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Growing evidence implies a link between DNA methylation
and tumor immunity/immunotherapy. However, the global in-
fluence of DNAmethylation on the characteristics of the tumor
microenvironment and the efficacy of immunotherapy remains
to be clarified. In this study, we systematically evaluated the
DNAmethylation regulator patterns and tumor microenviron-
ment characteristics of 1,619 gastric cancer patients by clus-
tering the gene expression of 20 DNA methylation regulators.
Three gastric cancer subtypes that had different DNA
methylation modification patterns and distinct tumor micro-
environment characteristics were recognized. Then, a DNA
methylation score (DMS) was constructed to evaluate DNA
methylation modification individually. High DMS was charac-
terized by immune activation status, increased tumormutation
burden, and tumor neoantigens, with a favorable prognosis.
Conversely, activation of the stroma and absence of immune
cell infiltration were observed in the low DMS group, with
relatively poor survival. High DMS was also certified to be
correlated with enhanced efficacy of immunotherapy in four
immune checkpoint blocking treatment cohorts. In conclusion,
the characterization of DNA methylation modification pat-
terns may help to enhance our recognition of the tumor im-
mune microenvironment of gastric cancer and guide more
personalized immunotherapy strategies in the future.
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INTRODUCTION
Asone of the best characterized epigeneticmodifications,DNAmethyl-
ation has been reported to be related to numerous biological pro-
cesses.1,2 5mC, which means that DNA methylation occurs at the fifth
carbon atom of the cytosine residues within CpG dinucleotides, repre-
sents the major form of DNAmethylation modification in mammals.3

Gastric cancer (GC) is the fourthmost common cancer and the second
leading cause of tumor-related deaths worldwide.4 Although great ef-
forts have been devoted to the treatment of GC, effectively individual-
Molecular T
This is an open access article under the CC BY-NC-
ized therapeutic strategies remain to be explored.5,6 Several genes that
play essential roles in the initiation and progression of GC were re-
ported to be regulated by hypermethylation or hypomethylation of
the promoter. For instance, Higashimori et al.7 reported that FOXF2
was preferentially methylated in GC, which could suppress GC
through the FOXF2/IRF2BPL/b-catenin signaling axis. In addition,
approximately 9% of GC is found to have Epstein-Barr virus (EBV)
infection.8 The major epigenetic change in EBV-positive GC is aber-
rant CpG island hypermethylation in the promoter regions of several
tumor suppressor genes, which are involved in cell cycle regulation,
apoptosis, cell adhesion, metastases, and DNA repair pathways.9

Immune checkpoint blocking therapy has been demonstrated to
improve survival across multiple tumor types, including GC.10–17

However, the overall efficiency was less than 20%. The tumor muta-
tion burden (TMB), PD-L1 expression, microsatellite instability
(MSI) status, and EBV infection were reported as potential bio-
markers that favor PD-1 blockade-based immunotherapy.18 Growing
evidence implies a link between DNAmethylation and tumor immu-
nity/immunotherapy.19–21 For example, Xu and colleagues22 found
that the interferon (IFN)-g/JAK/STAT/TET2 signaling pathway is
involved in tumor immunity, and stimulating TET2 activity could
enhance anti-PD-L1 efficacy in solid tumors.23 We have recently re-
ported TET1 mutation as a potential biomarker for immune check-
point blocking therapy across multiple cancers. However, to date,
herapy: Nucleic Acids Vol. 24 June 2021 ª 2021 The Author(s). 695
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Figure 1. Multi-omics landscape of DNAmethylation

regulators in GC

(A) Overview of the 20 DNA methylation regulators and

their major biological functions. (B) The mutation fre-

quency of 20 DNA methylation regulators in TCGA STAD

cohort. Each column of the figure represents an individual

patient. The upper bar plot represents TMB. The number

on the right shows the mutation frequency of each regu-

lator. The right bar plot indicates the proportion of each

variant type. The lower bar represents the sample anno-

tations. (C) The CNV frequency of DNA methylation reg-

ulators in TCGA STAD cohort. Gain, red; loss, blue. (D)

The protein-protein interaction network among DNA

methylation regulators. The size of the node represents

the number of proteins interacting with this modifier. (E)

Boxplot shows the expression of 20 DNA methylation

regulators between tumor and normal tissues in TCGA

STAD cohort. *p < 0.05, **p < 0.01, ***p < 0.001,

****p < 0.0001.
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the global influence of all DNA methylation regulators on the im-
mune microenvironment and the efficacy of immunotherapy remains
unknown.

In this study, we integrated 1,619 patients from eight independent GC
cohorts to identify DNA methylation regulator modification patterns
by unsupervised clustering of the gene expression of 20 DNAmethyl-
ation regulators. We chose to investigate the expression of genes that
regulate DNA methylation rather than DNA methylation itself, since
the function of DNAmethylation can vary based on genomic context.
Three distinct DNA methylation regulator patterns with different
immune microenvironment characteristics were recognized and
found to be consistent with the three classical immune phenotypes:
immune-inflamed, immune-excluded, and immune desert. Impor-
tantly, a DNA methylation score (DMS) system was constructed to
evaluate the DNA methylation status individually. Our results indi-
cated that DMS may serve as an alternative biomarker for survival
and efficacy of immunotherapy.
696 Molecular Therapy: Nucleic Acids Vol. 24 June 2021
RESULTS
Multi-omics landscape of DNA methylation

regulators in GC

After systematic review of published articles
about DNA methylation, a total of 20 DNA
methylation regulators were collected and
enrolled in our analysis, including 3 writers
(DNMT1, DNMT3A, DNMT3B), 3 erasers
(TET1, TET2, TET3), and 14 readers (MBD1,
MBD2, MBD3, MBD4, ZBTB33, ZBTB38,
ZBTB4, UHRF1, UHRF2, MECP2, UNG,
TDG, NTHL1, SMUG1), as shown in Figure 1A.

The overall mutation rate of all regulators is
relatively low in the GC genome (Figure 1B).
Among all 20 modifiers, the eraser TET1, whose
mutation has been reported to be a favorable prognostic marker in pa-
tients receiving immunotherapy,22 and the reader ZBTB38 had the
highest mutation rates (5%), while two readers, TDG and UNG, ex-
hibited extremely lowmutation rates in GC patients (0%) (Figure 1B).
Co-occurrence mutation patterns were found in several regulators,
such as TET1 and DNMT1 or TET3 and DNMT3B, even though
they might have opposite biological functions. However, no obvious
mutation-exclusive phenomenon was found among these regulators
(Figure S1B). For copy number variation (CNV), MECP2, DNMT3B,
and ZBTB38 showed a relatively high frequency of amplification,
while MBD1 and MBD2 were mainly copy number deletions (Fig-
ure 1C). The protein-protein interaction (PPI) network analyzed by
STRING depicted widespread protein interactions among these mod-
ifiers (Figure 1D). As shown in Figure 1E, most regulators except
ZBTB4 showed relatively higher RNA expression in tumors than in
normal gastric tissues, indicating that they might play crucial roles
in the initiation and progression of GC. Furthermore, most regulators
presented obvious differential expression among distinct The Cancer



Figure 2. Prognosis and immune characteristics of DNA methylation regulators

(A) Correlations and prognosis of DNA methylation regulators in GC patients. The red line represents a positive correlation with p < 0.0001, and the blue line represents a

negative correlation with p < 0.0001. The size of the node represents the p value of the log-rank test. Green points represent favorable factors for OS. Black points represent

risk factors for OS. (B) Correlation heatmap between 20 DNA methylation regulators and immune cells in the gathered GC cohort. Orange indicates positive correlation; blue

indicates negative correlation. *p < 0.05, **p < 0.01. (C) GSEA analysis indicated that six immune/inflammation-related pathways were enriched in the MBD2-high expression

(legend continued on next page)
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Genome Atlas (TCGA) molecular subtypes or CpG island methylator
phenotype (CIMP) subtypes (Figures S1C and S1D). Also, some reg-
ulators individually or in combination were significantly associated
with specific molecular subtypes or CIMP subtypes (Figures S1C
and S1D), which indicated that they also contribute to the heteroge-
neity of GC. The results were also validated in the Asian Cancer
Research Group (ACRG) cohort (Figure S1E). In addition, we specu-
lated about the potential regulation of these regulators by promoter
DNA methylation. We found a relatively strong negative correlation
between the meanmethylation of promoter sites and RNA expression
for TET1 and TDG (Figures S1F and S1G). In conclusion, the above
results revealed that crosstalk among these DNA methylation regula-
tors might play crucial roles in the initiation, progression, and the het-
erogeneity of GC.

Prognosis and immune characteristics of DNA methylation

regulators

To further clarify the role of DNA methylation regulators in GC, we
collected 1,619 patients with survival information from eight inde-
pendent cohorts (Table S1), which is the largest GC cohort to our
knowledge.

The probable molecular functions of these DNA methylation regula-
tors were first investigated using 10 classical oncogenic pathways.
Almost all regulators had a positive correlation with the cell cycle
pathway (Figure S1H), which has been reported to be frequently
dysregulated in cancer.24 MBD1, ZBTB38, and ZBTB4 had a strong
correlation with the transforming growth factor (TGF)-b pathway,
indicating the potential functions of these readers (Figure S1H).
Further analysis of RNA expression revealed a relatively strong pos-
itive correlation among DNMT1, UHRF1, and UNG (Figure 2A;
Table S2). The co-expression phenomenon of these genes might indi-
cate a functional correlation, which needs further validation. The for-
est plot of a univariate Cox regression depicted the prognostic value of
20 DNA methylation modifiers (Figure S1I). The interactions and
prognostic significance of these modifiers were further visualized in
the network plot (Figure 2A).

DNA methylation has been reported to play significant roles in the
immune system and tumor microenvironment.22,23 Therefore, we
also investigated the relationship between DNA methylation regula-
tors and tumor immunology. The expression of MBD2, TET2, and
DNMT1 was positively correlated with most immune cells (Fig-
ure 2B), which might explain their favorable prognostic value. It
was also reported that patients with MSI status or EBV-positive
phenotype usually had better immune checkpoint blockade treatment
efficacy.25 The expression of DNMT1, MBD2, UHRF1, UNG, and
TET2 was significantly upregulated in the MSI group in both the
group in the gatheredGC cohort. The top of the figure represents the enrichment score o

gene list between the high and lowMBD expression groups. (D) Boxplot of MBD2 expres

expression between the MSI and no-MSI groups in TCGA STAD cohort. (F) Overall s

PRJEB23709 immunotherapy cohort. Log-rank test, p = 0.026. (G) Boxplot of relative M

(H) Overall survival analysis of high (n = 159) and low (n = 139) MBD2 expression group
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ACRG and TCGA cohorts (Figures S2A and S2B). The expression
of DNMT1, DNMT3A, MBD2, MBD3, MBD4, NTHL1, and
ZBTB4 was clearly high in the EBV-positive group (Figure S2C).

Considering the relatively higher correlation between MBD2 and
activated CD8 T cells, and its favorable prognostic value, we further
thoroughly analyzed the role of MBD2 in tumor immunology/immu-
notherapy. First, the MBD2 high-expression group had relatively
higher immune cell infiltration abundance, especially for activated
CD8+ T cells, activated B cells, and activated CD4+ T cells (Fig-
ure S2D). Second, gene set enrichment analysis (GSEA) analysis indi-
cated that several immune or inflammation-related pathways, such
as the T cell receptor signaling pathway, B cell receptor signaling
pathway, antigen processing and presentation pathway, PD-L1
expression and PD-1 checkpoint pathway, chemokine signaling
pathway, and natural killer (NK) cell-mediated cytotoxicity pathway,
were significantly enriched in the MBD2 high-expression group (Fig-
ure 2C). Third, MBD2 had a relatively higher expression level not
only in the MSI group, for both the ACRG (Figure 2D) and TCGA
STAD (Figure 2E) cohorts, but also in the EBV-positive group (Fig-
ure S2C). Owing to the important role of MBD2 in tumor immu-
nology, we also investigated whether the expression of MBD2 could
help predict the efficacy of immune checkpoint blockade treatment.
Survival analysis indicated that MBD2 high expression patients had
better prognosis in the PRJEB23709 cohort (Figure 2F) and
UC_Atezo cohort (Figure 2G). Furthermore, the high expression of
MBD2 represented a better clinical response (Figure 2H).

Above all, these results revealed the intimate relationship between
DNA methylation regulators and the tumor microenvironment.
The reader MBD2 was positively correlated with the infiltration of
immune cells and might be a favorable biomarker for prognosis
and the efficacy of immunotherapy in GC.

DNA methylation modification patterns in the gathered GC

cohort

As DNA methylation regulators might contribute to the heterogene-
ity of GC and they also were associated closely with the tumor micro-
environment, to further recognize new probable DNA methylation
regulator patterns, unsupervised clustering was conducted based on
the expression of 20 DNA methylation regulators in the gathered
GC cohort. As shown in Figure S3A, three clusters could achieve
the best clustering efficacy. Accordingly, patients were classified
into DNA methylation modification pattern A (n = 510), pattern B
(n = 749), and pattern C (n = 360). DNA methylation regulator
pattern A was characterized by high expression of ZBTB4, ZBTB38,
MBD1, UHRF2, and TET2; DNA methylation regulator pattern B
showed relatively high expression of UHRF1, DNMT1, UNG, and
f the pathways. The bottom of the figure represents the ranked differential expression

sion between the MSI and no-MSI groups in the ACRG cohort. (E) Boxplot of MBD2

urvival analysis of high (n = 32) and low (n = 59) MBD2 expression groups in the

BD2 expression for distinct clinical response groups. Kruskal-Wallis test, p = 0.016.

s in the UC_Atezo immunotherapy cohort. Log-rank test, p = 0.0042.
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NTHL1; DNAmethylation regulator pattern C showed relatively high
expression of ZBTB33, TET3, TET1, TDG, DNMT3A, DNMT3B,
and MBD3 (Figures 3A, S3B, and S3C). Three-dimensional principal
component analysis (3D-PCA) for the expression of 20 DNAmethyl-
ation modifiers to distinguish three DNA methylation regulator pat-
terns showed that three groups were obviously separated, indicating
that they were well distinguished based on the expression of 20
DNA methylation regulators (Figure 3B). Survival analysis indicated
that DNA methylation regulator pattern B was correlated with a
notably favorable prognosis (Figure 3C) in accordance with its high-
est activated CD8 T cell, activated CD4 T cell, and activated dendritic
cell infiltration (Figure 3D; Table S3).

Then, we explored the differences in signaling pathways among the
three DNA methylation regulator patterns. DNA methylation regu-
lator pattern B was enriched in immune/inflammation-related path-
ways, such as the IFN-g pathway, interleukin (IL)-6/JAK/STAT3
pathway, inflammatory response pathway, and complement pathway
(Figure 3E; Table S4), indicating an immune/inflammation activation
status in pattern B. DNAmethylation regulator pattern A represented
a stroma activation phenotype, withmany enriched pathways, such as
the epithelial-mesenchymal transition (EMT) pathway, hypoxia
pathway, TGF-b pathway, and angiogenesis pathway (Figure 3E).

Different clinical and transcriptome characteristics of the three

DNA methylation regulator patterns in the ACRG cohort

To further explore the potential DNA methylation regulator patterns
in GC, we focused our attention on the ACRG cohort, which had the
most comprehensive clinical information. Unsupervised clustering of
the gene expression of 20 DNA methylation regulators in the ACRG
cohort also identified three DNA methylation-related patterns (Fig-
ures 4A, S4A, and S4D). The composition of DNA methylation reg-
ulators in the three patterns was almost similar to that of the gathered
cohort (Figure S4E).

PCA in the ACRG cohort also indicated that patients were well distin-
guished based on the expression of 20 DNA methylation regulators
(Figure S4F). Survival analysis revealed that DNA methylation regu-
lator pattern B showed a significantly more favorable prognosis than
did patterns A and C (Figure 4B, B versus A, p = 0.00016, B versus C,
p = 0.00232), in accordance with its highest activated CD8 T cell, acti-
vated CD4 T cell, and activated dendritic cell infiltration (Figure S4G).
However, DNAmethylation regulator pattern A did not exhibit a sur-
vival advantage over pattern C (Figure 4B, p = 0.70553), even though
pattern A also had obvious CD8 T cell and B cell infiltration (Fig-
ure S4G). Previous studies reported that TGF-b could restrain the
Figure 3. DNA methylation modification patterns in the gathered GC cohort

(A) The table shows DNA methylation regulators enriched in different DNA methylation r

the expression of 20 DNA methylation regulators to distinguish three DNA methylation

regulator patterns in 1,619 patients from eight cohorts, including 510 cases of DNA met

360 cases of DNAmethylation regulator pattern C. Log-rank test, p < 0.0001. (D) Boxplo

in 1,619 patients. **p < 0.01; ****p < 0.0001. (E) GSVA analysis of relatively activated hallm

activated pathways, and blue represents inhibited pathways. The GC cohorts and DNA
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antitumor immune response by restricting T cell infiltration.26 We
speculated that the stroma surrounding the tumor, which inhibited
the infiltration of immune cells, caused poor prognosis of DNA
methylation pattern A. Therefore, we identified several immune infil-
tration-related signatures fromMariathasan et al.’s26 study (Table S5)
and analyzed their association with DNA methylation regulator pat-
terns. The results confirmed that pattern B was enriched in immune
activation signatures such as CD8 T effector, co-stimulation antigen-
presenting cell (APC), immune checkpoint, and type I IFN responses.
Pattern A represented a stroma activation phenotype, with many sig-
natures, such as angiogenesis, pan-F-TBRS, and EMT1–3 (Figure 4C).
In line with the characteristics of immune cell infiltration and im-
mune signatures, many stimulatory immunomodulators or immune
checkpoint molecules were generally unregulated in DNA methyl-
ation regulator pattern B, indicating a relatively hot tumor immune
microenvironment (Figure 4D). Moreover, based on the molecular
subtypes of the ACRG cohort, we found that most patients of the
MSI subtype were classified into pattern B, while most patients of
the EMT subtype belonged to pattern A, which further confirmed
the conclusion (Figures 4E and S4H).

The above results revealed that GC patients could be classified into
three immune phenotype groups based on the expression of 20
DNA methylation modifiers. In the three groups, pattern B repre-
sented an immune-inflamed phenotype characterized by a relatively
hot immune microenvironment and a high proportion of immune
cell infiltration. Pattern A represented an immune-excluded pheno-
type characterized by stroma activation and immune cells surround-
ing the tumor. Pattern C represented an immune-desert phenotype
characterized by little immune cell infiltration and immune repres-
sion status.

The clinical and transcriptomic characteristics of DNA

methylation-related gene clusters and the construction of DMS

To further explore the heterogeneity of different DNA methylation
regulator patterns, we recognized the differentially expressed genes
(DEGs) among groups. A total of 859 DNA methylation regulator
pattern-related genes were identified (Figure S4I). Gene Ontology
(GO) analysis showed that the pathways were enriched in immune
and DNA methylation-related events (Figure 4F), indicating that
the different clinical and transcriptomic characteristics among
DNAmethylation regulator patterns might result from these differen-
tial DNAmethylation signature genes. Subsequently, a univariate Cox
regression analysis certified that 265 genes had prognostic value
(Table S6). Unsupervised clustering analysis based on the expression
of these 265 genes also divided GC patients into three clusters, which
egulator patterns. (B) Three-dimensional principal component analysis (3D-PCA) for

regulator patterns in 1,619 patients. (C) Survival analysis of three DNA methylation

hylation regulator pattern A, 749 cases of DNA methylation regulator pattern B, and

t of relative immune cell abundance for three DNAmethylation modification patterns

ark gene sets among three DNAmethylation modification patterns. Red represents

methylation regulator patterns were used as sample annotations.



(legend on next page)

www.moleculartherapy.org

Molecular Therapy: Nucleic Acids Vol. 24 June 2021 701

http://www.moleculartherapy.org


Molecular Therapy: Nucleic Acids
we called DNAmethylation gene clusters (Figures 5A and S5A–S5E).
The clinical analysis showed that patients in gene cluster A tended to
have an MSI status, earlier staging, and a better histology subtype
(Figure 5A). Additionally, survival analysis indicated that gene cluster
A had a better prognosis (Figure 5B). In line with the clinical charac-
teristics, patients in gene cluster A presented higher CD8 T effector,
co-stimulation of APC, and type I IFN response signatures (Fig-
ure S5F) as well as a relatively hot immune microenvironment (Fig-
ure 5C). Patients of gene cluster C had higher scores of angiogenesis,
pan-F-TBRS, and EMT1-3 signatures (Figure S5F). The result indi-
cated that gene cluster C presented an immune-excluded phenotype
as DNA methylation pattern A. Above all, these results reinforced
the proposal that there were indeed three different immune pheno-
type groups in GC, which represented different clinical and immune
characteristics.

To evaluate DNA methylation status individually, we further con-
structed a risk score system based on 265 DNA methylation-related
signature genes, that is, the DMS. From this perspective, DNA
methylation regulator pattern B showed the highest median DMS,
while DNA methylation regulator pattern A showed the lowest me-
dian DMS (Figure 5D). For DNA methylation gene clusters, cluster
A showed the highest median DMS, while cluster C showed the lowest
median DMS (Figure 5E). Among the four ACRG subtypes, the MSI
subtype tended to have the highest DMS, while the EMT subtype
tended to have the lowest DMS (Figure 5F). With a median cutoff
value of 0.0429, we divided the patients into DMS-high and DMS-
low groups. The relationship of the DNA methylation regulator
pattern, ACRG molecular subtype, gene cluster, and DMS group is
summarized in a Sankey diagram (Figure 5G; Table S7).

Prognostic value of DMS and validation of GC subtypes in TCGA

cohort

Next, we explored the prognostic impact of DMS in GC patients. Sur-
vival analysis indicated that the DMS-high group had prolonged sur-
vival time in the ACRG cohort (Figure 6A, p < 0.0001), which was
further validated in TCGA STAD cohort (Figure 6B, p = 0.00039).
The multivariate Cox regression model confirmed that DMS was an
independent prognostic biomarker for evaluating patient survival in
both the ACRG and TCGA cohorts (Figures S6A and S6B).

Additionally, we also conducted multi-cohort validation of the prog-
nostic value of DMS. In accord with the results in the ACRG and
Figure 4. Different clinical and transcriptome characteristics of the three DNA

(A) Unsupervised clustering of 20 DNAmethylation regulators in the ACRG cohort. Red re

regulator patterns, ACRG subtypes, MSI status, stage, histology subtype, age, and su

methylation regulator patterns in the ACRG cohort, including 100 cases of DNA methyla

cases of DNAmethylation regulator pattern C. Log-rank test, p < 0.0001. (C) Boxplot of s

cohort. ****p < 0.0001. (D) Stacked bar plot of ACRG molecular subtype for three DNA

TP53+ subtype, red; MSS/TP53� subtype, orange. (E) The heatmap shows the mean di

patterns. The red square indicates upregulation, while the blue square indicates downre

gray. (F) GeneOntology (GO) analysis depicted the enriched pathways of DNAmethylatio

this pathway.
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TCGA STAD cohorts, the DMS-high group had prolonged overall
survival (OS) in the GEO: GSE15459 (p = 0.023), GSE26899 (p =
0.037), GSE26901 (p = 0.0032), and GSE84437 (p = 0.014) cohorts,
as well as the gathered eight GEO GC cohorts (p < 0.0001) (Figures
S6C–S6G). Additionally, DMS was also correlated with disease-free
survival (DFS), with DMS-high group patients having prolonged
DFS (p < 0.0001) (Figure S6H). In the three cohorts with recurrence
information, DMS was also correlated with recurrence-free survival
(RFS) in the GEO: GSE26253 (p = 0.0019), GSE26899 (p = 0.04),
and GSE26901 (p = 0.005) cohorts (Figures S6I–S6K).

In addition, DMS could also contribute to evaluating some clinical
characteristics. The DMS-high group tended to have moreMSI status,
earlier staging, and better histology subtypes in the ACRG cohort
(Figure 6C). It has been reported that MSI status and EBV-positive
phenotype might be related to better immunotherapy efficacy.25 Of
the four TCGA STADmolecular subtypes, the MSI and EBV-positive
groups showed higher DMS scores (Figures 6D and S7A). The results
of the Seung GC cohort were also in accord with the results of TCGA
cohort (Figure S7B).

The above results revealed that DMS was a significant prognostic
biomarker that could effectively predict OS, DFS, RFS, and some clin-
ical characteristics of GC patients and offer potential clinical applica-
tion value.

To further investigate the relationship between DNA methylation
regulator patterns, DMS, and the methylation status of GC, we first
adopted four CIMP subtypes that were annotated by Liu et al.27

Results showed that patients with CIMP status tended to have high
DMS (Figure 6D). Additionally, we also downloaded TCGA STAD
450K data. To our surprise, unsupervised clustering based on the
2,000 most variable transcription start site (TSS) CpG sites also clas-
sified patients into three groups (Figure S7C), which we called
MethCluster. Survival analysis showed that MethCluster C2 had the
best prognosis, with the highest DMS (Figures 6E and S7D). The
proportion of immune cells and immune signature analysis
showed that MethCluster C2 had relatively high activated CD8
T cell and CD4 T cell abundance and relatively high CD8 effector
T cell, cytolytic activity, and antigen presentation pathway scores
(Figures S7E and S7F). In addition, MethCluster C2 showed abundant
stimulatory or major histocompatibility complex (MHC) molecule
expression (Figure S7G), which represented a relatively hot immune
methylation regulator patterns in the ACRG cohort

presents high expression, and blue represents low expression. The DNAmethylation

rvival status were used as sample annotations. (B) Survival analysis of three DNA

tion regulator pattern A, 132 cases of DNA methylation regulator pattern B, and 68

everal immune signatures for three DNAmethylation regulator patterns in the ACRG

methylation regulator patterns. MSI subtype, light blue; EMT subtype, blue; MSS/

fferences of immune-related gene expression in the three DNA methylation regulator

gulation. Stimulatory molecular, yellow; inhibitory molecular, dark; MHC molecular,

n-related genes. The color of the bar plot represents the number of genes enriched in
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microenvironment and might explain its better prognosis. The rela-
tionship of DNA methylation regulator patterns, TCGA subtype,
CIMP status, MethCluster, and DMS was visualized in an alluvial di-
agram (Figure 6F). Above all, the results of the DNA methylome
further validated that there were three DNAmethylation-related mo-
lecular subtypes in GC, which revealed the consistency of clustering
between the transcriptome and DNA methylome.

Then, we also analyzed the correlation of intrinsic immune escape
mechanisms with DMS in TCGA STAD patients. The results showed
that TMB and tumor neoantigen burden (TNB) were relatively higher
in the DMS-high group, indicating the relatively high immunoge-
nicity (Figures S8A and S8B). While homologous recombination
deficiency (HRD), cancer-testis antigen (CTA), aneuploidy score,
intratumor heterogeneity (ITH), and stroma fraction were relatively
higher in the DMS-low group (Figures S8C–S8G), indicating a higher
degree of malignancy and lower immune cell infiltration.

Predictive value of DMS in immunotherapy

Immunotherapy has manifested improved survival in the treatment
of multiple tumor types, and it is urgent to identify patients who
will benefit most. Thus, we further explored whether DMS could pre-
dict the efficacy of immunotherapy using four immune checkpoint
blockade treatment cohorts.

In the Seung CC cohort, which was the only public transcriptome da-
taset in GC immunotherapy cohorts to our knowledge, patients in the
response group tended to have higher DMS (Figures 7A, 7B, and
S9A). It was reported that patients in MSI-H and EBV-positive
groups showed higher response rates.28 In line with this, these pa-
tients also exhibited higher DMS (Figure 7C). In addition, the mesen-
chymal subtype has been demonstrated to be a negative predictor of
response to immunotherapy in GC.28 The mesenchymal subtype
showed relatively low DMS in this cohort (Figure S9B). Moreover,
we also found a positive correlation between DMS and the expression
of PD-L1 (Figure S9C), whose high expression indicated better
efficacy of immunotherapy. To our regret, the survival data of the pa-
tients in this cohort were not accessible. Thus, three pan-cancer
immunotherapy cohorts were further adopted to evaluate the predic-
tive value of DMS. In the UC_Atezo cohort, with urothelial cancer pa-
tients treated with atezolizumab, the high DMS group had prolonged
OS (p = 0.038) (Figure 7D). At the same time, the partial response
(PR) and complete response (CR) groups had relatively higher
Figure 5. Clinical and transcriptomic characteristics of the DNA methylation g

(A) Unsupervised clustering of 265 DNA methylation-related genes in the ACRG coho

molecular subtypes, MSI status, stage, histology, age, and survival status. Red represen

DNA methylation-related gene clusters, including 108 cases in gene cluster A, 117 case

Heatmap showing the mean differences of immune-related gene expression in three DN

square indicates downregulation. Stimulatory molecular, yellow; inhibitory molecular, d

patterns. The upper and lower ends of the boxes represent the interquartile range of valu

Kruskal-Wallis test, p < 0.0001. (E) Boxplot of DMS for three DNA methylation gene clu

subtypes. Kruskal-Wallis test, p < 0.0001. (G) Sankey diagram depicting the relationship

DMS group.
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DMS (Kruskal-Wallis test, p = 0.0014) (Figures 7E, S9D, and S9E).
We also evaluated the prognostic prediction efficiency of the combi-
nation of TMB and DMS. The results showed that the DMS-high and
TMB-high groups had the best overall survival compared with the
other groups (Figure 7F). The immune phenotypes in this cohort
have been certified by experiments, and so we further investigated
the correlation of DMS with three classic immune phenotypes. As
shown in Figure 7G, the patients with an immune-inflamed pheno-
type had the highest DMS, which further confirmed our analysis
above. The same results were also found in the PRJEB23709 cohort
and David Liu cohort. The DMS-high group exhibited better
prognosis and higher clinical response rates (Figures 7H–7K and
S9F–S9H).

Importantly, in order to further evaluate the predictive performance
of the DMS in GC, we compared the DMS with 10 previously pub-
lished gene expression immune-related signatures studied in response
to immune checkpoint inhibitors (ICIs).29–35 The results showed that
the DMS was the best signature for predicting response to immuno-
therapy with an area under the curve (AUC) value of 0.843 (Figures
7L and S9I).

Above all, the results of these four immunotherapy cohorts solidly
certified that DMS had the ability to efficiently predict the efficacy
of immunotherapy and might achieve better predictive value when
combined with TMB.

DISCUSSION
In recent years, growing evidence has revealed that DNAmethylation
plays crucial roles in the regulation of antitumor immunity and the
response to immunotherapy.21–23 However, the global profiling of
DNA methylation regulator patterns and its impact on the immune
microenvironment of GC remains to be clarified. Identifying the rela-
tionship between different DNA methylation modification patterns
and immune cell infiltration in GC is beneficial to deepen our under-
standing of the tumor immune microenvironment and to guide more
effective immunotherapy strategies.

In this study, we first recognized three DNA methylation regulator
patterns that have distinct immune characteristics by unsupervised
clustering of the gene expression of DNA methylation regulators.
The results were consistent with three classical immune phenotypes:
immune-inflamed, immune-excluded, and immune desert.26 DNA
ene cluster and the construction of DMS

rt. The top clinical annotation included DNA methylation regulator patterns, ACRG

ts high expression, and blue represents low expression. (B) Survival analysis of three

s in gene cluster B, and 75 cases in gene cluster C. Log-rank test, p = 0.00013. (C)

A methylation gene clusters. The red square indicates upregulation, while the blue

ark; MHC molecular, gray. (D) Boxplot of DMS for three DNA methylation regulator

es. The lines in the boxes represent the median value, and black dots show outliers.

sters. Kruskal-Wallis test, p < 0.0001. (F) Boxplot of DMS for four ACRG molecular

of DNA methylation regulator pattern, ACRG molecular subtype, gene cluster, and
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methylation regulator pattern B was characterized by activation of
multiple immune/inflammation-related pathways and a higher pro-
portion of CD8+ effector cell and APC infiltration. In addition,
many stimulatory immunomodulators were generally upregulated,
indicating that DNA methylation regulator pattern B had a hot im-
mune microenvironment. In line with this, patients with pattern B
had the best prognosis. Contrary to pattern B, DNA methylation
regulator pattern C had little immune cell infiltration and extremely
low expression of stimulatory immunomodulators or MHC mole-
cules, which revealed a cold microenvironment. Although DNA
methylation regulator pattern A also had a high proportion of
CD8+ effector cell and other immune cell infiltration, the activation
of the stroma and TGF-b pathway hindered the penetration of im-
mune cells into the parenchyma of the tumor, which presented an im-
mune-excluded phenotype. Therefore, it was not surprising that DNA
methylation regulator pattern A has poorer prognosis than pattern B.

Furthermore, DEGs among these three DNA methylation regulator
patterns were considered DNA methylation-related signature genes
and might be directly or indirectly regulated by DNA methylation
events. Similar to the results of the DNA methylation regulator pat-
terns, three DNA methylation gene clusters that correlated with im-
mune or stromal activation were recognized based on these DNA
methylation signature genes. These results demonstrated that there
were indeed three distinct immune subtypes in GC.

Considering the heterogeneity of DNAmethylation modification indi-
vidually, there was a need to quantify the DNA methylation modifica-
tion profiles of a single tumor. Thus, a DNA methylation-related
scoring system called DMS was further constructed and validated in
multiple GC datasets. The immune-inflamed subtype has higher
DMS, which was further validated in a cohort whose immune pheno-
type was already determined by experiments.26 Multivariate analysis
also indicated that DMS was an independent prognostic factor in GC.
Patients with EBV-positive or MSI status that tended to benefit from
immunotherapy25 had relatively high DMS. In addition, DMS also
showed excellent predictive value in multiple immunotherapy cohorts.

We also conducted unsupervised clustering using promoter DNA
methylation sites of GC in TCGA. To our surprise, patients were
also divided into three clusters. Patients of MethCluster C2 had a
high proportion of activated CD4 and CD8 T cell infiltration and a
hot immune microenvironment, in line with better prognosis and
higher DMS. These results revealed a consistency between the tran-
scriptome and DNA methylome and further validated that there
were indeed three distinct immune subtypes in GC.
Figure 6. Prognostic value of DMS and validation of GC subtypes in TCGA coh

(A) Survival analysis of the high (n = 150) and low (n = 150) DMS groups in the ACRG coho

(n = 177) and low (n = 193) DMS groups in TCGA STAD cohort. Log-rank test, p = 0.0003

in the ACRG cohort. The ACRG subtypes, MSI status, stage, histology subtype, age,

relationship of DMS and various clinical characteristics in TCGA cohort. TCGA subtype

used as sample annotations. (E) Boxplot of DMS for threeMethClusters in TCGASTAD co

DNA methylation regulator pattern, TCGA molecular subtype, CIMP status, MethCluste
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In view of the clinical significance of our study, we constructed a DMS
that can evaluate the DNA methylation profiles individually. The
predictive value of DMS for survival was validated in multiple GC
cohorts. Additionally, DMS could also be used for assessing the clin-
icopathological features of patients, such as MSI status, EBV status,
histology subtype, molecular subtypes, clinical stages, and TMB,
among others. In addition, DMS had the ability to predict the efficacy
of PD-1/PD-L1 immune checkpoint blockade therapy, which was
validated in a GC immunotherapy cohort and three pan-cancer
immunotherapy cohorts. Moreover, when combined with TMB, the
widely accepted immunotherapy biomarker DMS revealed better pre-
dictive performance. Therefore, DMS might be an excellent
biomarker for predicting the efficacy of immune checkpoint therapy
and might promote personalized GC immunotherapy in the future.

There were also some limitations to our study. First, the survival data
of the GC immunotherapy cohort were not accessible. The predictive
performance of DMS for GC needs to be further certified in the future.
Second, only the median cutoff of DMS in the ACRG cohort was used
to classify the GC, and the optimal cutoff value of the DMS might be
needed to better stratify the GC patients.

In conclusion, we identified three distinct immune subtypes in GC
from the perspective of DNA methylation and constructed an indi-
vidual DNA methylation profile scoring system. DMS is a valuable
tool for the prediction of survival, clinicopathological characteristics,
and the efficacy of immunotherapy and might help to promote
personalized GC immunotherapy in the future.

MATERIALS AND METHODS
Collection of GC datasets and preprocessing

The workflow of our work is shown in Figure S1A. Publicly available
data from the GEO and TCGA databases were used in this study.
Patients without survival information were removed from further
evaluation. In total, we gathered eight GC cohorts (ACRG, GEO:
GSE15459, GSE34942, GSE57303, GSE84437, GSE26899, and
GSE26901, and TCGA) including 1,619 patients for further analysis.

For TCGA STAD cohort, RNA sequencing data (fragments per kilo-
base of transcript per million mapped reads [FPKM] values) were
downloaded via the R package TCGAbiolinks.36 Then, FPKM values
were transformed into transcripts per kilobase million (TPM) values
that were more similar to those resulting from microarrays. Somatic
mutation (SNPs and small INDELs) and methylation 450K data were
downloaded from the University of California Santa Cruz (UCSC)
Xena browser (https://xenabrowser.net). Clinical data were collected
ort

rt based onmedian value. Log-rank test, p < 0.0001. (B) Survival analysis of the high

9. (C) Bar chart depicting the relationship of DMS and various clinical characteristics

and survival status were used as sample annotations. (D) Bar chart depicting the

s, MSI status, CIMP status, stage, histology subtype, age, and survival status were

hort. Kruskal-Wallis test, p < 0.0001. (F) Alluvial diagram depicting the relationship of

r, and DMS group.
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from (1) the corresponding GEO dataset metadata, and (2) the sup-
plemental files of relevant articles.27,37–39 Batch effects resulting
from non-biological technical biases were corrected using the
ComBat algorithm of the sva package. All baseline information of
eligible GC datasets is summarized in Table S1.

Collection of immune-related data

The immune-related features and genes of TCGA GC patients
are available at https://gdc.cancer.gov/about-data/publications/
panimmune. Four immune checkpoint blockade treatment cohorts
with available expression and clinical information were used in our
study: (1) Seung GC cohort, metastatic GC with pembrolizumab
treatment; (2) David Liu cohort, metastatic melanoma with nivolu-
mab or pembrolizumab treatment; (3) UC_Atezo cohort, urothelial
cancer with atezolizumab treatment; and (4) PRJEB23709 cohort,
melanoma with ipilimumab + nivolumab/pembrolizumab or nivo-
lumab/pembrolizumab treatment.

Ten previously published immune related signatures studied in
response to ICI were collected to compare with our established signa-
ture DMS (Table S8).

Crosstalk among DNA methylation regulators

The protein-protein interactions among DNA regulators were identi-
fied based on the STRING40 interaction database and were further
visualized by Cytoscape.41 The size of a node indicates the modifier
numbers interacting with it.

Unsupervised clustering for DNA methylation genes

Unsupervised clusteringmethods were used to identify different DNA
methylation modification patterns and classify patients for further
analysis. A total of 20 regulators that were collected frompublished ar-
ticles were extracted from eight integrated GEO big datasets or the
ACRG cohort to identify different DNA modification patterns medi-
ated byDNAmethylationmodifiers. A consensus clustering algorithm
was performed using the R package ConsensuClusterPlus42 and was
repeated 1,000 times in order to ensure the stability of clustering.

Gene set variation analysis (GSVA) and single-sample GSEA

(ssGSEA)

The R package GSVA43 was used to quantify the activity of biological
pathways. Immune gene signatures were collected from previously
Figure 7. The role of DMS in four immune checkpoint treatment cohorts

(A) Boxplot of DMS for distinct clinical response groups in the Seung GC immunotherapy

plot of DMS for distinct clinical response groups in the Seung GC immunotherapy cohor

cohort. The MSI-H and EBV groups showed higher DMS. Kruskal-Wallis test, p = 0.00

UC_Atezo immunotherapy cohort. Log-rank test, p = 0.038. (E) Boxplot of DMS for di

Kruskal-Wallis test, p = 0.0014. (F) Survival analysis of distinct groups stratified by both

UC_Atezo immunotherapy cohort. Kruskal-Wallis test, p < 0.001. (H) Survival analysis o

cohort. Log-rank test, p < 0.0001. (I) Stacked bar plot depicting different fractions o

immunotherapy cohort. PR/CR, red; PD/SD, blue. (J) Survival analysis of the high (n = 2

test, p = 0.028. (K) Boxplot of DMS for distinct clinical response groups in the David Liu

multiple bar plots for the AUC values of the 11 ICT response signatures.
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published works.26,38,44 All hallmark gene sets were downloaded
from the Molecular Signature Database (MSigDB) to compare differ-
ences between DNA modification patterns. The 10 most common
oncogenic hallmarks were obtained from the supplementary table
of Sanchez-Vega et al.’s45 work. The ssGSEA algorithm in the R pack-
age GSVA was used to estimate the relative abundance of each im-
mune cell in GC. The gene sets defining each immune cell type
were downloaded from the study of Charoentong46 (Table S9).

DEGs among DNA patterns

DEGs among different DNA modification patterns were determined
using the R package limma.47 The significance criterion for DEGs was
set as an adjusted p value of <0.01.

Functional and pathway enrichment analysis

GO analysis was performed to identify enriched GO terms using the
R package clusterProfiler48 with a cutoff of p value of <0.05 and an
adjusted p value of <0.2. To identify the most related pathways of
DNAmodifiers, the gseKEGG function of the R package clusterProfiler
was used. The DEGs list was estimated between groups with high and
low expression of this gene and ordered according to the fold change.

Generation of the DMS

First, the prognostic analysis was performed for each gene in the 859
DEGs using a univariate Cox regression model. A total of 265 genes
with significant prognosis were extracted for further analysis. Then,
the expression of these genes was transformed into a Z score. PCA
was conducted to construct a DNAmethylation relevant score, which
we called DMS. Both PC1 and PC2 were selected to serve as signature
scores. This method offered the advantage of focusing the score on the
set with the largest block of well-correlated (or anticorrelated) genes
in the set, while downweighting contributions from genes that do not
track with other set members:38,49

DMS =
X

PC1i + PC2ið Þ;
where i is the expression of DNA methylation regulator pattern-
related signature genes.
Statistical analysis

The normality of the variables was tested using the Shapiro-Wilk
normality test.50 For comparisons of two normally distributed groups,
cohort. No response, blue; response, red. Wilcoxon test, p = 0.00017. (B) Waterfall

t. (C) Boxplot of DMS for different TCGA subtypes in the Seung GC immunotherapy

24. (D) Survival analysis of the high (n = 204) and low (n = 144) DMS groups in the

stinct clinical response groups. The PR and CR groups had relatively higher DMS.

TMB and DMS. (G) Boxplot of DMS for three established immune phenotypes in the

f the high (n = 54) and low (n = 37) DMS groups in the PRJEB23709 immunotherapy

f clinical response patients in the high and low DMS groups in the PRJEB23709

1) and low (n = 100) DMS groups in the David Liu immunotherapy cohort. Log-rank

immunotherapy cohort. PD/SD, blue; CR/PR, red. Wilcoxon test, p = 0.022. (L) The
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statistical analysis was performed by unpaired t tests, and for nonnor-
mally distributed variables, statistical analysis was analyzed by a
Wilcoxon rank-sum test. For comparisons of three groups,
Kruskal-Wallis tests or one-way ANOVA were used as nonpara-
metric or parametric methods, respectively. Correlation coefficients
were computed by Spearman and distance correlation analyses. The
best cutoff values of each cohort were evaluated using the surv-
cutpoint function in the survminer package. The survival curves for
the prognostic analysis were conducted via the Kaplan-Meier method,
and log-rank tests were utilized to judge differences between groups.
The univariate Cox regression model was utilized to calculate the
hazard ratios (HRs) for DNA regulators and DNA methylation regu-
lator pattern-related genes. All statistical p values were two-sided,
with p <0.05 considered as statistically significant. All statistical ana-
lyses were conducted using R 3.6.1 (https://www.r-project.org/).

SUPPLEMENTAL INFORMATION
Supplemental information can be found online at https://doi.org/10.
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