ligand scoring function, and the tendency of
different ligands to adopt similar poses, as determined by analy-
sis of hundreds of experimental structures. ComBind often pre-
dicts correctly that two ligands position their common scaffold
differently or that they form substantially different interactions
with the binding pocket (SI Appendix, Figs. S7 and S8).

Applicability and Robustness. ComBind and ComBindVS are
broadly applicable. For most major drug targets, numerous
binders have already been identified. Even for a completely
novel target, several binders would typically be identified in the
very early stages of a drug discovery project by high-throughput
screening. Both methods achieve significant improvements in
accuracy even when given very few known binders.

Binding pose and affinity prediction are important in many
areas beyond drug discovery. These include the study of bio-
logical phenomena such as cellular signaling (e.g., binding of
hormones and neurotransmitters), sensation (e.g., binding
of odorants and flavorants), enzyme function (e.g., binding of
nutrients and other metabolic substrates), and defense mecha-
nisms (e.g., binding of toxins and antibiotics) as well as under-
standing the effects of genetic variation on responses to both

naturally occurring ligands and drugs, which is essential to per-
sonalized medicine (38). In each of these cases, multiple ligands
are typically known to bind the targets of interest, so ComBind
and ComBindVS may prove useful.

ComBind’s robustness is illustrated by its accuracy in our
benchmarks, which used helper ligands selected automatically
according to approximate affinity values listed in the ChEMBL
database. These data are noisy, not only because ligand affini-
ties were measured by many laboratories using different assays
but also because the data often includes values that were input-
ted incorrectly (39, 40). In addition, ligands selected automati-
cally from ChEMBL sometimes bind to completely different
binding pockets on the same target.

ComBind generally produces an accurate prediction for the
query ligand even when no correct candidate poses are gener-
ated for many helper ligands. SI Appendix, Table S3 shows an
example in which the majority of ligands considered had no
correct candidate pose; ComBind nevertheless outperformed
per-ligand docking.

The per-ligand docking software used to generate and score
individual ligand poses in our current implementations of Com-
Bind and ComBindVS treat the protein as rigid. Nevertheless,
ComBind and ComBindVS generally prove effective even when
considering a set of ligands that bind diverse protein conforma-
tions. For example, the β1AR ligands considered in Fig. 3
include both agonists, which bind preferentially to the protein’s
active conformation, and inverse agonists, which bind preferen-
tially to its inactive conformation (SI Appendix, Table S4).

Relationship to Previous Work. ComBind and ComBindVS
build upon several methods that combine ligand-based and
physics-based information in more limited settings. Three-
dimensional quantitative structure–activity relationship techni-
ques, including field-based methods and 3D pharmacophore
methods, are ligand-based approaches that consider potential 3D
conformations of many ligands (41–43). These methods attempt
to align ligands in three dimensions, but they do not require a
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structure of the target protein, and even when such a structure is
available, it is typically used only in a limited way (e.g., to define
excluded volume) (44). These methods require data for a large
number of binders and are generally not applied to pose predic-
tion. Several previous virtual-screening approaches perform
docking and ligand-based screening independently and then com-
bine the results (45, 46) or combine the results of docking and
pharmacophore modeling (47, 48).

ComBind also draws inspiration from previous methods that
predict binding poses of multiple known binders simulta-
neously. Some of these methods consider a congeneric series of
ligands and require that the shared scaffold is similarly placed
(49, 50). Others use either the number of similarly placed func-
tional groups (51) or the number of shared interactions (52)
between a set of docked ligands as a scoring function, assuming
that the ligands adopt maximally similar poses. ComBind goes
beyond these techniques in that it not only applies to any set of
ligands but also provides a principled method to combine infor-
mation from per-ligand docking scores with information on
pose similarity across multiple ligands. This is essential to Com-
Bind’s success in cases in which ligands form substantially
different interactions or position shared substructures very dif-
ferently (53). Likewise, ComBind provides a principled method
to combine multiple metrics of pose similarity. Indeed, Com-
Bind’s performance drops substantially if one omits per-ligand
docking scores, substructure similarity, or interaction similarity
from its scoring function (SI Appendix, Fig. S5).

A great deal of innovative recent work has explored
machine-learning methods—particularly deep learning methods—
for predicting ligand properties (54). These methods, which
promise to make a substantial impact in drug discovery, gener-
ally fall into two categories. Some use 3D structures of target
proteins and learn per-ligand scoring functions for general
protein–ligand interactions (55–57). Others are ligand-based
methods that learn a direct relationship between small-
molecule chemical structures and their properties at particular
targets (58–60). ComBind is also a machine-learning method,
but it is orthogonal to these innovations in that it integrates
structure-based and ligand-based modeling. To enable this com-
bination, we designed a machine-learning framework different
from neural networks and other traditional machine-learning
architectures.

Performance. Our extensive benchmarks show that ComBind
outperforms a state-of-the-art per-ligand pose prediction method
across all major families of drug targets. For individual targets,
ComBind often substantially improves pose prediction accuracy
and hardly ever degrades it. Across a broad range of targets,
ComBindVS often substantially improves virtual-screening per-
formance, while almost always avoiding substantial performance
degradation (SI Appendix, Fig. S9E). Using ComBind or Com-
BindVS thus has a substantial upside and little downside.

For G protein-coupled receptors (GPCRs), the largest family
of drug targets, ComBind selects a correct binding pose over
60% more frequently than per-ligand docking, increasing the
probability of correct prediction from 47 to 76% for ligands
that do not share a chemical scaffold with the ligand present in
the protein structure used for docking. This improvement is
particularly noteworthy, not only because GPCRs represent the
targets of one-third of all approved drugs—and a very large
fraction of current drug discovery efforts—but also because

experimentally determining structures of GPCRs in complex
with lead compounds is often extremely difficult (61).

Performance of ComBind and ComBindVS could be improved
through use of curated or in-house data. In particular, a careful
human curator could 1) identify ligands that can most confidently
be classified as binders (e.g., based on multiple reports or on par-
ticularly reliable data sources), 2) identify ligands demonstrated
to bind in the same binding pocket (e.g., by competition binding
assays), and 3) remove data that was inputted incorrectly to a
database. For a major drug discovery project focused on a partic-
ular target, a substantial amount of additional in-house data will
often be available on ligands found to bind the target, and that
data will typically have been collected in a more uniform and con-
sistent manner than data extracted from multiple publications.

Extensibility and Future Work. Because ComBind and Com-
BindVS can use any per-ligand docking method for pose gener-
ation and scoring of individual ligands, they will be able to take
advantage of improvements to these methods. For example,
several recent machine-learning methods show promise in fit-
ting more-accurate per-ligand scoring functions (56, 62, 63),
and other methods allow for binding pocket flexibility when
generating candidate poses (18, 64, 65).

Likewise, ComBind and ComBindVS can be used with any
pairwise pose similarity metric or combination thereof. Their
performance could potentially be improved by using more fine-
grained interaction descriptors (66, 67) or by using similarity
metrics based on field-based methods developed for virtual
screening (43, 68).

The formulation of the ComBind potential is sufficiently
general that it could be extended to incorporate other types of
data, ranging from multiple experimental structures of the pro-
tein in complex with different ligands to effects of protein
mutation on ligand binding. Likewise, future work might exploit
the affinity of each known binder; we have not done so here to
avoid obscuring the general applicability of our method, as the
affinity estimates available in public databases are often deter-
mined by different techniques and thus difficult to compare to
one another.

Our work suggests rich opportunities to improve prediction
of diverse ligand properties by combining physics-based and
ligand-based modeling. Ligand-based and physics-based model-
ing have both found widespread use for decades, but ligand-
based approaches are generally limited in their ability to predict
affinities of molecules very different from those for which experi-
mental data are available, while physics-based approaches are
generally limited to properties whose physical basis is known a
priori and typically require use of various approximations that
introduce error. A careful combination of the two approaches,
perhaps exploiting the ComBind statistical potential, might
prove effective for predicting properties including functional
activity, selectivity, or binding kinetics. Further work will be nec-
essary to explore these possibilities.

Data Availability. Implementations of ComBind and ComBindVS are available
in GitHub at https://github.com/drorlab/combind.
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