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Abstract: The ubiquitin system modulates protein functions by decorating target proteins with
ubiquitin chains in most cases. Several types of ubiquitin chains exist, and chain type determines the
mode of regulation of conjugated proteins. LUBAC is a ubiquitin ligase complex that specifically
generates N-terminally Met1-linked linear ubiquitin chains. Although linear ubiquitin chains are
much less abundant than other types of ubiquitin chains, they play pivotal roles in cell survival,
proliferation, the immune response, and elimination of bacteria by selective autophagy. Because linear
ubiquitin chains regulate inflammatory responses by controlling the proinflammatory transcription
factor NF-κB and programmed cell death (including apoptosis and necroptosis), abnormal generation
of linear chains can result in pathogenesis. LUBAC consists of HOIP, HOIL-1L, and SHARPIN;
HOIP is the catalytic center for linear ubiquitination. LUBAC is unique in that it contains two
different ubiquitin ligases, HOIP and HOIL-1L, in the same ligase complex. Furthermore, LUBAC
constitutively interacts with the deubiquitinating enzymes (DUBs) OTULIN and CYLD, which cleave
linear ubiquitin chains generated by LUBAC. In this review, we summarize the current status of
linear ubiquitination research, and we discuss the intricate regulation of LUBAC-mediated linear
ubiquitination by coordinate function of the HOIP and HOIL-1L ligases and OTULIN. Furthermore,
we discuss therapeutic approaches to targeting LUBAC-mediated linear ubiquitin chains.

Keywords: ubiquitin; linear ubiquitin chains; LUBAC; HOIL-1L; HOIP; OTULIN; NF-κB; cell death;
selective autophagy; cancer

1. Introduction

Ubiquitin is a 76 amino acid (8.6 kDa) globular protein that is highly conserved in
eukaryotic kingdoms. To exert its functions, ubiquitin must be conjugated to proteins
via a cascade of reactions catalyzed by three types of enzymes: a ubiquitin-activating en-
zyme (E1), a ubiquitin-conjugating enzyme (ubiquitin carrier protein) (E2), and a ubiquitin
ligase (E3) (Figure 1) [1]. The ubiquitin system was originally identified as part of an
energy-dependent protein degradation system [1–3]. However, non-degradable roles of
the ubiquitin system were first identified in 1995 [4], and we now know that the ubiqui-
tin system is a sophisticated, reversible, post-translational protein modification system
involved in the regulation of various physiological processes such as cell cycle, apoptosis,
DNA repair, and signal transduction, in addition to protein degradation [5–8] (Figure 1).
The most important feature of the ubiquitin system is that ubiquitin can be attached not
only to its substrates but also to other ubiquitin molecules, thereby generating ubiquitin
chains [5].
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Figure 1. The ubiquitin system. Ubiquitin is conjugated to target proteins via E1 (ubiquitin-activating 
enzyme), E2 (ubiquitin-conjugating enzyme), and E3 (ubiquitin ligase) activities, leading to the conju-
gation of ubiquitin to substrates recognized by E3s. First, ubiquitin is conjugated onto a substrate, fol-
lowed by the conjugation of ubiquitin moieties onto the distal end of the ubiquitin chain. Ubiquitina-
tion of proteins regulates various cellular functions depending on the type of ubiquitin linkage. Finally, 
ubiquitins are removed by deubiquitinases (DUBs), and ubiquitin monomers newly trimmed by DUBs 
are integrated into the ubiquitin pool to be used for ubiquitination of other proteins. 

In most cases, the ubiquitin system modulates protein functions by decorating target 
proteins with ubiquitin chains. Several types of ubiquitin chains exist in cells. Previous 
work showed that ubiquitin chains are generated by adding ubiquitin to one of seven Lys 
(K) residues (K6, K11, K27, K29, K33, K48, and K63) on a ubiquitin molecule conjugated 
to a protein [5,9] (Figure 2). Because ubiquitin chains exert their functions by being recog-
nized by binding proteins specific for each type of chain, the ubiquitin system can modu-
late protein functions in many ways. In 2006, Kirosako et al. firstly identified a novel linear 
ubiquitin chain that can be generated via the N-terminal Met (M) of ubiquitin [10–13]. 

Figure 1. The ubiquitin system. Ubiquitin is conjugated to target proteins via E1 (ubiquitin-activating
enzyme), E2 (ubiquitin-conjugating enzyme), and E3 (ubiquitin ligase) activities, leading to the
conjugation of ubiquitin to substrates recognized by E3s. First, ubiquitin is conjugated onto a
substrate, followed by the conjugation of ubiquitin moieties onto the distal end of the ubiquitin chain.
Ubiquitination of proteins regulates various cellular functions depending on the type of ubiquitin
linkage. Finally, ubiquitins are removed by deubiquitinases (DUBs), and ubiquitin monomers newly
trimmed by DUBs are integrated into the ubiquitin pool to be used for ubiquitination of other proteins.

In most cases, the ubiquitin system modulates protein functions by decorating target
proteins with ubiquitin chains. Several types of ubiquitin chains exist in cells. Previous
work showed that ubiquitin chains are generated by adding ubiquitin to one of seven Lys
(K) residues (K6, K11, K27, K29, K33, K48, and K63) on a ubiquitin molecule conjugated to a
protein [5,9] (Figure 2). Because ubiquitin chains exert their functions by being recognized
by binding proteins specific for each type of chain, the ubiquitin system can modulate
protein functions in many ways. In 2006, Kirosako et al. firstly identified a novel linear
ubiquitin chain that can be generated via the N-terminal Met (M) of ubiquitin [10–13].

In addition to ubiquitin chains composed of homologous linkages, heterotypic ubiqui-
tin chains contain different linkage types; in addition, recent work showed that ubiquitin
itself undergoes post-translational modification via phosphorylation, acetylation, sumoy-
lation, and neddylation [14–20]. These findings further expanded the known roles of
ubiquitin modifications. Cleavage of ubiquitin chains by deubiquitylating enzymes (DUBs)
can terminate signals generated by ubiquitin conjugations. Thus, elucidating the mech-
anisms that underlie the ligation, recognition, and removal of ubiquitin chains is key to
understanding ubiquitin chain functions [21].

In this review, we focus on N-terminally M1-linked linear ubiquitin chains, which
are specifically generated by the linear ubiquitin chain assembly complex (LUBAC), the
only E3 enzyme capable of generating such chains (Figure 3). Although linear ubiquitin
chains are much less abundant than other types of ubiquitin chains, they play pivotal
roles in cell survival, proliferation, the immune response, and elimination of bacteria by
selective autophagy [11]. We will discuss therapeutic approaches that target LUBAC-
mediated linear ubiquitin chains because abnormal generation of linear chains can result in
pathogenesis [22]. In addition, we will discuss the intricate regulation of LUBAC-mediated
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linear ubiquitination via the coordinated function of ligases and DUBs [23], which provides
new aspects in regulation of LUBAC functions.
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Figure 2. Complexity in the ubiquitin code. Eight types of homotypic ubiquitin linkages are known 
to exist: M1, K6, K11, K27, K29, K33, K48, and K63. Furthermore, mono-ubiquitination, post-trans-
lational modification of ubiquitin itself, and heterotypic ubiquitin chains containing different link-
age types have recently been identified. 
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Figure 2. Complexity in the ubiquitin code. Eight types of homotypic ubiquitin linkages are known
to exist: M1, K6, K11, K27, K29, K33, K48, and K63. Furthermore, mono-ubiquitination, post-
translational modification of ubiquitin itself, and heterotypic ubiquitin chains containing different
linkage types have recently been identified.

Cells 2021, 10, 2706 4 of 20 
 

 

 
Figure 3. Schematic representation of the LUBAC ubiquitin ligase complex. LUBAC is composed of HOIL-1L, HOIP, and 
SHARPIN. HOIP interacts with the UBL domains of the other two components. The UBL domains of HOIL-1L interact 
with the UBA2 domain of HOIP, and SHARPIN UBL interacts with HOIP UBA1. Furthermore, both HOIL-1L and 
SHARPIN have LTM domains that fold into a single globular domain. 

2. Biochemistry of Linear Ubiquitin Chains 
2.1. Linear Ubiquitin Chains Are Generated Specifically by the LUBAC Ligase Complex 

The LUBAC E3 is composed of three subunits: HOIL-1L (large isoform of heme-oxi-
dized iron regulatory protein2 (IRP2) ubiquitin ligase 1), HOIP (HOIL-1L interacting pro-
tein), and SHARPIN (SHANK-associated RH domain-interacting protein) [22,24–26] (Fig-
ure 3). LUBAC is unique because it contains two distinct RING-in-between-RING (RBR)-
type ubiquitin ligase centers, one each in HOIP and HOIL-1L, within the same ubiquitin 
ligase complex. The RBR-type ubiquitin ligases recognize ubiquitin-bound E2 at their 
RING1 domain, transfer ubiquitin from E2 to a conserved cysteine (Cys) residue in the 
RING2 domain, and ultimately transfer it to substrate proteins or acceptor ubiquitin, 
thereby generating ubiquitin chains [27]. Of the two RBR centers in LUBAC, the RBR of 
HOIP is the catalytic center for linear ubiquitination. HOIP contains the linear ubiquitin 
chain-determining domain (LDD), located C-terminal to RING2, which is critical for linear 
ubiquitination. HOIP recognizes a ubiquitin moiety in the LDD domain that facilitates the 
transfer of ubiquitin from the conserved Cys in RING2 (Cys885 or Cys879 in human or 
mouse HOIP, respectively) to the α-amino group of the acceptor ubiquitin to form a linear 
linkage [28,29]. The RBR of HOIL-1L also has ubiquitin ligase activity; its roles in LUBAC 
will be discussed in Section 5. 
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To exert their functions, post-translational modifications must be recognized by 
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essential modulator (NEMO) (also known as IKKγ); optineurin (OPTN) and A20-binding 
inhibitors of NF-κB (ABIN), including ABIN-1, ABIN-2, and ABIN-3; the NZF domain in 
HOIL-1L; and the seventh zinc finger (ZF7) domain in A20 (also called TNFAIP3) [30–33]. 
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Figure 3. Schematic representation of the LUBAC ubiquitin ligase complex. LUBAC is composed of HOIL-1L, HOIP, and
SHARPIN. HOIP interacts with the UBL domains of the other two components. The UBL domains of HOIL-1L interact with
the UBA2 domain of HOIP, and SHARPIN UBL interacts with HOIP UBA1. Furthermore, both HOIL-1L and SHARPIN
have LTM domains that fold into a single globular domain.

2. Biochemistry of Linear Ubiquitin Chains
2.1. Linear Ubiquitin Chains Are Generated Specifically by the LUBAC Ligase Complex

The LUBAC E3 is composed of three subunits: HOIL-1L (large isoform of heme-
oxidized iron regulatory protein2 (IRP2) ubiquitin ligase 1), HOIP (HOIL-1L interacting
protein), and SHARPIN (SHANK-associated RH domain-interacting protein) [22,24–26]
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(Figure 3). LUBAC is unique because it contains two distinct RING-in-between-RING
(RBR)-type ubiquitin ligase centers, one each in HOIP and HOIL-1L, within the same
ubiquitin ligase complex. The RBR-type ubiquitin ligases recognize ubiquitin-bound E2 at
their RING1 domain, transfer ubiquitin from E2 to a conserved cysteine (Cys) residue in
the RING2 domain, and ultimately transfer it to substrate proteins or acceptor ubiquitin,
thereby generating ubiquitin chains [27]. Of the two RBR centers in LUBAC, the RBR of
HOIP is the catalytic center for linear ubiquitination. HOIP contains the linear ubiquitin
chain-determining domain (LDD), located C-terminal to RING2, which is critical for linear
ubiquitination. HOIP recognizes a ubiquitin moiety in the LDD domain that facilitates the
transfer of ubiquitin from the conserved Cys in RING2 (Cys885 or Cys879 in human or
mouse HOIP, respectively) to the α-amino group of the acceptor ubiquitin to form a linear
linkage [28,29]. The RBR of HOIL-1L also has ubiquitin ligase activity; its roles in LUBAC
will be discussed in Section 5.

2.2. Readers for Linear Ubiquitin Chains

To exert their functions, post-translational modifications must be recognized by bind-
ing proteins called “readers”. Because the type of ubiquitin chain determines the mode
of protein regulation, ubiquitin linkages must be decoded by specific binding proteins
in order to mediate their specific functions (Figure 4). To date, several domains have
been identified as specific binders of linear ubiquitin chains: the UBAN domain in NF-κB
essential modulator (NEMO) (also known as IKKγ); optineurin (OPTN) and A20-binding
inhibitors of NF-κB (ABIN), including ABIN-1, ABIN-2, and ABIN-3; the NZF domain in
HOIL-1L; and the seventh zinc finger (ZF7) domain in A20 (also called TNFAIP3) [30–33].
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Figure 4. “Readers” of ubiquitin signals. Ubiquitin chains are decoded by specific binding proteins, “readers”, to mediate
the specific functions according to each type of ubiquitin linkage.

Among UBAN proteins, the most extensively studied is NEMO, a crucial regulator of
the IκB kinase (IKK) complex [13]. Although NEMO UBAN was once thought to interact
with K63-linked ubiquitin chains, it has a much higher affinity for linear ubiquitin chains.
The NEMO UBAN binds to the hydrophobic patches centered at Ile44 and Phe4 of the distal
and proximal parts of linear ubiquitin, respectively [30,34,35]. Recognition of linear chains
by the UBAN domain of NEMO is critical for IKK activation, which induces canonical
NF-κB activation [36].

The ABIN family consists of ABIN1 (also called TNIP1), ABIN2, and ABIN3, which
are negative regulators of NF-κB signaling [37]. These proteins are involved in regulation
of multiple signal transduction pathways including those involved in apoptosis, virus
replication, and cancer progression. The crystal structures of the UBAN domains in
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ABIN1 and ABIN2 in complex linear ubiquitin chains have been solved [38,39]. Single-
nucleotide polymorphisms (SNPs) of ABIN1 are associated with autoimmune disorders
such as systemic lupus erythematous (SLE), Sjogren syndrome, systemic scleroderma, and
psoriasis [40–43]. Furthermore, in mice, loss of the ubiquitin-binding activity of ABIN1
(ABIN1 D485N) or ABIN1 itself causes glomerulonephritis, which is characteristic of lupus
nephritis with a high titer of pathogenic autoantibodies, including anti-nuclear and anti-
double-stranded DNA antibodies. These observations imply that linear ubiquitination is
involved in the pathogenesis of autoimmune disorders, especially SLE [44–48].

OPTN, a selective autophagy receptor, also interacts with linear chains specifically via
its UBAN domain. OPTN recognizes linearly ubiquitinated cellular components such as
impaired mitochondria or intracellular pathogens, including Salmonella, and eliminates
them through OPTN-mediated autophagy. OPTN is also a causative gene for amyotrophic
lateral sclerosis (ALS) and primary open-angle glaucoma (POAG) [49,50]. Moreover, ALS-
associated OPTN mutants lose their ability to suppress NF-κB activation, mainly due to
dysfunction of the UBAN domain in OPTN [51].

The HOIL-1L NZF domain, which specifically binds linear ubiquitin chains, is crucial
for LUBAC-mediated canonical NF-κB activation [31]. A20 has a ZF7 domain, which
specifically recognizes linear ubiquitin chains, and this part of the protein is indispensable
for inhibition of LUBAC-mediated NF-κB activation [32].

2.3. Deubiquitinating Enzymes of Linear Ubiquitin Chains

Cleavage of ubiquitin chains conjugated to target proteins by deubiquitinating en-
zymes (DUBs) ceases the signaling elicited by ubiquitin chains [52,53] (Figure 1). In most
reversible protein modification systems, such as phosphorylation, removing enzymes cut
out modifiers from proteins, whereas some DUBs do not cleave whole ubiquitin modi-
fications from proteins. More than 90 DUBs have been identified in humans, and some
of these enzymes do indeed cleave whole ubiquitin modifications from proteins [52,53].
However, the ubiquitin system has a unique property: conjugation of ubiquitin chains
regulates protein functions. Accordingly, DUBs that cleave specific inter-ubiquitin linkages,
but not linkages between ubiquitin and substrate proteins, have been identified [52–54].

OTU deubiquitinase with linear linkage specificity (OTULIN) (also called FAM105B or
Gumby) and cylindromatosis (CYLD) cleave linear ubiquitin chains, and both DUBs interact
with LUBAC via the PUB domain of HOIP [55,56]. However, the binding systems differ
in that OTULIN directly binds to HOIP via the PIM motif of OTULIN [55,57,58], whereas
CYLD interacts with HOIP through spermatogenesis-associated 2 (SPATA2) [59–62]. Since
both DUBs binds to the identical domain, the interaction should be mutually exclusive.
However, further studies will be needed to elucidate precise binding modes of the two
DUBs.

OTULIN is a DUB that specifically cleaves only inter-linear-ubiquitin linkages, but
not substrate–ubiquitin bonds. In general, DUBs counteract ubiquitin ligases by cleaving
ubiquitin chains. In other words, ubiquitin ligases turn the signal on, and then DUBs turn
the signal off; however, OTULIN augments, but does not suppress, signals generated by
linear ubiquitin chains [23,63]. The precise mechanism underlying this augmentation will
be discussed in Section 5.

CYLD was identified as a DUB that specifically cleaves K63-linked chains, but it can
also digest linear linkages. CYLD is the product of the causative gene in human cylindro-
matosis, a condition associated with multiple benign skin tumors [64], and is involved
in the regulation of NF-κB activation [65,66]. Although the precise functions of CYLD in
linear ubiquitination remain unknown, the absence of CYLD does not overtly increase the
amount of linear ubiquitin chains; by contrast, the absence of OTULIN drastically increases
the abundance of linear chains [67].
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3. Structural Insights Regarding the LUBAC Ligase Complex

Recent advances in the structure of LUBAC are discussed in this section. Among three
subunits of LUBAC, HOIP is the catalytic center for linear ubiquitination, whereas HOIL-1L
and SHARPIN are also involved in the stabilization of the complex (Figure 3) [68]. In cells
lacking HOIL-1L or SHARPIN, the amount of HOIP is drastically reduced because the
complex is destabilized, leading to a significant decrease in the formation of linear ubiquitin
chains. HOIP interacts with the ubiquitin-like (UBL) domains of the other two components.
The UBL domains of HOIL-1L interact with the ubiquitin-associated (UBA) 2 domain of
HOIP, and SHARPIN UBL interacts with HOIP UBA1 [68]. In addition to the interactions
between HOIP and the other two subunits, recent biochemical and structural analyses
revealed that the interaction between HOIL-1L and SHARPIN plays a pivotal role in
stabilizing the trimeric LUBAC complex. Both HOIL-1L and SHARPIN have homologous
LUBAC-tethering motifs (LTMs), consisting mainly of α-helices, N-terminal to their UBA
domains. Surprisingly, the LTMs fold into a single globular domain [68]. Mutation or loss of
the LTMs drastically destabilizes the complex, implying that LTM-mediated dimerization
is critical for stabilizing LUBAC, possibly by folding into a single stable globular domain.

4. Physiological Functions of Linear Ubiquitin Chains
4.1. NF-κB Activation

LUBAC-mediated linear ubiquitination plays crucial roles in NF-κB activation and
protection from programmed cell death [30,69,70] (Figure 5). First, we will discuss the
molecular mechanism underlying NF-κB activation. NF-κB is a dimeric transcription
factor consisting of five Rel homology domain (RHD)-containing proteins, including RelA
(p65), RelB, c-Rel, p105/p50 (NF-κB1), and p100/p52 (NF-κB2). NF-κB is involved in a
wide range of pivotal biological functions, including proliferation, the immune response,
inflammation, and cell survival, and acts by binding to NF-κB-responsive elements referred
to as κB sites [71]. Aberrant activation of NF-κB contributes to immunological disorders and
oncogenesis [71–73]. Two pathways for NF-κB activation have been described, canonical
and non-canonical; LUBAC participates in the former pathway [13].

The canonical NF-κB pathway is triggered by various stimuli such as TNF-α, IL-1β,
CD40 ligand (CD40L), and ligands of Toll-like receptors (TLRs) [71]. LUBAC-mediated
NF-κB activation has been extensively studied in TNF-α signaling [13] (Figure 5). Binding
of TNF-α to TNF-receptor 1 (TNFR1) induces trimerization of TNFR and a conformational
change in the intracellular death domain (DD) of TNFR1, which triggers recruitment
of TNFR-associated death domain (TRADD) and receptor interacting serine/threonine-
protein kinase 1 (RIPK1) to TNFR1 via direct interactions between the DDs. Next, TNF-
receptor associated factor 2 (TRAF2) and cellular inhibitor of apoptosis proteins 1 and 2
(cIAP1/2) are recruited to TNFR1 to form TNFR-complex-I [11]. In the TNFR-complex-I,
the cIAP ubiquitin ligases conjugate K63-linked ubiquitin chains to components of the
TNFR-complex-I [11,12]. LUBAC is recruited to the TNFR-complex-I via recognition of
K63 chains on the TNFR1 complex with the NZF domains of HOIP and SHARPIN [36,74].
LUBAC also recruits NEMO (the regulatory component of the IKK complex, which also
contains IKK1 and IKK2) to TNFR-complex-I via recognition by the HOIP NZF1 domain
and conjugates linear ubiquitin chains to NEMO [36]. Because the UBAN domain of NEMO
interacts with linear chains with high affinity [34,75], the linear ubiquitin chains conjugated
to NEMO are recognized by another NEMO, leading to activation of IKK2 via dimerization
and trans-autophosphorylation of kinases in different IKK complexes, ultimately resulting
in phosphorylation of inhibitor of κBα (IκBα) [71]. Phosphorylated IκBα is recognized by
the SCFβTrCP ubiquitin ligase, which conjugates K48-linked ubiquitin chains that target the
protein for degradation by the proteasome [13]. The canonical NF-κB transcription factors
then translocate into the nucleus and activate NF-κB target genes [71].
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4.2. Cell Death Protection

LUBAC-mediated linear ubiquitination is also involved in protection from
programmed cell death, including apoptosis and necroptosis induced by death receptors
such as TNFR1 [76] (Figure 5). In TNF-α signaling, the death-inducible TNFR-complex-II,
which consists of RIPK1, RIPK3, FAS-associated death domain protein (FADD), TRADD,
and caspase-8 can be formed to trigger both apoptosis and necroptosis. LUBAC-mediated
linear ubiquitination plays crucial roles in inhibition of TNFR-complex-II formation by
conjugating linear chains to several components including RIPK1 and TNFR1 [77]. Al-
though the precise mechanism underlying the conjugation of linear chains to proteins
of TNFR-complex-I remains unclear, the process may involve a mixture of M1 and K63
chains, which are involved in the NF-κB activation pathway [78]. LUBAC can generate
linear ubiquitin linkages by conjugating ubiquitin on the conserved Cys residue in RING2
to the α-amino group of ubiquitin recognized by the LDD domain [28,29]. Because the
distal moiety of the K63 chain can be readily recognized by the LDD domain, K63 chains
conjugated to proteins in TNFR-complex-I can act as a platform to conjugate linear chains
to TNFR-complex-I to inhibit the formation of TNFR-complex-II.

5. Regulation of Linear Ubiquitination Activity of LUBAC

LUBAC, which generates linear ubiquitin chains, interacts with OTULIN, which elim-
inates them [55] (Figure 3). In addition to the HOIP E3 ligase center, which generates linear
chains, LUBAC has another E3 center in HOIL-1L. Recent studies revealed the intricate
regulation of LUBAC by the coordinated functions of HOIL-1L, HOIP, and OTULIN [23,63].
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Conjugation of linear ubiquitin chains to all LUBAC subunits (auto-linear ubiquitina-
tion) inhibits the linear ubiquitination to other substrates (trans-linear ubiquitination) [63].
OTULIN maintains the linear ubiquitination activity of LUBAC by pruning the linear
chains by binding to LUBAC via the HOIP PUB domain. The mechanism underlying auto-
linear ubiquitination of LUBAC remains unknown, but functional analyses of HOIL-1L E3
have provided a clue. Fuseya et al. realized that mutations of the catalytic Cys residues of
HOIL-1L RBR eliminated a slower-migrating HOIL-1L signal in immunoblots [23]. Further
dissection revealed that HOIL-1L E3 mono-ubiquitinates all subunits of LUBAC. Because
HOIP preferentially recognizes ubiquitin at the C-terminal LDD domain and conjugates
ubiquitin to the α-amino group of the N-terminus of ubiquitin [28,29], ubiquitin conju-
gated to LUBAC subunits by HOIL-1L provides suitable substrates for the HOIP RBR,
allowing conjugation of linear chains to LUBAC (auto-linear ubiquitination). Indeed, loss
of E3 activity of HOIL-1L suppresses auto-linear ubiquitination of LUBAC almost com-
pletely and dramatically increases linear ubiquitination of target proteins (trans-linear
ubiquitination) [23] (Figure 6).
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Figure 6. Regulation of the linear ubiquitination activity of LUBAC by HOIP, HOIL-1L, and OTULIN. HOIL-1L mono-
ubiquitinates all LUBAC subunits (HOIL-1L, HOIP, and SHARPIN), and HOIP further conjugates linear ubiquitin chains to
mono-ubiquitin, which is conjugated to LUBAC by HOIL-1L. OTULIN counteracts auto-linear ubiquitination of LUBAC.
Loss of mono-ubiquitination of LUBAC following deletion of HOIL-1L E3 profoundly suppresses auto-linear ubiquitination
of LUBAC and increases its linear ubiquitination activity towards substrates, activating the LUBAC functions of NF-κB
activation and protecting against cell death.

Recently, Kelsall et al. showed that HOIL-1L can catalyze the formation of an oxy-ester
bond between the C-terminal carboxyl group of ubiquitin and the hydroxyl groups of Serine
(Ser) and/or Threonine (Thr) residues of substrate proteins [79,80]. However, HOIL-1L can
mono-ubiquitinate a Lys residue in an artificial FLAG-tag added to N-terminus of HOIL-
1L and that auto-linear ubiquitination of the Lys residue suppresses LUBAC functions,
clearly indicating that auto-linear ubiquitination inhibits LUBAC function regardless of
the position of the linearly ubiquitinated residues, including any Lys or Ser/Thr residues
in LUBAC [23]. Some ubiquitin ligases, such as RNF213 and MycBP2 (also known as
PHR1), are also able to catalyze the formation of an oxy-ester bond [81,82]. RNF213
directly conjugates ubiquitin to a non-proteinaceous substrate, the lipid A moiety of
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bacterial lipopolysaccharide (LPS), via formation of an oxy-ester bond [81]. Thus, oxy-ester
ubiquitination may not be a unique feature of HOIL-1L, and the field awaits analyses of
the physiological functions of oxy-ester ubiquitination.

Fuseya et al. clearly demonstrated the intricate regulation of the linear ubiquitination
activity of LUBAC [23]. HOIL-1L E3 mono-ubiquitinates all LUBAC subunits, thereby
facilitating HOIP-mediated conjugation of linear chains to LUBAC by providing a suitable
substrate (i.e., ubiquitin) for HOIP E3, leading in turn to suppression of LUBAC functions.
OTULIN counteracts these effects by cleaving linear chains from the LUBAC complex.
Because LUBAC functions must be tightly regulated in cells, the main catalytic activity
(HOIP E3) is regulated by the coordinated functions of the accessory E3 in the ligase com-
plex (HOIL-1L) and DUB (Figure 6). It is very curious that auto-linear ubiquitination of
LUBAC elicited by HOIL-1L E3 suppresses linear ubiquitination of target proteins. The
molecular mechanism is currently unknown, but we speculate that auto-linear ubiquitina-
tion may cause HOIP RBR to preferentially recognize LUBAC itself as cis-targets over other
substrates (trans-targets) for linear ubiquitination, which leads to suppression of LUBAC
functions.

LUBAC is also regulated by cleavage of HOIL-1L [83–85]. HOIL-1L is cleaved by a
paracaspase, mucosa-associated lymphoid tissue lymphoma translocation gene 1 (MALT1).
MALT1, which removes HOIL-1L RBR domain from LUBAC by cleaving HOIL-1L between
Arg165 and Gly166, is activated in most activated B-cell-like diffuse large B-cell lymphoma
(ABC-DLBCL) [85]. The loss of E3 activity of HOIL-1L augments LUBAC functions, and
that augmented LUBAC activity is associated with the pathogenesis of ABC-DLBCL [86,87].
Thus, MALT1-mediated cleavage of HOIL-1L might augment the functions of LUBAC,
which plays critical roles in lymphomagenesis or resistance to chemotherapeutic agents.

6. LUBAC and Infections
6.1. LUBAC and Salmonella Infections

Recent work showed that LUBAC plays mandatory roles in elimination of pathogens
such as Salmonella spp. [88–91]. Salmonella are Gram-negative, facultative, intracellular
pathogens that invade host epithelial cells and macrophages [90] (Figure 7). In the early
stage of infection, the invading bacteria reside in Salmonella-containing vacuoles (SCVs).
After several hours, the SCVs rupture and Salmonella are exposed to the host cytosol,
in which they can proliferate. However, cytosolic Salmonella are decorated by ubiquitin
chains and targeted for autophagy (xenophagy) [90]. LUBAC is recruited to Salmonella by
recognizing ubiquitin chains on the bacteria and then conjugates linear ubiquitin chains to
the pre-existing ubiquitins. The resultant ubiquitin chains serve as a signaling platform.
Linear ubiquitin chains on Salmonella recruit optineurin (OPTN) and induce xenophagy,
ultimately leading to elimination of the bacteria [88,92].

Like NEMO, OPTN has a UBAN domain that selectively recognizes linear- and K63-
ubiquitin chains [93]. Linear chains on Salmonella are also recognized by NEMO, which
activates the IKK complex and NF-κB [88,89].

Loss of HOIL-1L E3 activity augments generation of linear ubiquitin chains by LUBAC
and efficiently restricts proliferation of Salmonella as well as infection-induced cell death.
Furthermore, in cells expressing a HOIL-1L mutant lacking E3 activity, high levels of linear
ubiquitin chains conjugated onto Salmonella strongly activate NF-κB [23], implying that
attenuation of HOIL-1L E3 activity is a promising therapeutic target for eliminating such
bacterial pathogens by augmenting LUBAC functions.
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Figure 7. Mechanism underlying clearance of the intracellular pathogen Salmonella by LUBAC-
mediated generation of linear ubiquitin chains. Salmonella invades epithelial cells; in the early phase
of infection, the bacteria reside in Salmonella-containing vacuoles (SCVs). After several hours, the
SCVs rupture and the Salmonella are exposed to the host cytosol. RNF213 directly conjugates ubiquitin
to cytosolic Salmonella. Ubiquitination of Salmonella by RNF213 results in recruitment of LUBAC,
which conjugates additional linear ubiquitin chains onto the ubiquitin added to the bacteria by
RNF213. Linear chains conjugated by LUBAC restrict Salmonella proliferation by inducing xenophagy
and NF-κB activation.

As mentioned above, LUBAC is recruited to Salmonella by recognition of pre-existing
ubiquitin coats on bacteria. Although the proteins that contribute to the initial step, the bac-
terial molecule modified by ubiquitin, and the enzyme that directly ubiquitinates Salmonella
have not been identified, recent work showed that RNF213 conjugates the first ubiquitin
to bacteria [81] (Figure 7). Surprisingly, RNF213 directly conjugates ubiquitin to a non-
proteinaceous substrate, the lipid A moiety of bacterial lipopolysaccharide (LPS). RNF213
is the largest known human E3 ligase (almost 600 kDa) and is the major susceptibility
gene for moyamoya disease [94–96], a cerebrovascular disorder that is characterized by
bilateral stenosis of the supraclinoid internal carotid artery and abnormal formation of
collateral vessels. Ubiquitination of Salmonella by RNF213 leads to recruitment of LUBAC
and restricts Salmonella proliferation by inducing xenophagy and NF-κB activation [81].

6.2. Suppression of Linear Ubiquitination by Pathogens

Some pathogens target LUBAC to facilitate their proliferation. Gliotoxin, a major
virulence factor of the opportunistic pathogen Aspergillus fumigatus, is a specific inhibitor
of LUBAC [97]. The fungal metabolite gliotoxin specifically inhibits LUBAC by binding
to the RING-IBR-RING domain of HOIP, and inhibiting signal-induced NF-κB activation.
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This raises the possibility that LUBAC inhibitors could be isolated from natural products.
Furthermore, some bacteria secrete effector proteins into host cells to facilitate their pro-
liferation by modulating the functions of host proteins [91,98]. Many of these effectors
target the ubiquitin systems, and some specifically target LUBAC. The entero-invasive
bacterium Shigella flexneri secretes the effector protein IpaH1.4 into host cells [98]. IpaH
1.4, a ubiquitin ligase that directly interacts with the LUBAC subunits HOIL-1L and HOIP,
catalyzes conjugation of K48-linked ubiquitin chains to the RING-IBR-RING domain of
HOIP, leading to degradation of HOIP by the proteasome and a decrease in the level of
LUBAC. As mentioned above (Section 6.1, LUBAC and Salmonella infections), LUBAC is
recruited to the ubiquitin coats of cytosolic bacteria to generate linear ubiquitin chains on
their surfaces, leading to restriction of bacterial growth though activation of autophagy
and the NF-κB pathway [90] (Figure 7). IpaH1.4 secreted by Shigella flexneri inhibits the
formation of linear ubiquitin chains on the surfaces of cytosolic bacteria by decreasing the
level of LUBAC, enabling bacteria to escape from xenophagy.

Other pathogens secrete effector proteins that have deubiquitinase activity into host
cells to disrupt the ubiquitin-mediated host defense system. The intracellular bacterium
Legionella pneumophila secretes effectors that target linear ubiquitin chains [99]. Legionella
pneumophila secrets RavD, which specifically cleaves linear ubiquitin chains. A RavD
ortholog was identified in L. clemsonensis, and linear-ubiquitin-specific DUB activity was
detected in lysates from L. bozemanni, suggesting that secretion of effectors with linear-
ubiquitin-specific DUB activity is a general mechanism among Legionella species [91,99].

7. Linear Ubiquitination in Diseases
7.1. HOIP Deficiency in Mice and Human

Mutations of the ligase and the DUB for linear ubiquitination cause autoinflammatory
diseases in humans. HOIP-knockout mice are embryonically lethal at approximately E10.5
and exhibit disrupted vasculature in the yolk sac [100].

In humans, two patients with HOIP deficiency have been identified in different fami-
lies [101,102]. The first case of HOIP deficiency, an adolescent patient homozygous for the
L72P missense mutation in the PUB domain of HOIP, presented with multiorgan autoin-
flammation, immunodeficiency, systemic lymphangiectasia, and subclinical amylopecti-
nosis [101]. The second case, a child with the c.1197G > C and c.1737 + 3A > G mutations,
has early-onset immunodeficiency and autoinflammation but not amylopectinosis and
lymphangiectasia [102]. In both of these cases, the amount of HOIP was drastically reduced
due to the mutations, and the symptoms were attributed to reduction in the levels of
LUBAC.

7.2. HOIL-1L Deficiency in Mice and Humans

Mice lacking HOIL-1L exhibit embryonic lethality around E10.5, as in HOIP-knockout
mice [68,103]. Human HOIL-1L deficiency is associated with immunodeficiency and au-
toinflammation; however, a substantial number of patients with mutations in HOIL-1L
exhibit polyglucosan body myopathy/cardiomyopathy without immunological disor-
ders [104,105]. The pathogenesis of polyglucosan accumulation has not been elucidated,
but various mechanisms could be involved. In patients with HOIL-1L deficiency who
lack immune symptoms, the mutations are located mainly in the C-terminal half of the
protein, leading to the ligase activity of HOIL-1L (Figure 3). HOIL-1L interacts with HOIP
and SHARPIN via the N-terminal region; consequently, patients with mutations in the C-
terminal half of the protein have substantial amounts of LUBAC and linear ubiquitination
activity, potentially explaining the lack of immunological symptoms.

7.3. SHARPIN Deficiency in Mice and Humans

To date, no patients with SHARPIN deficiency have been reported. Mice lacking
SHARPIN exhibit chronic autoinflammation in the skin (chronic proliferative dermati-
tis in mice: cpdm) due to augmented TNF-α-induced death of keratinocytes, a result
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of the decrease in LUBAC ligase activity caused by reduced levels of HOIL-1L and
HOIP [24,25,106,107]. In cpdm mice, introduction of even one HOIL-1L E3 ligase-dead
allele dramatically ameliorates dermatitis and suppresses keratinocyte apoptosis without
affecting the amount of HOIP [23]. This observation suggests that augmentation of linear
ubiquitination activity of HOIP E3 by HOIL-1L lacking E3 ameliorates the symptoms of
cpdm. Moreover, these findings indicate that cpdm is caused mainly by attenuation of
HOIP E3 activity rather than altered subunit composition of LUBAC.

7.4. OTULIN Deficiency

OTULIN knock-in mice with a mutation in the active-site cysteine (C129A) exhibit
embryonic lethality with abnormal vasculature at E10.5 (E10.5), as in HOIP and HOIL-1L
knockout mice [63]. In humans, OTULIN deficiency results in development of OTULIN-
related autoinflammatory syndrome (ORAS), which is associated with recurrent fevers,
autoantibodies, diarrhea, panniculitis, and arthritis [108–110]. Because OTULIN prevents
auto-linear ubiquitination of LUBAC and maintains the LUBAC activity [23,63], OTULIN
deficiency induces deterioration of LUBAC.

7.5. Augmentation of LUBAC Activity in Cancer

LUBAC-mediated linear ubiquitination plays crucial roles in NF-κB activation and pro-
tection from cell death, both of which are associated with oncogenesis [11]. Augmentation
of LUBAC activity is shown to be associated with carcinogenesis. Rare germline SNPs in
HOIP are significantly enriched in activated B-cell-like diffuse large B-cell lymphoma (ABC-
DLBCL) [86]. ABC-DLBCL is characterized by constitutive NF-κB activation mediated
by the B-cell receptor (BCR) and Toll-like receptor (TLR) signaling pathways, and many
oncogenic mutations within these pathways have been identified [111–115]. The SNPs
enriched in ABC-DLBCL patients induce the substitution of amino acids that increase linear
ubiquitin chain formation by LUBAC, which augments NF-κB activation [86]. Furthermore,
clinical RNA sequencing (RNA-seq) gene expression data revealed that expression of HOIP
is elevated in human ABC-DLBCL [87]. To probe the involvement of augmented LUBAC
activity in lymphomagenesis, mice overexpressing HOIP were generated [87]. Although
augmented LUBAC activity did not induce B-cell lymphomagenesis, introduction of HOIP
facilitated generation of B-cell lymphomas induced by oncogenic mutation of MyD88 [87].
Protection from cell death as well as NF-κB activation underlies facilitation of lymphoma-
genesis. Moreover thiolutin, a natural compound that inhibits LUBAC, suppresses the
growth of B-cell lymphomas in a mouse transplantation model [87]. As mentioned above,
it has been proposed that augmentation of LUBAC activity is associated with resistance
to cancer therapies. LUBAC plays a role in resistance to a widely used anti-cancer drug
cisplatin [116,117]. In squamous lung cells, enhanced LUBAC-mediated NF-κB activation
appears to be a determinant of cis-platinum resistance [118]. Thus, inhibition of LUBAC
represents a promising therapeutic strategy for not only malignant lymphoma, but also a
broad spectrum of malignant tumors mainly by augmenting NF-κB activation.

8. Therapeutic Approaches to Targeting LUBAC
8.1. Cancer Therapy via Attenuation of LUBAC

As mentioned above (Section 7.5), augmentation of LUBAC is associated with carcino-
genesis [87]. Hence, decreasing the level of LUBAC represents a promising therapeutic
strategy for treating cancer. Several agents that inhibit LUBAC have been found. Gliotoxin,
a fungal metabolite, was the first small molecule shown to inhibit linear ubiquitination
activity [97]. Thiolutin and aureotricin, products of streptomycetes, also inhibit ligase
activity [87]. However, these natural products are not specific for LUBAC. HOIPIN-8 is a
synthetic agent that inhibits LUBAC linear ubiquitination by interacting specifically with
HOIP [119]. However, considering that loss of LUBAC activity causes embryonic lethality
in mice, compounds that inhibit the catalytic activity of LUBAC might be highly toxic.
Accordingly, other strategies to decrease LUBAC activity than inhibition of the catalytic
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activity have been proposed. Among the three interactions between the LUBAC subunits,
the LTM-mediated dimerization of HOIL-1L and SHARPIN appears to play the predomi-
nant role in stabilizing the complex [68]. LUBAC ligase activity is not completely abolished
by disruption of the interaction between the two accessory subunits, as LUBAC containing
HOIL-1L and HOIP or SHARPIN and HOIP can exist. Therefore, agents that target the
dimerization of HOIL-1L and SHARPIN might have fewer side effects than those that
inhibit the catalytic activity of HOIP. The crucial role of LTM-mediated heterodimerization
of the two accessory subunits in stable formation of trimeric LUBAC suggests a therapeutic
strategy for the treatment of malignant tumors. In addition to the crucial roles of LUBAC in
the oncogenesis of ABC-DLBCL and resistance to cis-platinum [116–118], LUBAC activity
is also involved in the resistance to anti-programmed death-1 (PD-1) therapy in murine
B16F10 melanoma cells [116,117,120,121]. Therefore, development of LUBAC inhibitors
with fewer side effects has been awaited.

8.2. Treatment of Infectious Disease via Augmentation of LUBAC

As mentioned above (Section 6), LUBAC plays pivotal roles in eliminations of
pathogens, such as Salmonella, via linear ubiquitin-dependent selective autophagy, and
some pathogens secreted effector proteins in order to destabilize LUBAC [90,91]. Further-
more, LUBAC is also involved in clearance of several viruses, including norovirus [122].
Thus, LUBAC has recently attracted a great deal of attention as a therapeutic target for
infections; however, it remains unclear how to activate LUBAC functions. A recent study
by our group showed that HOIL-1L inhibits LUBAC functions by mono-ubiquitinating all
subunits of LUBAC, and that inhibition of E3 activity of HOIL-1L dramatically increases
LUBAC functions [23]. Thus, the HOIL-1L E3 activity is a promising therapeutic target
for augmenting LUBAC functions. Furthermore, since mice expressing a HOIL-1L mutant
lacking E3 activity are viable up to the age of 12 months without overt phenotypes, and
augmented HOIP expression failed to induce lymphomagenesis [87], agents that target the
E3 activity of HOIL-1L could have fewer side effects.

9. Conclusions

LUBAC, the only ligase that can generate linear ubiquitin chains, plays pivotal roles
in NF-κB activation, protection against cell death, and elimination of bacteria by induction
of xenophagy. Moreover, deficiency of LUBAC components is associated with several
disorders in humans (Table S1). Consequently, LUBAC and linear ubiquitin chains are
attracting intense research attention. LUBAC is a unique E3 because it contains two different
ubiquitin ligase centers in the same ligase complex. A recent work revealed that the E3
activity of HOIL-1L plays a crucial role in LUBAC regulation. HOIL-1L conjugates mono-
ubiquitin onto all LUBAC subunits, followed by HOIP-mediated conjugation of linear
chains onto mono-ubiquitin; these linear chains attenuate LUBAC functions. Introduction
of E3-defective HOIL-1L mutants augmented linear ubiquitination, protecting cells against
Salmonella infection and curing dermatitis caused by reduction in LUBAC levels due to
loss of SHARPIN. Thus, inhibition of the E3 activity of HOIL-1L E3 represents a promising
strategy for treating severe infections or immunodeficiency.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
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in human and mice.
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Abbreviations

LUBAC Linear ubiquitin chain assembly complex
Met: methionine
NF-κB Nuclear factor-κB
HOIP HOIL-1L interacting protein
HOIL-1L large isoform of heme-oxidized iron regulatory protein2 (IRP2) ubiquitin ligase 1 L
IRP2: iron regulatory protein2
SHARPIN SHANK-associated RH domain-interacting protein
SHANK SH3 and multiple ankyrin repeat domains protein
DUBs deubiquitinating enzymes
OTULIN OTU deubiquitinase with linear linkage specificity
CYLD cylindromatosis
RING Really interesting new gene
RBR RING-in-between-RING
E1 ubiquitin activating enzyme
E2 ubiquitin-conjugating enzyme
E3 ubiquitin ligase
K lysine
Cys cysteine
UBAN UBD in ABIN proteins and NEMO
NEMO NF-κB-essential modulator
OPTN ABIN: A20-binding inhibitors of NF-κB
NZF Npl4-type zinc finger
ZF7 seventh zinc finger
TNFAIP3 tumor necrosis factor α-induced protein 3
IKK IκB kinase
SNPs Single-nucleotide polymorphisms
SLE systemic lupus erythematous
ALS amyotrophic lateral sclerosis
POAG primary open-angle glaucoma
SPATA2 spermatogenesis-associated 2
RHD Rel homology domain
TNF-α tumor necrosis factor α
CD40L CD40 ligand
TLRs Toll-like receptors
TNFR TNF-receptor
DD death domain
TRADD TNFR-associated death domain
RIPK1 receptor interacting serine/threonine-protein kinase 1
TRAF2 TNF-receptor associated factor 2
cIAP1/2 cellular inhibitor of apoptosis proteins 1 and 2
IκBα inhibitor of κBα
FADD FAS-associated death domain protein
LDD Linear ubiquitin chain determining domain
UBL ubiquitin-like
UBA ubiquitin-associated
LTMs LUBAC-tethering motifs
PUB PNGase/UBA or UBX
Ser Serine
Thr Threonine
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RNF213 ring finger protein 213
MycBP2 MYC Binding Protein 2
LPS ipopolysaccharide
MALT1 mucosa-associated lymphoid tissue lymphoma translocation gene 1
Arg arginine
Gly glycine
DLBCL diffuse large B-cell lymphoma
ABC-DLBCL activated B-cell–like DLBCL
SCVs: Salmonella-containing vacuoles
cpdm chronic proliferative dermatitis in mice
ORAS OTULIN-related autoinflammatory syndrome
GCB-DLBCL germinal center B-cell–like DLBCL
RNA-seq RNA sequencing
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