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ABSTRACT
BACKGROUND: Race is commonly used as a proxy for multiple features including socioeconomic status. It is critical
to dissociate these factors, to identify mechanisms that affect infant outcomes, such as birth weight, gestational age,
and brain development, and to direct appropriate interventions and shape public policy.
METHODS: Demographic, socioeconomic, and clinical variables were used to model infant outcomes. There were
351 participants included in the analysis for birth weight and gestational age. For the analysis using brain volumes,
280 participants were included after removing participants with missing magnetic resonance imaging scans and
those matching our exclusion criteria. We modeled these three different infant outcomes, including infant brain, birth
weight, and gestational age, with both linear and nonlinear models.
RESULTS: Nonlinear models were better predictors of infant birth weight than linear models (R2 = 0.172 vs. R2 =
0.145, p = .005). In contrast to linear models, nonlinear models ranked income, neighborhood disadvantage, and
experiences of discrimination higher in importance than race while modeling birth weight. Race was not an important
predictor for either gestational age or structural brain volumes.
CONCLUSIONS: Consistent with the extant social science literature, the findings related to birth weight suggest that
race is a linear proxy for nonlinear factors related to structural racism. Methods that can disentangle factors often
correlated with race are important for policy in that they may better identify and rank the modifiable factors that
influence outcomes.

https://doi.org/10.1016/j.bpsgos.2023.05.001
Socioeconomic status (SES) is a well-established, robust
predictor of child development and health outcomes (1–3).
Experiences of deprivation, threat, and trauma, all of which are
known to be associated with low SES, play a key role in
adversity negatively affecting brain development and health
behaviors (4–7). There is also robust evidence of significant
health disparities between racial and ethnic groups. Currently,
drivers of racial health disparities remain less understood due
to the high collinearity between race, SES, experiences of
discrimination, and related social stress in many study sam-
ples, particularly those in the United States. Distinguishing
these effects is a serious, unresolved public health issue for
many reasons, including falsely attributing risk factors as being
associated with race rather than related to structural racism.
Members of minoritized racial groups experience forms of
discrimination and related obstacles that bring unique psy-
chosocial stresses, as well as decreased access to necessary
services and opportunities. These types of structural and so-
cial stressors have deleterious effects on health trajectories (8).
Clearly defining race and SES as we intend them to be un-
derstood in the context of this study sample is crucial. While
race may be understood in several different ways (9,10), in this
ª 2023 THE AUTHORS. Published by Elsevier In
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study, race is a self-assigned categorical variable derived from
clinical demographic information that has been binarized given
the composition of the study population such that Black was
coded as 1 and all others were coded as 0. SES is a combi-
nation of social and economic factors such as income, edu-
cation, and neighborhood information. Despite the complexity
of these interrelationships, it is clear from a variety of carefully
conducted studies that accounting for SES attenuates the
relationships of race to health outcomes (11). However, in
previous work using traditional statistical methods, race and
low SES have often been found to interact because of the
compounding of structural racism with economic disadvan-
tage in the United States, which leads to associations between
race and health even after adjustment for SES (12,13). More
work is needed to elucidate and identify the factors that ac-
count for these residual relationships of race, particularly
various forms of discrimination, trauma, and adversity.

Considerable work is being done to understand the effects
of experiences of racial discrimination on public health (14,15).
Racial discrimination is a risk factor in clinical studies and
continues to affect the opportunities that are available to in-
dividuals who are discriminated against. Race and SES are
c on behalf of the Society of Biological Psychiatry. This is an
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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intimately intertwined in most communities (16–18), making
disentangling their effects difficult. Race is not a biological
mechanism for outcomes; higher exposure to social de-
terminants of health results from structural racism. This is a
complex and critical issue that affects analyses in a variety of
social sciences, hence the several calls to action emphasizing
the need to understand the impact of structural racism. The
distinction between the social effects of race and experiences
of structural racism is a critical one that has yet to be fully
interrogated in these fields. Emerging literature suggests that
this is not just a public health issue. Several fields such as
epidemiology, sociology, and psychology are also encoun-
tering this same issue of how to determine drivers of structural
racism (19–21).

Machine learning demonstrates superior modeling perfor-
mance across several domains, including imaging, text anal-
ysis, genetics, and medicine (22,23). Linear regression (LR) and
other statistical methods such as structural equation modeling
(SEM) are often preferred by the medical community for their
ease of use and interpretation. LR and SEM work well when
underlying relationships are linear. Machine learning, specif-
ically neural networks (NNs), can be interpretable and expose
important nonlinear relationships, thereby revealing structures
that are otherwise missed and contain critical information. In
addition, NNs allow the inclusion of highly correlated variables
without loss in performance or robustness. This research aims
to investigate the utility of NNs compared with more standard
analytic approaches for a typical clinical dataset and their ef-
fect on assessment of variable importance. In this analysis, we
identified factors suggesting that race may be misinterpreted
as a driver of effects in standard analyses when NNs clarify
that associated psychosocial and socioeconomic factors drive
effects on birth weight, gestational age, and brain volumes
independent of race.

Birth weight is one of the first indicators of later health
(24–29) and developmental outcomes, and extremes of birth
weight, such as small for gestational age (,10th percentile at
birth) and large for gestational age (.90th percentile at birth)
status, have been identified as sensitive markers of car-
diometabolic and neurodevelopmental risk into adulthood
(24,25). Critically, data also suggest a relationship between
birth weight within the normative spectrum and later childhood
cognitive outcomes (26–28) and adult cognitive, educational,
and earning achievements (29). For gestational age, the impact
is diminished, with marginal impact for increasing weeks
beyond the early term period (30–32). Brain volumes at birth
are another critical indicator of infant health that have been
linked to later cognitive and socioemotional outcomes (33,34).
Several studies have provided data suggesting that experi-
ences of structural racism affect the brain and body in adult-
hood (35–38). Disentangling the social effects of race and
social factors associated with race is crucial to inform early
intervention. The use of NNs to accomplish these aims could
have a high payoff by improving our understanding of the
social determinants of infant outcomes.

In the current study, we sought to investigate the differential
relationships between SES, race, and other forms of maternal
adversity and fetal development during pregnancy in a study of
the social determinants of health called “Early Life Adversity
and Biological Embedding of Risk for Psychopathology”
136 Biological Psychiatry: Global Open Science January 2024; 4:135–
(eLABE) (39). Previous work from this group using SEM
demonstrated the central relationship of social disadvantage, a
latent factor including income-to-needs ratio, insurance status,
education, area deprivation, and maternal nutrition, to birth
weight and brain volumes. While SEM is valuable in its ability to
determine relationships between variables, it remains limited
by its requirement of linearity. It was unable to dissociate re-
lationships of race and SES to infant outcomes in a previous
study (39), likely due to high collinearity between SES and race
as is common in many study samples worldwide. Drawing from
prior work in social epidemiology and population health, we
hypothesized that race often serves as a proxy for complex
effects of social and economic disadvantage. Such in-
terrelationships may be nonlinear and often difficult to disen-
tangle using linear statistical methods (40–44). Based on this
finding and the central importance of the question, we inves-
tigated the utility of NNs in disentangling the relationships of
race and social adversity to infant outcomes versus a more
standard LR approach.

METHODS AND MATERIALS

The eLABE study is a multiwave, multimethod National
Institute of Mental Health–funded investigation designed to
study the mechanisms by which prenatal and early-life
adversity affect infant neurodevelopment. All study proced-
ures were previously approved by the Washington University
in St. Louis Institutional Review Board. Pregnant women who
were participants in a large-scale study of preterm birth
within the Prematurity Research Center at Washington Uni-
versity in St. Louis with negative drug screens (other than for
cannabis) and without known pregnancy complications or
known fetal congenital problems were invited to participate.
The study recruited 395 women during pregnancy (n = 268
women who were eligible declined participation) and their
399 singleton offspring (n = 4 mothers had 2 singleton births
during the recruitment period). Of those originally invited and
interested in participation, 26 were deemed ineligible (n = 13
were screened out before consent and n = 13 consented
participants were deemed ineligible due to later discovery of
substance abuse or congenital anomalies). Women facing
social disadvantage were oversampled by increased
recruitment from a clinic serving low-income women. The
sample was also enriched for preterm infants, with 51 born
preterm (,37 weeks’ gestation). After removing participants
who met exclusion criteria, 351 were included in the analysis
for birth weight and gestational age (Figure S1A). For brain
volumes, after removing participants missing magnetic
resonance imaging (MRI) scans and those meeting our
exclusion criteria, 280 were included in the analysis
(Figure S1B). Participants with brain injury were excluded
from the entire eLABE study.

Data

Data on a variety of variables describing maternal social
disadvantage and maternal psychosocial stress were
collected and used for analyses throughout this study. Social
disadvantage is described by income-to-needs ratio, national
Area Deprivation Index or neighborhood disadvantage
(45,46), maternal nutrition or diet measured with the Healthy
144 www.sobp.org/GOS

http://www.sobp.org/GOS


Table 1. Descriptive Statistics for All Variables Used in the
Analyses

Variable n Mean (SD) or n (%)

Maternal Social Disadvantage

Log10 Income/Needsa

First trimester 385 0.24 (0.40)

Second trimester 305 0.28 (0.41)

Third trimester 330 0.26 (0.41)

ADI, Neighborhood Disadvantage 376 69.09 (24.84)

HEI-2016 Total Score 308 58.45 (9.90)

Race 399

Black 249 (62%)

Not Black 150 (38%)

Health Insuranceb 399

Individual/group 200 (50%)

Medicaid 145 (36%)

Medicare 7 (2%)

Uninsured 45 (11%)

VA/military 2 (1%)

Educationc 355

Less than high school 26 (7%)

High school graduate 196 (55%)

College graduate 56 (16%)

Postgraduate degree 77 (22%)

Social Disadvantage 399 0.0007 (0.95)

Maternal Psychosocial Stress

Discrimination Surveyd 364 1.62 (0.88)

EPDS

First trimester 396 5.25 (4.88)

Second trimester 331 5.00 (4.94)

Third trimester 332 4.38 (4.70)

PSS

First trimester 394 13.69 (7.39)

Second trimester 304 13.81 (7.68)

Third trimester 325 13.25 (7.36)

STRAIN, Life Events

STRAIN-Count 372 6.70 (5.31)

STRAIN-Weighted Severity 372 22.67 (19.91)

Psychosocial Stress 399 0.0002 (0.94)

Clinical

Self-reported Maternal Tobacco Use 399

Heavy use ($6 cigarettes daily) 21 (5.2%)

Some use (,6 cigarettes daily) 29 (7.3%)

None 349 (87.5%)

Maternal Delivery Age, Years 399 29 (5)

Prepregnancy Body Mass Index 307 29.05 (8.34)

Maternal Medical Risk Score 385 1.27 (1.71)

PMA at MRI, Weeks 385 41.2 (1.5)

Cervical Length 358 38.86 (16.44)

Outcomes

Birth Weight, Grams 399 3134 (599)

Gestational Age, Weeks 399 38.31 (1.99)

Total Cortical Gray Matter 355 119,724 (15,806)

Total Cerebral White Matter 355 183,758 (19,399)

Total Cerebellum 355 28,194 (4337)

Table 1. Continued

Variable n Mean (SD) or n (%)

Subcortical Gray Matter 355 27,061 (2822)

Left Hippocampus 355 1268 (191)

Right Hippocampus 355 1236 (170)

Left Amygdala 355 904 (97)

Right Amygdala 355 907 (98)

Total Brain Volume 355 257,144 (39,154)

Mean GI 355 1.96 (0.10)

Left Hippocampus,
Relative to Total Brain Volume

355 0.0036 (0.00046)

Right Hippocampus,
Relative to Total Brain Volume

355 0.0035 (0.0004)

Left Amygdala,
Relative to Total Brain Volume

355 0.0025 (0.00016)

Right Amygdala,
Relative to Total Brain Volume

355 0.0025 (0.00016)

ADI, Area Deprivation Index; EPDS, Edinburgh Postnatal Depression Scale; GI,
gyrification index; HEI, Healthy Eating Index; MRI, magnetic resonance imaging;
PMA, postmenstrual age; PSS, Perceived Stress Scale; STRAIN, Stress and
Adversity Inventory; VA, Veterans Affairs.

aLog transformed because of a skewed distribution of the variable.
bAnalyzed as Individual/Group vs. all others.
cInput as categorical values.
dScored only if perceived as racial, 0 otherwise.
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Eating Index (47–50), insurance status, and mother’s educa-
tion. In this analysis, the variable race was added; however,
race was not included in the confirmatory analysis. Psycho-
social stress is described by self-perceived discrimination if
attributed to race (51) and was measured by the Edinburgh
Postnatal Depression Scale (52), the Perceived Stress Scale
(53), and lifetime stressful and traumatic life events (Stress
and Adversity Inventory) (54). A confirmatory factor analysis
was used to derive these variables as a two-factor latent
construct (39). Data on the following variables were also
collected: tobacco use, maternal age at delivery, prepreg-
nancy body mass index, maternal medical risk score (55),
postmenstrual age (PMA) at MRI, and cervical length. The
outcomes in this analysis were birth weight, gestational age,
and several structural brain volumes (Table 1), where each
output is continuous. The regions selected for the analyses
presented in this paper were key regions of interest in the
study of Triplett et al. (56), and we used standard analytic
techniques based on findings in the extant literature on
adverse effects on neurodevelopment. Data collection for all
variables, including preprocessing, dyad exclusion data
(Table S2), and capturing brain volumetric measures, varied
(see Supplemental Methods).

Models

LR is widely used to model data by fitting a linear equation,
where by ¼ mX1b. X is a matrix where every row represents
specific patient information. The inputs are linearly combined
to output the predictions, by . LR models output as a linear
combination of the inputs; hence, the model will only find
linear relationships in the data (Figure 1A). Likewise, LR will
not fully control for nonlinear confounding variables. LR can
pen Science January 2024; 4:135–144 www.sobp.org/GOS 137

http://www.sobp.org/GOS


Disentangling Structural Racism in Infant Outcomes
Biological
Psychiatry:
GOS
model nonlinear interactions by adding polynomial terms;
however, simple LR or SEM models are more commonly used
in clinical work. Therefore, LR is our baseline performance
model.

NNs make use of nonlinear equations with more parame-
ters. In the simplest form, each layer of a network is computed
as fðXÞ ¼ s

�
WTX1b

�
. The data matrix X is linearly trans-

formed byW and b, and each element of the matrix is input to a
nonlinear function s. Multiple layers, each with different sets of
parameters, are cascaded to compute the final output. The
final architecture used tanh, the hyperbolic tangent function, as
the activation function and a single hidden layer (Figure 1B).
Several other architectures were tested, but this one exhibited
optimal performance (Figure S2). NNs are particularly useful
and can perform equivalent to and sometimes exceed a
human’s ability to analyze data (57). In contrast to LR, NNs use
nonlinear functions to model nonlinear relationships. We aimed
to test whether NNs were more effective at controlling for
nonlinear confounders.
A B

C

D
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NNs are more complex than LR, requiring more weights to
be trained, but also can outperform LR. NNs can model
nonlinear relationships between individual inputs and the
target output (Figure 1C). Likewise, NNs can model nonlinear
interactions between multiple inputs (Figure 1D). NNs can
allow for improved correlation performance relative to LR if
there are any nonlinear relationships.

Statistical Analyses

We used TensorFlow (58) Adam optimizer to train both models.
The TensorFlow error function mirrors ordinary least squares
estimation, which is commonly used to train LR. Performance
was computed using 10-fold cross-validation. One-tenth of the
rows were held out as a validation set, and the remaining
observations were used as a training set. Ten models were
trained with different holdout sets, such that each observation
was in the validation set once. Each model was trained 20
times with a random restart, and the best-performing model
was automatically selected, thereby ensuring robust results. In
Figure 1. A depiction of the linear and nonlinear
models used in this study. Models are depicted in
diagrams that show how the modeled infant out-
comes were computed from input variables, with
vectors depicted as boxes and arrows indicating the
flow of information. (A) The linear regression (LR)
computes the output as a linear transformation of
the input vector. (B) The neural network (NN) trans-
forms the input vector into a hidden layer of vari-
ables, and this layer is transformed into the output.
In practice, models operate on normalized data, and
therefore, all inputs and outputs are z-normalized.
(C) The NN can represent nonlinear relationships,
such as nonlinear responses, better than LR. (D) The
NN can better represent nonlinear relationships,
such as nonlinear interactions, than LR.

144 www.sobp.org/GOS

http://www.sobp.org/GOS


Figure 2. The nonlinear model fits the data better [cross-validated R2 =
0.172 vs. R2 = 0.145, p = .005 (59)]. This performance improvement is robust
and repeatable across several cross-validation splits and training protocols.
This improvement over the linear models—a 2.7% absolute R2 increase and
an 18.6% relative R2 increase—indicates that there are important nonlinear
relationships that the neural network (NN) exploits. LR, linear regression.
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cases where a specific patient datum was missing, simple
imputation was applied, and an indicator variable was set to 1
to indicate that the variable was imputed. This input encoding
enables models to tune the imputed value to best fit the data.

Models were compared by cross-validated R2 performance,
or amount of variance accounted for. The p values were
calculated with a test of correlation differences from depen-
dent samples (59).

We quantified which variables were important for predictive
power by holding out variables from the training data. The
cross-validated performance on the reduced dataset was
computed using the same protocol. A decrease in R2 quanti-
fied the importance of the held-out variables. A large decrease
implied that important information was being contributed to
performance.

This procedure for measuring variable importance is
related to a widely used approach called Shapley additive
explanations (60). Shapley additive explanations is used to
determine the importance of variables in machine learning
algorithms by approximating Shapley values. These values
explain how much an input variable affects the output of a
model. When using nonlinear models in Shapley additive
explanations, the results were not stable, producing different
results for each run (Figure S3). In contrast, our approach
measured the impact of variables on the global performance,
not model output, and yielded stable results across multiple
runs.

To quantify nonlinear responses and interactions, we
used a clamping test. To measure univariate nonlinearity, we
considered a range of fixed values for the test variable. The
input matrix transforms by clamping the test variable at a
given fixed value, and the average output of a trained model
on the clamped dataset is computed. A nonlinear relation-
ship between the average output and the fixed value
indicates nonlinearity. We quantified nonlinearity as the root-
mean-squared deviation (RMSD) of the best-fit line of these
measurements. A line has no nonlinearity, and a larger
RMSD indicates more nonlinearity, which was used to rank
and quantify the degree of nonlinearity in individual
variables.

An analogous, bivariate nonlinearity was computed simi-
larly. Two variables were clamped at a range of values,
covering a grid in two-dimensional space. The input matrix
transformed to clamp the variables at given values, and the
average model output was computed. Again, we quantified
nonlinearity as the RMSD of the best-fit plane of these mea-
surements. A flat plane has no nonlinearity, and increased
RMSD indicates more nonlinearity between two variables, and
we used RMSD to rank pairs of input variables with the most
nonlinear response.
RESULTS

For birth weight, the nonlinear model accounted for more
variance than the linear model (R2 = 0.172 vs. R2 = 0.145, p =
.005) (Figure 2). p Values were calculated using a comparison
of correlations from dependent samples described in
Statistical Analyses (59). The performance of the linear and
nonlinear models was comparable for gestational age and
structural brain volumes.
Biological Psychiatry: Global O
Feature Importance

We empirically quantified the contribution of each variable to
model performance (Figure 3). The two most important vari-
ables for modeling birth weight in both the linear and nonlinear
models were maternal medical risk and maternal body mass
index. In contrast to the linear model, the nonlinear model was
less reliant on the race variable in predicting birth weight
(Figure 3A). The linear model ranked race as the next most
important variable, followed by household income and neigh-
borhood disadvantage. In contrast, the nonlinear model ranked
neighborhood disadvantage, discrimination, and income as
more important than race.

A holdout experiment was performed where variables
related to SES were removed to determine their importance in
relation to race exclusively to quantify importance. Once
removed, both models relied more heavily on race; hence, the
excluded socioeconomic variables captured information
included in race (Figure 3B).

As a negative control, we held out stress, depression, and
life events (Figure 3C). We found that income ranked higher
than race by the nonlinear model, but the linear model
continued to value race over income.

Additional information was derived from each model’s
single-variable holdout R2 performance (Figure 3D). The linear
model relied more on race, perhaps because it is linearly
correlated with the infant outcome and relies on that informa-
tion for predictive performance. The nonlinear model relied
more on income to predict birth weight, perhaps because there
is a nonlinear correlation between income and infant
outcomes.

Nonlinear Responses and Interactions

The difference in performance and variable importance be-
tween NNs and LR seems to be due to several subtle nonlinear
pen Science January 2024; 4:135–144 www.sobp.org/GOS 139
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Figure 3. Race is less important in the nonlinear
model. Feature importance is robustly quantified
by measuring the difference in R2 performance in
models trained with and without the variable in
question. (A) The nonlinear model makes use of
more variables than the linear model. Race is of
reduced relative importance (third- vs. seventh-
greatest effect) and is of reduced absolute per-
formance (7.58% drop vs. 5.23% drop). Notably,
income and discrimination variables are interre-
lated with race and serve as a control, showing
changes in the opposite direction as race in the
nonlinear model. (B) Both models rely more heavily
on race; hence, the excluded variables capture
information included in race. The exclusion of
these variables is merely a test to quantify impor-
tance. (C) In a negative control experiment, the
impact of race did not decrease when stress,
depression, and life events were held out. (D) The
R2 performance degrades more with the removal
of income (R2 = 0.172 vs. R2 = 0.158). BMI, body
mass index; disadv, disadvantage; LR, linear
regression; NN, neural network.
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relationships. To better understand the drivers of the nonlinear
model’s performance, we first examined the nonlinear rela-
tionship of the predictors to the outcome. There were subtle
nonlinear relationships between various predictors of birth
weight within the model (Figure S4A). The most nonlinear
univariate response was to body mass index (RMSD [g] =
17.63) and depression (RMSD [g] = 14.94) (Figure S4B). One
notable result is that discrimination was found to be positively
associated with birth weight (Figure S7A). However, in a uni-
variate analysis, discrimination was negatively associated with
birth weight (R2 = 0.355) (Figure S7B). This paradoxical result is
due to associations between perception of racial discrimina-
tion and neighborhood disadvantage (R2 = 0.059, p = .07)
(Figure S7C). The nonlinear model also captured several
nonlinear interactions (Figure S5A; Table S1). The largest
nonlinear interaction was between depression (RMSD [g] =
32.75) and life events (RMSD [g] = 16.44) (Figure S5B, C).
Therefore, the nonlinearities modeled were individually subtle;
140 Biological Psychiatry: Global Open Science January 2024; 4:135–
however, collectively, they dramatically affected the empirical
importance of input variables.
Modeling Gestational Age and Structural Brain
Volumes

Similar analyses were run with infant gestational age at birth
and structural brain volumes. For modeling gestational age,
race was not an important variable (Figure 4). Race was in a
comparable rank in both linear and nonlinear models
(Figure 4A). Income and discrimination were always ranked
above race. When we withheld proxy variables, race became
more important but not nearly as important as medical risk
(Figure 4B). As a negative control, we held out stress,
depression, and life events (Figure 4C), and the results were
very similar to those with all variables included.

For modeling structural brain volumes, we closely followed
the work of Triplett et al. (56). We used the same dataset;
144 www.sobp.org/GOS
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C

Figure 4. Race is not an important predictor of
gestational age. (A) We ran similar analyses with
gestational age and saw that medical risk was the
most important variable. Race is at a comparable
rank in the linear and nonlinear models. (B) As ex-
pected, when proxy variables are removed, race
moves up in rank because it is providing the infor-
mation that has been removed. (C) We ran a control
in which the survey variables were withheld, and we
saw that results are similar to results shown in panel
(A). BMI, body mass index; CL, cervical length;
disadv, disadvantage.
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however, our analysis modeled brain volumes with linear and
nonlinear models as opposed to observing correlations. We
also included race in our analysis. We empirically quantified the
contribution of each variable to model total brain volume
(Figure 5). The most important variables for modeling most
brain structural volumes were consistently PMA at MRI, infant
sex, and birth weight (Figure 5A; Figure S6), which is consis-
tent with the correlation values found in the Triplett et al. study.
Race had little variable importance when all variables were
included for both models. When the variable importance is
,5%, we cannot draw any definitive conclusions because this
variance could be due to noise; hence, race was not a strong
predictor of brain volume outcomes.

When holding out disadvantage, which contains several
factors describing structural racism, race did contribute more
information, similar to the results we saw from previous ana-
lyses, but not nearly as much as PMA at MRI and infant sex
(Figure 5B). This further implies that race was not a strong
contributor to modeling total brain volume.

As a negative control, psychological stress variables were
withheld (Figure 5C). Performance was similar to the analysis
including all variables because psychological stress never
contributed a lot to performance. Because the psychological
stress variable includes racial discrimination, we withheld both
disadvantage and psychosocial stress (Figure 5D). Again, most
of the variance was contributed by PMA at MRI, infant sex, and
birth weight. These are encouraging results indicating that
Biological Psychiatry: Global O
brain volumes are not tightly correlated with race and should
be favored over birth weight as an outcome in clinical studies.
DISCUSSION

This research aimed to investigate the utility of NNs compared
with standard analytic approaches for a typical clinical dataset
and their effect on the assessment of variable importance. We
used nonlinear models to better dissociate race from a range
of related psychosocial and biological factors known to affect
health. While birth weight, which is a key outcome known to be
broadly predictive of health trajectories (24–29), was the cen-
tral outcome, we also included effects on gestational age and
brain volumes. We found that nonlinear models accounted for
slightly more variance than linear models in our analysis of
infant birth weight. However, subtle nonlinear effects can lead
to large impacts on variable importance, indicating that the
nonlinear models were better at disentangling social de-
terminants of infant health. We found that race was not
important for gestational age and structural brain volumes.

These results disentangle the relationships between race,
social adversity, and SES to better inform interventions and
public policy. Race is highly predictive of many outcomes but
is not modifiable by public policy. Methods that can disen-
tangle race from other factors are important for policy in that
they may better identify and rank the modifiable factors that
influence outcomes. For example, in this study of birth weight,
pen Science January 2024; 4:135–144 www.sobp.org/GOS 141
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Figure 5. Race is not a strong predictor of total
brain volume. (A) With the same variables for input
as those used by Triplett et al. (56), we modeled total
brain volume. Postmenstrual age (PMA) at magnetic
resonance imaging, infant sex, and birth weight (BW)
were the top contributors. (B) When we withheld
disadvantage, the importance of race became a bit
more prominent. (C) We withheld psychosocial
stress (psych) as our control, and we can see that
the results are like the results shown in panel (A). (D)
Because the psychosocial stress variable includes
racial discrimination, we withheld both disadvantage
(disadv) and psychosocial stress. These results
show that most of the variance is still coming from
PMA at magnetic resonance imaging, infant sex, and
BW, suggesting that race is not a strong contributor
for structural volumes.

Disentangling Structural Racism in Infant Outcomes
Biological
Psychiatry:
GOS
income is a more important factor than diet. This is only visible
when race is accounted for in a nonlinear model, suggesting
that for this outcome, a policy that improves income equity
would be more effective than one that selectively improves
diet. The importance of income and discrimination have
powerful public health implications for the design of prevention
programs that should be targeting discrimination and other
forms of structural racism and social adversity related to low
SES. These data highlight the importance of pregnancy as a
key window of time for future preventive health interventions
targeting children.

These findings have important implications for understand-
ing elements of the global experience of psychosocial adver-
sity. Furthermore, exploring how these experiences drive risk
for poor health outcomes is important. In contrast to prior work
about the biological role of race, these findings demonstrate
142 Biological Psychiatry: Global Open Science January 2024; 4:135–
that race is acting as a linear proxy for a variety of nonlinearly
correlated adverse experiences, including economic disad-
vantage and discrimination (40–44). Based on this study, we
recommend that future studies report the results from nonlinear
models alongside results from linear models, both with and
without including race as an independent variable. In many
cases, the results will be robust across all approaches, but in
others, nonlinear models may explain the data better.

In terms of limitations, the dataset for this study is small
compared with many studies that have used NNs; however,
the size of the current study sample is relatively large for an
infant outcome study. It is important to replicate these findings
in additional datasets, such as those being collected for the
Environmental Child Health Outcomes (ECHO) study or the
upcoming Healthy Brain and Child Development Study
(HBCD). This study would benefit from more information
144 www.sobp.org/GOS
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capturing access to health care because insurance status is
currently the only variable that does this. Because race was
binarized into Black and non-Black, it is important to note that
other racial groups experience disadvantage and for this study
were categorized as non-Black.

A comparison of the linear and nonlinear models is
consistent with race acting as a linear proxy for a nonlinear
combination of other variables in this dataset. By modeling the
nonlinear relationships directly, nonlinear models better dis-
entangled the relationship between race and SES in this study
of maternal adversity, birth weight, gestational age, and
structural brain development.

Future Work

Similar nonlinear models and feature importance techniques
can be used to examine relationships of other infant outcomes.
Future studies can explore disentangling groups of variables
using causality networks to determine causal relationships
between highly correlated variables. Simple imputation was
used for missing data in the current study, but future studies
should use more complex methods, such as multiple
imputation.

Conclusions

In summary, this work begins to disentangle the relation-
ships between race, social adversity, and SES to better
inform interventions and public policy. Data describing
experiences of adversity and advantage during pregnancy
and other factors were used to explore key infant out-
comes. Nonlinear models were able to dissociate the re-
lationships of race, likely due to subtle nonlinear responses
and interactions. In contrast to linear models, nonlinear
models ranked income, neighborhood disadvantage, and
experiences of discrimination higher in importance than
race. This suggests that race is a proxy for a nonlinear
combination of other variables in this high-risk, urban U.S.
study sample. Nonlinear components are needed to better
model differential impacts on infant outcomes. Race
should be used in research to ensure that there is no
sampling bias, but findings suggest that race as a variable
is not as meaningful as a driver of disadvantage due to
systematic racism. As such, these findings significantly
extend our understanding of how to disentangle the
complex relationships between race and SES in under-
standing maternal adversity and income outcomes.
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