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Forecasting ICU Census by Combining Time 
Series and Survival Models
OBJECTIVES: Capacity planning of ICUs is essential for effective manage-
ment of health safety, quality of patient care, and the allocation of ICU resources. 
Whereas ICU length of stay (LOS) may be estimated using patient information 
such as severity of illness scoring systems, ICU census is impacted by both pa-
tient LOS and arrival patterns. We set out to develop and evaluate an ICU census 
forecasting algorithm using the Multiple Organ Dysfunction Score (MODS) and 
the Nine Equivalents of Nursing Manpower Use Score (NEMS) for capacity pla-
nning purposes.

DESIGN: Retrospective observational study.

SETTING: We developed the algorithm using data from the Medical-Surgical ICU 
(MSICU) at University Hospital, London, Canada and validated using data from 
the Critical Care Trauma Centre (CCTC) at Victoria Hospital, London, Canada.

PATIENTS: Adult patient admissions (7,434) to the MSICU and (9,075) to the 
CCTC from 2015 to 2021.

INTERVENTIONS: None.

MEASUREMENTS AND MAIN RESULTS: We developed an Autoregressive 
integrated moving average time series model that forecasts patients arriving in 
the ICU and a survival model using MODS, NEMS, and other factors to estimate 
patient LOS. The models were combined to create an algorithm that forecasts 
ICU census for planning horizons ranging from 1 to 7 days. We evaluated the al-
gorithm quality using several fit metrics. The root mean squared error ranged from 
2.055 to 2.890 beds/d and the mean absolute percentage error from 9.4% to 
13.2%. We show that this forecasting algorithm provides a better fit when com-
pared with a moving average or a time series model that directly forecasts ICU 
census. Additionally, we evaluated the performance of the algorithm using data 
during the global COVID-19 pandemic and found that the error of the forecasts 
increased proportionally with the number of COVID-19 patients in the ICU.

CONCLUSIONS: It is possible to develop accurate tools to forecast ICU census. 
This type of algorithm may be important to clinicians and managers when planning ICU 
capacity as well as staffing and surgical demand planning over a short time horizon.

KEY WORDS: ARIMA, healthcare management, intensive care, survival analysis, 
time series, forecasting

Intensive care scoring systems are widely used to predict patient out-
come, characterize severity of patient illness, and manage resources (1). 
Forecasting ICU census based on illness severity scoring systems may help 

improve the quality of care administered in the facility and support capacity 
management. In Ontario Canada, the Multiple Organ Dysfunction Score 
(MODS) (2, 3) (Supplementary Table 1, http://links.lww.com/CCX/B190) 
and the Nine Equivalents of Nursing Manpower Use Score (NEMS) (4–6) 
(Supplementary Table 2, http://links.lww.com/CCX/B190) are recorded on 
ICU patient admission for reporting purposes.
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Many tools using scoring systems have been pro-
posed to help ICU practitioners predict patient length 
of stay (LOS) or for benchmarking purposes (7–9). 
These rely predominantly on the Acute Physiology and 
Chronic Health Evaluation score, the Simplified Acute 
Physiology Score, and the Sequential Organ Function 
Assessment score (10–12). Some regression models 
only account for 5–20% of the individual variation in 
ICU LOS (13, 14) while still being statistically signifi-
cant in predicting long-stay patients (13) and readmis-
sion (15). This fact is one of the reasons why researchers 
seem reticent to use their models for individual patient’s 
LOS predictions (7, 12, 16–18) but are more confident 
to recommend them for ICU benchmarking (19).

Time series models related to ICU health care have 
been developed primarily for predicting clinical out-
comes (20, 21) and mortality (22). Recently, time series 
methodologies have been developed to aid ICU man-
agement during the COVID-19 pandemic (23–25).

Survival analysis models applied to ICUs tend to 
focus on hazard ratios (26–28). Clark and Ryan (26) 
found that age, Glasgow Coma Score, and abbreviated 
injury scores were significant predictors of the rates 
of ICU deaths and discharge with effects that were 
variable in different time intervals. Moran et al (28). 
compared Cox and Accelerated Failure Time (AFT) 
survival models and advocate for the inclusion of time-
varying covariates in ICU survival analysis as they 
show hazard ratios vary over time. Recently, Vekaria et 
al (29). introduced an AFT survival model to predict 
LOS of ICU patients with COVID-19 in the United 
Kingdom. Their model; however, did not include 
patients without COVID-19 or new patients arriving 
in the ICU. To forecast ICU census, all present and fu-
ture patients need to be considered.

We developed an ICU census forecasting algorithm 
that combines time series models to forecast future 
arrivals with survival models using MODS and NEMS 
to predict ICU LOS to forecast ICU census over a short-
term planning horizon. We evaluate the performance 
of the algorithm before the COVID-19 pandemic, and 
we also evaluate the performance of the algorithm dur-
ing the pandemic.

MATERIALS AND METHODS

Data

Data were collected from the London Health Science 
Centre, a publicly funded, tertiary care teaching hos-
pital with two campuses, University Hospital, which 
includes a Medical–Surgical ICU (MSICU), and 
Victoria Hospital, which includes a Critical Care 
Trauma Centre (CCTC), located in London, ON, 
Canada (Supplementary Table 3, http://links.lww.
com/CCX/B190). The MSICU is a 25-bed adult ICU 
caring for neurosurgery, transplant, medical, and ge-
neral surgery patients. The CCTC is a 30-bed adult 
ICU caring for trauma patients. We developed the 
model using data from the MSICU, and used data 
from the CCTC to validate our approach. The study 
was conducted in accordance with ethical standards of 
the Western University Ethics Review Board, and the 
need for informed consent was waived (Study Title: 
Intensive Care bed planning in the London Health 
Sciences Center: Analytical models for step-down ca-
pacity planning, October 2014, #1005583) and Helsinki 
Declaration of 1975.

Our study includes all patient admissions to the 
MSICU from January 1, 2015, to December 31, 
2021. The first three years were used to develop the 
model, and the last four years (2 years before the 
pandemic and 2 years during the pandemic) were 
used to evaluate model performance. As is common 
in the literature (12, 30), we excluded records with 
a LOS of less than 4 hours or more than 60 days, as 
well as records with LOS recorded as 0 days or more 
than 120 years old.

We considered only the variables available on the 
day of admission including age, sex, admission source, 
diagnosis group (see Supplementary Section 1, http://
links.lww.com/CCX/B190), category (medical or sur-
gical), scheduled surgery, ventilation, MODS, and 
NEMS. We defined four additional binary variables 

 
KEY POINTS

Question: How can we forecast ICU census over 
a short time horizon?

Findings: Time series and survival analysis can be 
combined to accurately forecast ICU census.

Meanings: This type of algorithm may be impor-
tant to clinicians and managers when planning ICU 
capacity as well as staffing and surgical demand.
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using information available on the day of admission 
using each patient’s admission dates and admission 
source:
 •   Readmission A (1 if the patient returned to the ICU 

from a step-down unit or ward),
 •   Readmission B (1 if the patient was discharged from the 

hospital and returned to the ICU in < 7 d),
 •  Congested (1 if ICU census > 80%), and
 •  Censored (1 if the patient outcome was known).

Patients were categorized as either outcome known 
if deceased, transferred to another ward, or returned 
home; or outcome unknown if transferred to another 
hospital or still in the ICU at the end of the period. 
The censored patients were included in the analysis to 
account for their contribution up to the time of their 
transfer.

Forecasting Arrivals and LOS Prediction

We developed an autoregressive integrated moving av-
erage (ARIMA) model to forecast the number of patients 
that arrive daily at the ICU. We investigated model fit for 
the first 3 years together (2015–2017), and as a robust-
ness check, for each of the 3 years individually.

We developed two survival models to predict LOS. 
The first uses information that would be known at the 
time that a census forecast is being made and would 
apply to all patients in the ICU on that day. We con-
sidered several functional forms for the survival mod-
els, including exponential, log-normal, Weibull, and 
log-logistic using the variable selection methods for 
parametric survival models provided by Zhang (31). 
We assessed model fit using residual analysis, Akaike 
information criterion (AIC) scores, and concordance.

The second survival model did not use any patient-
specific information. This model was used to forecast 
LOS for patients who arrive in the future, and whose 
characteristics are not known at the time of forecasting 
the ICU census. Since the characteristics of the future 
patients who arrive in the ICU are unknown, we used 
an intercept-only survival model to predict their LOS 
probabilities.

Algorithm for Forecasting Census

Our algorithm combined the full and intercept-only 
survival models and time series model to obtain fore-
casts for ICU census over a short-term planning ho-
rizon (see Supplementary Section 2, http://links.lww.

com/CCX/B190). We generated the conditional LOS 
probabilities from the full survival model for each pa-
tient present in the ICU on the day of the forecast. The 
model parameters are dependent on patient charac-
teristics including MODS and NEMS, and therefore, 
each patient has a unique LOS probability function. 
The conditional LOS probabilities were aggregated for 
each patient cohort on each day to forecast the future 
daily ICU census among those present.

We generated the LOS probabilities from the inter-
cept-only survival model to forecast the arrivals’ LOS 
probabilities. We multiplied the daily forecasted arriv-
als produced by the time series model and the LOS 
probabilities from the intercept-only model to forecast 
the number of arrivals remaining in the ICU. For ex-
ample, if the number of patients forecasted to arrive 1 
day ahead was 3 and the LOS probability to remain in 
the facility 2 days ahead was 0.85, then the expected 
number of those arrivals still occupying an ICU bed in 
2 days is 3 × 0.85 = 2.55.

The expected ICU census on any future day is obtained 
by adding the expected number of patients remaining 
in the ICU among those present (the aggregated LOS 
probabilities generated by the full survival model), and 
the expected number of new arrivals remaining in the 
ICU (the number of daily forecasted arrivals from the 
time series model multiplied by the LOS probabilities 
generated by the intercept-only survival model).

Algorithm Performance

We used root mean squared error (RMSE) and mean 
absolute percentage error (MAPE) to evaluate the 
quality of our forecasting algorithm. We also counted 
the number of times that the forecasted census was 
within ± 1, 2, and 5 beds of the true census for each day 
of the planning horizon. We also evaluated the perfor-
mance of the algorithm by using an independent data 
series from the CCTC.

We compared the performance of our forecasting 
algorithm with two alternate models. The first was a 
7-day moving average of ICU census, and the second 
was an ARIMA(p, d, q) model fitted directly to ICU 
census data, where p is the number of lag observations, 
d is the number of times the observations were differ-
enced (e.g., the first differencing value is the difference 
between the current time and the previous time), and 
q is the size of the moving average window. We selected 
the best ARIMA model based on the AIC scores.
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The moving average forecaster produces forecasts as 
follows (32): the 1-day-ahead forecast is equal to the 
average of the previous 7 observed days. The 2-day-
ahead forecast is equal to the average of the previous 6 
observed days and the 1-day-ahead forecast. In general, 
the n-day-ahead forecast is the average of the 8 – n pre-
vious observed days and the n – 1-day-ahead forecasts. 
Forecasts for the ARIMA were made in the standard 
way described by Hyndman and Athanasopoulos (33).

RESULTS

There were a total of n = 7,714 patients admitted into 
the MSICU with a LOS ranging from 0 to 232 days. 
After exclusions, there were n = 7,434 patients for our 
analysis. There were n = 3,174 patients in the train-
ing set (2015−2017) and n = 4,540 in the validation 
set (2018−2021). Patient characteristics are shown in 
Supplementary Table 4 (http://links.lww.com/CCX/
B190). The data were strongly right-skewed with 65% 
of the patients having a LOS of less than 4 days, and 
2% of the patients having a LOS of more than 30 days.

Forecasting Arrivals

The average daily arrivals for the training and validation 
sets were 2.80 and 2.67. The unit root tests indicated that 
the time series is stationary. This modified the ARIMA  
to an ARMA model since the order of differencing, d, 
is set to zero. Supplementary Table 5 (http://links.lww.
com/CCX/B190) shows the RMSE for the ARMA models  
using cross-validation for time series (33) with a mov-
ing 60-day window from January 1, 2015, to December 
31, 2017. An ARMA(1, 0) (i.e., AR(1)) model was used 
for forecasting arrivals fitted with the previous 60 days. 
Supplementary Figure 1 (http://links.lww.com/CCX/
B190) shows the 1-day-ahead forecasts using AR(1) 
and MA(1) for each day in 2018. The AR(1) and MA(1) 
models outperform a fixed average approach based on 
the RMSE. For example, the mean RMSE forecasts for 
the AR(1) and fixed average approach are 1.54 and 1.65 
arrivals/d. The AR(1) has the advantage of adjusting for 
sudden increases and decreases of new patients arriving 
to the ICU.

Survival Models

The log-normal LOS model provided the best fit 
among all the survival models analyzed based on 

the residual analysis (Supplementary Figs. 2 and 3, 
http://links.lww.com/CCX/B190) and the AIC scores 
(Supplementary Table 6, http://links.lww.com/CCX/
B190). The AIC scores for the LOS models use the scor-
ing systems in addition to the other selected covariates.

The variable selection methods indicated the fol-
lowing variables are significantly associated with LOS 
in addition to MODS and NEMS: age, admission 
source, diagnosis group, scheduled surgery, ventila-
tion, and readmission A. The variables that were not 
significantly associated with LOS were sex, patient cat-
egory (medical or surgical), readmission B, and ICU 
congestion. The selected covariates ordered by impor-
tance are shown in Supplementary Figure 4 (http://
links.lww.com/CCX/B190).

The predictor variables, estimates of the coeffi-
cients, standard errors, z values, and p values for the 
log-normal LOS model are shown in Table 1. The 
likelihood ratio test indicated that the model, on the 
whole, is significantly better than one which does not 
include any covariates (p < 0.001). The concordance 
index for the model was 0.63.

Forecasting ICU Census at MSICU

The ICU census forecasts were estimated for each day 
from January 1, 2018, to December 31, 2021. The RMSE 
and MAPE ranged from 2.165 to 3.270 beds/d and 
9.4% to 13.9%, respectively. From January 1, 2018, to 
February 29, 2020, the RMSE and MAPE ranged from 
2.055 to 2.890 beds/d and 9.4% to 13.2%. Performance 
was slightly worse during the pandemic: from March 
1, 2020, to December 31, 2021, the RMSE and MAPE 
ranged from 2.288 to 3.202 beds/d and 9.4% to 14.6%.

Figure 1 shows the ICU census forecasts for 1, 3, 5, 
and 7-day planning horizons for each day of 2018. The 
curves show that as the planning horizon increases, 
the forecasts approach the observed average census. 
Supplementary Figure 5 (http://links.lww.com/CCX/
B190) shows the distributions of the forecast errors 
(observed census minus forecasted census) for pla-
nning horizons of 1–7 days.

Table 2 shows the percentage of observed ICU 
census within ± 1, 2, and 5 beds of the ICU census fore-
casts for planning horizons of 1, 3, 5, and 7 days.

We compared our census forecasting algorithm to 
a 7-day moving average forecaster and a time series 
model that forecasts ICU census. Based on the AIC 
scores and unit root tests the ARMA(2, 1) provided the 
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best fit for ICU census. Our ICU census algorithm out-
performed the 7-day moving average forecaster and 
the ARMA(2, 1) based on the performance measures 
shown in Table 3. For example, the RMSE for the mov-
ing average for 3-, 5-, and 7-day ahead forecasts from 
January 1, 2018, to December 31 2021 were 2.959, 
3.191, and 3.326 beds/day compared to our algorithm 
of 2.857, 3.132, and 3.270 beds/day.

We compared the three different forecasting meth-
ods using the Nemenyi/multiple comparisons with 
the best test (34, 35) which indicated our algorithm 

forecasts are significantly different (p < 0.01). We used 
the Diebold-Mariano test for predictive accuracy (36) 
and found that our algorithm forecasts are more ac-
curate than the moving average and the ARMA(2, 1) 
models (p < 0.01). These tests are used to determine 
which forecaster is best when the performance meas-
ures (RMSE, MAPE, etc.) are similar.

Supplementary Figures 6-9 (http://links.lww.com/
CCX/B190) show the pointwise prediction intervals 
for the ICU census forecasts for planning horizons 
1 to 7 days. As the planning horizon increases, our 

TABLE 1.
The Log-Normal Length of Stay Model

Log-Normal LOS Model (n=3,174) Coefficient se z p 

Intercept −0.382 0.122 −3.11 < 0.01

MODS 0.041 0.007 5.40 < 0.01

NEMS 0.022 0.003 6.99 < 0.01

Age     

  18–39 (reference) — — — —

  40–79 0.097 0.068 1.42 0.155

  80 and above −0.150 0.082 −1.83 0.066

Admission source     

  Emergency department (reference) — — — —

  Operating room −0.203 0.074 −2.73 < 0.01

  Other external 0.222 0.058 3.78 < 0.01

  Step-down unit 0.250 0.083 2.98 < 0.01

  Unit ward 0.065 0.063 1.03 0.301

Diagnosis Group     

  Cardiovascular (reference) — — — —

  Gastrointestinal 0.125 0.080 1.57 0.117

  Neurological 0.065 0.068 0.95 0.341

  Other 0.094 0.067 1.40 0.160

  Respiratory 0.286 0.067 4.25 < 0.01

Readmission A     

  No (reference) — — — —

  Yes 0.287 0.093 3.09 < 0.01

Scheduled surgery     

  No (reference) — — — —

  Yes −0.186 0.094 −1.98 0.042

Ventilation     

  No (reference) — — — —

  Yes 0.298 0.065 4.55 < 0.01

LOS = length of stay; MODS = Multiple Organ Dysfunction Score, NEMS = Nine Equivalents of Nursing Manpower Use Score.
Intercept, predictor variables, maximum likelihood coefficients (β), ses, z values, and p values for the Medical-Surgical ICU.
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forecasting method converges to the observed average 
daily census. However, the moving average and ARMA 
(2, 1) forecasts do not have this behavior and do not 
converge to the observed average daily census.

Validation Using CCTC Data

We tested the performance of our algorithm using data 
from the CCTC at Victoria Hospital as external val-
idation. We obtained similar results compared to the 
MSICU. From January 1, 2018, to December 31, 2021, 
the RMSE and MAPE ranged from 2.350 to 3.316 
beds/d and 3.8% to 12.8%. From January 1, 2018, to 

February 29, 2020, the RMSE and MAPE ranged from 
2.216 to 3.0 beds/d and 8.1% to 11.0%, and during the 
pandemic, March 1, 2020, to December 31, 2021, the 
RMSE and MAPE ranged from 2.403 to 3.437 beds/d 
and 9.1% to 13.5%.

Figure 2 shows the monthly RMSE of the 1-day 
ahead census forecasts for the MSICU and CCTC from 
January 1, 2018, to December 31, 2021. We found that 
the error of the forecasts increased proportionally to 
the number of COVID-19 patients in the ICU. The 
monthly RMSE for the 1, 3, 5, and 7-day ahead fore-
casts for both facilities are shown in Supplementary 
Figure 10 (http://links.lww.com/CCX/B190). As the 

Figure 1. The observed ICU census (black) and forecasted ICU census (purple) for 1-day (A), 3-day (B), 5-day (C), and 7-day (D) 
planning horizons for the  Medical-Surgical ICU in 2018. MAPE = mean absolute percentage error.

http://links.lww.com/CCX/B190
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TABLE 2.
Percentage of Observed ICU Census Within ± 1, 2, and 5 Beds of the ICU Census 
Forecasts for Planning Horizons 1, 3, 5, and 7 Days for the Medical-Surgical ICU

Percentage of Observed ICU Census 1 d 3 d 5 d 7 d Mean 

Overall: January 1, 2018, to December 31, 2021      

  ± 1 bed 36.0 29.2 27.2 26.1 28.9

  ± 2 beds 64.9 53.6 49.2 47.8 52.9

  ± 5 beds 98.2 91.8 90.1 87.5 91.4

Prepandemic: January 1, 2018, to February 29, 2020      

  ± 1 bed 38.0 31.9 27.0 26.6 30.6

  ± 2 beds 66.1 58.0 52.8 52.2 56.5

  ± 5 beds 98.7 94.2 93.3 91.1 94.1

Pandemic: March 1, 2020, to December 31, 2021      

  ± 1 bed 33.6 26.1 27.5 25.5 26.9

  ± 2 beds 63.6 48.4 45.1 42.7 48.7

  ± 5 beds 97.5 89.0 86.3 83.1 88.3

The mean percentage is for days 1–7.

TABLE 3.
Comparison of Forecasting ICU Census Models using Root Mean Square Error and Mean 
Absolute Percentage Error for the Medical-Surgical ICU

Forecasting Method 

RMSE (MAPE)

1 d 3 d 5 d 7 d Mean 

Our algorithm

  O verall: January 1, 2018, to 
December 31, 2021

2.165 (9.4) 2.857 (12.2) 3.132 (13.3) 3.270 (13.9) 2.899 (12.4)

  P repandemic: January 1, 2018, 
to February 29, 2020

2.055 (9.4) 2.580 (11.6) 2.774 (12.7) 2.890 (13.2) 2.613 (11.9)

  P andemic: March 1, 2020, to 
December 31, 2021

2.288 (9.4) 3.153 (13.0) 3.507 (14.1) 3.667 (14.6) 3.202 (13.0)

Moving average

  O verall: January 1, 2018, to 
December 31, 2021

2.544 (11.4) 2.959 (13.3) 3.191 (14.3) 3.326 (14.8) 3.022 (13.5)

  P repandemic: January 1, 2018, 
to February 29, 2020

2.255 (10.7) 2.586 (12.2) 2.760 (13.1) 2.844 (13.5) 2.626 (12.5)

  P andemic: March 1, 2020, to 
December 31, 2021

2.848 (12.3) 3.346 (14.5) 3.634 (15.7) 3.818 (16.4) 3.431 (14.8)

ARMA (2, 1)

  O verall: January 1, 2018, to 
December 31, 2021

2.047 (9.1) 2.931 (13.1) 3.283 (14.7) 3.458 (15.4) 2.977 (13.3)

  P repandemic: January 1, 2018, 
to February 29, 2020

1.911 (9.0) 2.561 (12.2) 2.803 (13.4) 2.920 (14.1) 2.584 (12.3)

  P andemic: March 1, 2020, to 
December 31, 2021

2.196 (9.2) 3.315 (14.2) 3.772 (16.2) 4.001 (17.0) 3.382 (14.4)

RMSE = root mean square error, MAPE = mean absolute percentage error.
The mean RSME and MAPE are for days 1–7.
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planning horizon increases the error of the forecasts 
also increases.

DISCUSSION

We have presented an ICU capacity planning algo-
rithm that combines time series and survival models 
to forecast ICU census over a short time horizon. We 
showed that our algorithm outperforms simple ICU 
forecasting methods based on performance measures. 
Our algorithm uses patient characteristics, including 
MODS and NEMS intensive care scoring systems. The 
combination of arrivals forecasting with survival mod-
els to predict patient LOS results in a better fit when 
compared to models based on only ICU census data 
(Table 3). Previous work has shown a link between high 
ICU census and adverse outcomes (37–39), highlight-
ing the need for tools that help to predict ICU census.

MODS and NEMS were recently analyzed as part of an 
ICU mortality study using a multivariate logistic regres-
sion model (40, 41). These scores were found to be signifi-
cantly associated with ICU mortality. We are not aware of 
studies that used MODS and NEMS for ICU LOS predic-
tion of individual patients or to forecast ICU census.

Previous studies have shown that ICU LOS mod-
els of individual patients suffer from unreliable LOS 

predictions at the patient level, being more useful for 
benchmarking purposes. One explanation is that many 
factors influence LOS, and parametric LOS models are 
only able to include a subset of those factors. Indeed, 
the goodness of fit measures on some previous re-
gression models suggests that only 5-20% of the var-
iation in LOS is explained by the models (13, 14). A 
second explanation is that the empirical LOS distri-
bution for ICU patients is very highly skewed, with 
most patients leaving within a few days, and a small 
number staying for a very long time. This was true in 
our sample where 65% of patients had LOS < 4 days, 
and 2% had LOS > 30 days. We used a log-normal sur-
vival model to account for the skewed nature of ICU 
LOS, and we showed that aggregating the LOS prob-
abilities of existing and future patients can result in 
accurate forecasts of census. The literature contains 
a limited number of mathematical models to predict 
future patient census in ICUs. Capan et al (42). pro-
posed and compared ARIMA and linear regression 
models to predict future neonatal ICU (NICU) census. 
They found that time series models performed better 
than a fixed average census approach. Koestler et al 
(43). proposed an ensemble-based methodology for 
forecasting hospital census. Using the current census 
count and the number of daily arrivals and departures 

Figure 2. The monthly root mean square error (RMSE) for the 1-day ahead census forecasts for the Medical-Surgical ICU and Critical 
Care Trauma Centre facilities from January 1, 2018, to December 31, 2021.
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from a neonatal ICU (NICU), they showed how a sea-
sonality-adjusted Poisson autoregressive (PAR) model 
substantially improves census forecasts. An ARIMA 
was applied to ICU data to predict long-term demand 
in Australia and New Zealand (44). A real-time LOS 
model based on a network of infinite server queues 
driven by a Poisson Arrival Location Model (PALM) 
was developed to support ICU and ward capacity man-
agement during the first peak of COVID-19 in the 
Netherlands (45). Nguyen et al developed a time series 
model to forecast COVID-19 hospital census in a col-
lection of hospitals in North Carolina (46).

Our proposed forecasting algorithm differs from 
other studies that forecast ICU census. Unlike the 
linear regression models with time series predictors 
proposed by Capan et al (42)., survival models have 
the advantage of providing unique ICU LOS prob-
ability functions for each patient that can be pooled 
to forecast ICU census among those present. In addi-
tion, Capan et al (42). and Koestler et al (43) forecast-
ing methods were based on data from NICU facilities 
which may differ significantly from adult ICU. Baas 
et al (45) proposed a simulation method specifically 
designed to forecast ICU census with a focus on the 
maximum census during the COVID-19 pandemic 

whereas our model was developed for the purpose of 
forecasting daily ICU census in a nonepidemic envi-
ronment absent of extreme increases in ICU admis-
sions. Corke et al (44) proposed a model designed to 
predict long-term ICU demand. In contrast, our fore-
casting algorithm focuses on short-term planning by 
combining time series and survival models to forecast 
ICU census over a 7-day planning horizon. We are not 
aware of any algorithms designed to forecast adult ICU 
census by combining time series and survival models, 
nor are we aware of any census forecasting tools that 
make use of NEMS and MODS.

Other papers have attempted to forecast patient 
census (9, 42–46). We are not able to directly compare 
algorithms (e.g., by using another algorithm with our 
data set) because either the setting is different (e.g., 
NICU vs ICU) or the independent variables are dif-
ferent. However, we can compare the reported per-
formance measures shown in Table 4. The RMSE and 
MAPE values produced by our algorithm compare fa-
vorably to those produced by other census forecasting 
methods.

Our study has limitations. The LOS predictions 
of individual patients with long stays are underesti-
mated, which could affect model performance when 

TABLE 4.
Comparison of Forecasting ICU Census Models with Root Mean Square Error and Mean 
Absolute Percentage Error

Authors 

RMSE (MAPE)

1 d 3 d 5 d 7 d
Mean 

(1–7 d) 

Our algorithm 2.055 (9.4) 2.580 (11.6) 2.774 (12.7) 2.890 (13.2) 2.613 (11.9)

Koestler—w/patient information (2.00) (3.44) (4.35) (5.12) —

Koestler—without patient info (2.30) (4.93) (7.14) (7.18) —

Tello—with weekend 4.36 (3.81) for 1-d ahead, 5.77 (4.89) for 2-d ahead

Tello—without weekend 7.41 (6.15) for 1-d ahead, 14.1 (11.59) for 2-d ahead

Nguyen—multivariate time series (5.9)–(13.4) for 1-d ahead

 January 14–20, 2013 April 1–7, 2013 May 3–9, 2013 Mean of all predictions

Capan—fixed mean 12.294 (19.2) 7.681 (18.0) 2.035 (3.8) 6.772 (11.9)

Capan—ARIMA (1, 0, 0) 4.016 (5.6) 3.636 (8.0) 3.662 (5.9) 3.775 (7.4)

Capan—ARIMA (1, 0, 0) x (1, 1, 2) 7 3.420 (4.2) 4.288 (9.8) 3.618 (6.2) 3.686 (7.3)

Capan—ARIMA (2,1,4) x (1, 1, 2) 14 3.211 (3.9) 3.462 (7.8) 3.912 (6.7) 4.090 (8.1)

Capan—linear regression 5.149 (7.5) 2.755 (5.9) 3.331 (6.3) 3.622 (7.1)

ARIMA = autoregressive integrated moving average, RMSE = root mean square error, MAPE = mean absolute percentage error.
The mean RSME and MAPE are for days 1–7.
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predicting LOS for patients who have already spent 
a long time in the ICU. One possible way to im-
prove long-stay ICU LOS predictions is to develop 
an updating model that incorporates time-varying 
covariates, such as NEMS, which is commonly re-
corded daily. The implementation of time-varying 
covariates would allow the opportunity to improve 
the census forecasts most importantly as the pla-
nning horizon increases. Patient characteristics 
not present in our data set may have improved our 
forecasting model by allowing for the development 
of better-fitting survival models for patients in the 
ICU on the day of the census forecast. Finally, the 
data used to develop the algorithm was entirely col-
lected before the COVID-19 pandemic. Future work 
will focus on making model adjustments to include 
factors related to the arrival rate and LOS of COVID-
19 patients. The study described in the current paper 
will serve as a useful benchmark for comparison in 
future work.

CONCLUSIONS

The combination of ARIMA time series modeling 
and survival models of LOS enables forecasting of 
ICU census over short time horizons. This type of al-
gorithm may be important to clinicians and manag-
ers when planning ICU capacity as well as staffing and 
surgical demand planning.
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