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Summary

There is evidence that the cytokine tumor necrosis factor a (TNF-cx) contributes to the pathogenesis
of neurological autoimmune diseases such as multiple sclerosis (MS) and experimental allergic
encephalomyelitis (EAE) . TNF-cx exerts damaging effects on oligodendrocytes, the myelin-producing
cell of the central nervous system (CNS), and myelin itself. We have recently demonstrated TNF-cx
expression from astrocytes induced by lipopolysaccharide (LPS), interferon y (IFN-y), and interleukin
10 (IMO). Astrocytes secrete TNF-ci in response to LPS alone, and can be primed by IFN-y
to enhance LPS-induced TNF-ot production . IFN-y and IIAO, cytokines known to be present
in the CNS during neurological disease states, do not induce TNF-a production alone, but act
synergistically to stimulate astrocyte TNF-ac expression. Inbred Lewis and Brown-Norway (BN)
rats differ in genetic susceptibility to EAE, which is controlled in part by major histocompatibility
complex (MHC) genes. We examined TNF-ot gene expression by astrocytes derived from BN
rats (resistant to EAE) and Lewis rats (highly susceptible) . Astrocytes from BN rats express TNF-cx
mRNA and protein in response to LPS alone, yet IFN-y does not significantly enhance LPS-
induced TNF-a expression, nor do they express appreciable TNF-cx in response to the combined
stimuli of IFN-y/IIr1s . In contrast, astrocytes from Lewis rats express low levels of TNF-cx
mRNA and protein in response to LPS, and are extremely responsive to the priming effect of
IFN-y for subsequent TNF-a gene expression . Also, Lewis astrocytes produce TNF-cx in response
to IFN-y/IIT1#. The differential TNF-a production by astrocytes from BN and Lewis strains
is not due to the suppressive effect of prostaglandins, because the addition of indomethacin does
not alter the differential pattern of TNF-cx expression . Furthermore, Lewis and BN astrocytes
produce another cytokine, 11,6, in response to LPS, IFN-y, and IIT1,8 in a comparable fashion .
Peritoneal macrophages and neonatal microglia from Lewis and BN rats are responsive to both
LPS and IFN-y priming signals for subsequent TNF-cx production, suggesting that differential
TNF-(x expression by the astrocyte is cell type specific . Taken together, these results suggest
that differential TNF-ci gene expression in response to LPS and IFN-y is strain and cell specific,
and reflects both transcriptional and post-transcriptional control mechanisms. The capacity for
TNF-cx production by Lewis astrocytes, especially in response to disease-related cytokines such
as IFN-y and IIAO, may contribute to disease susceptibility and to the inflammation and
demyelination associated with EAR

Atrocytes, the major glial cell in the central system (CNS),'
were traditionally thought to act solely as a "support

cell" for neurons, but recent evidence indicates that astro-
cytes have a wide range of functions, which include partici-

l Abbreviations used in this paper. BN, Brown-Norway ; CNS, central
nervous system ; EAE, experimental allergic encephalomyelitis ; GFAP, glial
fibrillary acidic protein; GM-CSF, granulocyte/macrophage colony-stimu-
lating factor; MBP, myelin basic protein; MS, multiple sclerosis ; PKC,
protein kinase C; RT, reverse transcription .
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pation in immunological events occurring in the brain . The
astrocyte can be stimulated to function in a manner analo-
gous to monocytes/macrophages, and has been postulated to
act as an immunocompetent cell in the CNS (1, 2) . Among
these immunologic functions, the astrocyte can be induced
to express class II MHC antigens after exposure to IFN-y
or viruses (3, 4), and can present antigen to T cell clones
in an MHC-restricted fashion upon expression of class II an-
tigens (5) . Class II MHC gene expression induced in the as-
trocyte by IFN-y or virus is enhanced by TNF-cx (6-8) .
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Cytokines, then, can regulate the ability of the astrocyte to
function as an APC in the CNS.

Astrocytes can also be induced to express the following
cytokines : I1A (9, 10) ; TNF-ca (10-13) ; IIr6 (10, 14, 15); gran-
ulocyte colony-stimulating factor (G-CSF) (16) ; and granu-
locyte/macrophage colony-stimulating factor (GM-CSF) (16) .
The stimulatory agents that induce cytokine production by
astrorytes include LPS, Cat+ ionophore, viruses, and cyto-
kines themselves (II,l, TNF-a, IFN-y) .
The cytokine TNF-a has been postulated to have a central

role in augmenting inflammatory demyelination and intra-
cerebral immune responses. TNF-a has a diverse range of
functions in the CNS, which include induction ofclass I MHC
antigens on astrocytes (17, 18) ; induction of ICAM-1 on
human fetal astrocytes (19) ; upregulation of class II MHC
antigens induced by IFN-y and/or virus on astrorytes (6-8) ;
stimulation of IIr6 secretion by astrocytes (14, 15) ; prolifera-
tion of adult astrorytes (20) ; myelin damage (21) ; and lysis
of oligodendrocytes (12) . Astrocytes also express high affinity
receptors for TNF-a (7), as well as produce TNF-a, which
may represent an autocrine pathway of stimulation for these
cells .
A variety of animal models exist for the study of CNS

disease involving inflammatory demyelinating lesions . The
best characterized experimental model for CNS autoimmune
disease is experimental allergic encephalomyelitis (EAE) . This
disease is induced by injection of myelin basic protein (MBP)
or transfer of encephalitogenic MBP-specific T cells to naive
recipients . EAE is characterized by invasion of the CNS by
T lymphocytes and macrophages, demyelination, and acute,
chronic, or chronic relapsing paralysis. The mediators of this
disease are MBP-reactive T helper cells that are class II MHC
restricted (see for review, reference 22) . It has been suggested
that antigen-specific autoimmune T cells are responsible for
initiation ofdisease, and that perpetuation ofdisease and sub-
sequent demyelination may be the result ofan influx oflargely
non-antigen-specific inflammatory cells of the recipient an-
imal (23) . There appears to be genetic control of suscepti-
bility to EAE . In inbred rat strains, Lewis rats (RT1 1 haplo-
type) are susceptible to EAE, whereas Brown-Norway (BN)
rats (RT1°) are resistent . Lewis x BN Fl rats have disease
severity one-tenth that of Lewis rats. Disease susceptibility
appears to be linked to MHC alleles, although non-MHC
genes may play a small role in contributing to EAE (24-26) .

Several studies have examined what might contribute to
the immunopathological reaction seen in the CNS of Lewis
rats. Massa et al . (27, 28) demonstrated that astrocytes de-
rived from Lewis rats express higher levels of class II MHC
antigens upon treatment with either IFN-y or virus com-
pared with astrocytes obtained from BN rats . This hyperin-
duction of class II in EAE-susceptible Lewis rats was astro-
cyte specific, as both peritoneal macrophages and microglial
cells of susceptible and resistant strains showed identical pat-
terns for class II induction . Astrocyte class II MHC expres-
sion can contribute to antigen presentation in thebrain, which
is thought to enhance intracerebral immune responses .

Cytokine production has also been implicated in con-
tributing to autoimmune diseases (see for review, reference
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29) . Since cytokines play a major role in regulating immune
responses, aberrant expression may be a factor in the initia-
tion and perpetuation of autoimmunity. Of particular interest
is the fact that the genes for TNF-a and functionally related
TNF-a (lymphotoxin) map within the MHC gene complex
(30). Since many autoimmune diseases are strongly associated
with class I and II MHC gene products, TNF-a/TNF-0 are
plausible candidates for cytokines involved with autoimmunity.
We have previously demonstrated that astrorytes from the

outbred rat strain Sprague Dawley secrete TNF-a in response
to LPS alone, IFN-y plus LPS, and IFN-y plus ID10 (11) .
IFN-y alone does not induce TNF-cx production by astro-
cytes but acts to enhance LPS-induced TNF-a synthesis and
to synergize with Ilrlf for TNF-a production . The most
potent TNF-a production is observed when astrorytes are
pretreated with IFN-y for 8-12 h before exposure to either
LPS or IIr1/3, suggesting that IFN-y provides a priming signal
to the astrocyte . The aim of this study was to examine TNF-a
expression by astrocytes from inbred BN and Lewis rats in
response to the three different stimuli . We report that TNF-a
expression at both the mRNA and protein level is differen-
tially regulated in these strains depending upon the stimuli
used for induction . Astrocytes from EAE-resistant BN rats
are refractive to the priming effect of IFN-y for enhanced
LPS-induced TNF-a production, and produce very low levels
of TNF-a in response to IFN-y/IIr1O . In contrast, astro-
cytes from EAE-susceptible Lewis rats are hyporesponsive to
the LPS induction signal, and extremely sensitive to the
priming effect of IFN-y for subsequent TNF-a production .
Also, Lewis astrocytes produce high levels of TNF-a when
stimulated by IFN-y and IIAO. Thus, Lewis and BN astro-
cytes are differentially regulated by LPS and IFN-y with re-
spect to TNF-a gene expression .

Materials and Methods
Primary Glial Cell Cultures.

	

Primary glial cell cultures were es-
tablished from neonatal rat cerebra as previously described (31) .
Meninges were removed before culture. Culture medium was Dul-
becco's modified essential medium (DMEM), high glucose formula
supplemented with glucose to a final concentration of 6 g/liter,
2 mM glutamine, 0 .1 mM nonessential amino acid mixture, 0.1%
gentamycin, and 10% FCS (Hyclone Laboratories, Logan, UT) .
Oligodendrocytes were separated from the astrocytes by mechan-
ical dislodging after 14 d in primary culture, and then the astro-
cytes were obtained by trypsinization (0.25% trypsin, 0.02%
EDTA) . The astrocytes were monitored for purity by immuno-
fluorescence. The cells were stained for glial fibrillary acidic pro-
tein (GFAP), an intracellular antigen unique to astrorytes, using
a mAb to GFAP (1 :4) for 30 min at room temperature, followed
by a 30-min incubation with goat anti-mouse Ig-FITC (1 :20) . As-
trocyte cultures were routinely >97% positive for GFAP, and <2%
of the cells were microglia based on their positive staining for
nonspecific esterase and MAC-1, a mAb that reacts with the C3b
receptor. In subsequent experiments, astrocytes were purified by
four repetitions of trypsinization and replating to remove con-
taminating microglia ; after such manipulation, the astrocyte cul-
tures were >99% positive for GFAP, and negative for nonspecific
esterase and MAC-1 staining. Microglia were purified by a differential
adhesion technique as described by Sasaki et al . (32) . Confluent



mixed glial cultures were shaken at 270 rpm for 3 h, at which time
floating cells were removed. The cells were plated in a 25-cmz
tissue culture flask, and allowed to adhere for 1 h. Microglia ad-
here to plastic during this time period, while contaminating astro-
cytes and oligodendrocytes remain in the media. The adherent cells
were positive for MAC-1 and nonspecific esterase (90%).

Rat Strains.

	

The rat strains used for this study include Lewis
(RT11), BN (RT1°), and the F, hybrid (Lewis x BN). All rats
were purchased from Harlan Sprague-Dawley (Prattville, AL).

PeritonealMacrophage Cultures.

	

Rat peritoneal macrophages were
isolated from adult Lewis andBN rats. Macrophages were removed
by peritoneal lavage withice-cold PBS, separated from contaminating
red blood cells by a Ficoll-Hypaque gradient, and then plated onto
60-mm tissue culture dishes . Nonadherent cells were removed after
4 h, and the cells were cultured for an additional 48 h before stimu-
lation for TNF-a production .

Reagents.

	

Rat rIFN-y (sp act, 4 x 106 U/mg) and human rIL
1/3 (sp act, 5 x 10 8 U/mg) were obtained from AmGen Biolog-
icals (Thousand Oaks, CA). Human rTNF-a (sp act, 5.6 x 10'
U/mg) was the generous gift ofGenentech, Inc. (South San Fran-
cisco, CA), and murine rIL6 (sp act, 4 x 10 8 U/mg) was pur-
chased from Biosource International, (Westlake Village, CA). Ac-
tinomycin D-mannitol, MTT [3-(4,5)-dimethylthiazol-2YL)-2,
5-diphenyl-tetrazohum bromide], LPS (Escherichia coli : 0127 :138),
and indomethacin were purchased from Sigma Chemical Co . (St .
Louis, MO).

Cytokine Production by Astrocytes.

	

Primary rat astrocytes were
resuspended in DMEM containing 10% FCS, and plated at 106
cells/well into six-well (35-mm) plates (Costar, Cambridge, MA).
The plates were incubated overnight to allow recovery of the cells
from trypsinization and to assure adherence ofthe astrocytes . When
the astrocytes reached confluency (1-2 d after plating), the original
media was aspirated off, and 2 ml ofDMEM containing 2% FCS
was added to the wells. Astrocytes were treated with LPS (0-10
ug/ml), rat rIFN-y (0-1,000 U/ml), human rIIL10 (0-1,000 U/ml),
or a combination of the above for various time periods (0-2 d) .
To induce cytokine production in astrocytes, a number of strate-
gies were used that included the simultaneous addition ofdifferent
agents or pretreatment with one agent before the addition of an-
other. Supernatants were collected, centrifuged to remove con-
taminating cells, and stored at - 70°C until use. Peritoneal macro-
phages and microglia were plated at 0.5 x 106 cells/well into
12-well plates, cultured for 48 h, then stimulated for TNF-a produc-
tion as described above.

Measurement ofTNF-a Activity.

	

TNF-a activity in culture su-
pernatants was determined in a biologic assay using WEHI 164
clone 13 mouse fibrosarcoma cells as previously described (11) .
TNF-cr activity was expressed as TNF-a per culture supernatant
(pg/ml). The absolute concentration ofTNF-a (pg/ml) was deter-
mined by extrapolation from the standard curve, which was gener-
ated by using knownamounts ofhuman rTNF-a . The lower levels
of TNF-a sensitivity in our assay system ranged from 4 to 20 pg
TNF-a/ml. All samples were tested in triplicate and are presented
as the mean ± SD .

Measurement ofIL6 Protein Activity.

	

IL-6 activity in culture su-
pernatants was determined in a biologic assay using the IL-6-
dependent B cell hybridoma 7TD1 as previously described (14, 33,
34). 11,6 activity was expressed as U/ml of11,6 based on extrapola-
tion from the standard curve, which was generatedby using known
amounts of murine rlIT6. All samples were assayed in triplicate .

Statistical Analysis.

	

Levels of significance for comparisons be-
tween samples were determined using the student t test distribution .
RNA Isolation .

	

Total cellular RNAwas isolated from confluent
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monolayers ofastrocytes that had been incubated with culture media,
LPS, IFN-y plus LPS, and IFN-y plus IIT1# for various time in-
tervals. RNA isolation followed the procedure of Chomczynski
and Sacchi (35), as previously described (11) . Briefly, cells were
scraped and washed two times in PBS, and pelleted . RNA was ex-
tracted with guanidinium isothiocyanate and phenol, and precipi-
tated with ethanol.

Polymerase Chain Reaction.

	

PCRwas performed as previously
described (11, 36-38) . Briefly, 2 kg of total RNA isolated from
astrocyte cultures was reverse transcribed by 200 U of Moloney
mouse leukemia virus reverse transcriptase (Bethesda Research
Laboratories, Bethesda, MD)for 10 min at room temperature, then
1 h at 42°C, using oligo(dT) as a primer, in a final volume of 20
Al . The resultingcDNA was amplified with 2 UofAmpliTaqDNA
Polymerase (Perkin Elmer Cetus, Norwalk, CT) in a final volume
of 100 Al, containing 10 mM Tris-HCI, 50 mM NaCl, 1.5 mM
MgCI, 0.01% gelatin, 1 mM ofeach deoxynucleotide triphosphate,
and 100 pmol each of primers I and II . Primer I (ATGAG-
CACAGAAAGCATGATC) is complementary to position 144-164
of the 5' end of mouse TNF-ca cDNA (39), and primer II
(TACAGGCTTGTCACTCGAATT) is complementary to position
399-419 ofthe 3' end ofthe mouse TNF-amRNA. Amplification
was carried out in a twin block system (Ericomp Inc., San Diego,
CA) for 30 cycles (one cycle = 94°C for 1 min, 55°C for 3 min,
and 72°C for 3 min) . Aliquots (1-16 141) ofeach resulting reaction
mixture were applied to a 1% agarose gel, subjected to electropho-
resis, and visualized by Southern blot hybridization with a 1,300-
bp mouse TNT-a cDNA insert (40) . The autoradiographs were
quantitated by scanning densitometry with a video densitometer
(620 ; Bio-Rad Laboratories, Richmond, CA).
cDNA Probes.

	

Plasmid containing the 1,300-bp mouse TNF-ac
cDNA was the generous gift of Dr. Bruce Beutler (University of
Texas at Dallas) . The 1,300-bp insert was excised with Pstl and
EcoRI, purified and labeled with a-['1P]deoxyCTP using an nick
translation kit according to the manufacturer's instructions (Amer-
sham Corp., Arlington Heights, IL).

Results

TNF-a Protein Production by Astrocytes from EAE-resistant
and -susceptible Rat Strains. We examined TNF-a protein
production by astrocytes from Lewis and BN rat strains in
response to three different stimuli. Lewis and BN astrocyte
cultures were treated with varying concentrations of LPS
(1-10,000 ng/ml) with and without IFN-y (100 U/ml), or
IFN-y (1-1,000 U/ml) plus RAO (1,000 U/ml) for 18 h, at
which point the supernatants were harvested and assayed for
TNF-a production . As shown in Fig. 1, BN astrocytes pro-
duced TNF-a in response to LPS in a dose-dependent manner.
Pretreatment of these cells with IFN-y, then LPS, did not
result in significant enhancement ofTNF-aproduction. Even
more striking was the observation that BN astrocytes secreted
neglible amounts ofTNF-ain response to the stimuli ofIFN-
y/IL10 . This induction pathway was previously shown to
be dependent on a priming signal generated by IFN-y, then
subsequent exposure to 11,10 (11) . Lewis astrocyte cultures
exhibited a different induction pattern with respect to TNF-a
production . Lewis astrocytes responded poorly to LPS alone
at all concentrations tested, yet when pretreated with IFN-y,
then exposed to LPS, TNF-a protein production increased
significantly (Fig . 2) . Lewis astrocytes also produce TNF-a



in response to IFN-y/IIr10, in the range ofwhat was previ-
ously observed for astrorytes from the outbred rat strain
Sprague-Dawley (11) . The Lewis x BN Ft rats show sus-
ceptibility to EAE compared with the fully resistant BN rat,
however, disease severity in the F l strains is less than that
observed for Lewis rats. The Ft astrorytes produced low
amounts of TNF-a in response to LPS, and IFN-y pretreat-
ment significantly enhanced LPS-induced TNF-a production
(Fig . 3) . The absolute levels of TNF-a in response to IFN-,y/
LPS, though, were less than those observed for the Lewis
astrorytes . The Fl astrocyte TNF-a production in response
to IFN-y/IIr1O was modest .

Prostaglandins have been demonstrated to inhibit LPS- and
IFN-,y/LPS-induced TNF-a expression in murine macro-
phages (41-44) . As astrorytes have the ability to secrete
PGE2 (45), we wished to determine if endogenous PGE
production contributed to strain differences in TNF-a produc-
tion. Lewis and BN astrorytes were treated with 1 kg/ml
of indomethacin, which blocks PGE2 synthesis, and then
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Figure 1 .

	

TNF-a production by BN astro-
cytes in response to LPS, IFN-y, and 11,10.
Rat astrorytes (106) were incubated with cul-
ture media for 18 h; LPS alone was incubated
with culture media for 8 h, then LPS (1-10,000
ng/ml) for 10 h . IFN-y/LPS was IFN-y
pretreatment (100 U/ml) for 8 h, then LPS
(1-10,000 ng/ml) for an additional 10 h ; and
IFN-y/II,1S was IFN-y pretreatment (0-1,000
U/ml) for 8 h, then IIrlO (1,000 U/ml) for
an additional 10 h . Cell-free supernatants were
assayed for TNF-a activity as described in
Materials and Methods. These results are rep-
resentative of four experiments. Statistical anal-
ysis was performed comparing LPS alone
(10,000 ng/ml) to IFN-y/LPS (10,000 ng/ml) .

TNF-a production was assessed. Treatment ofcultures with
indomethacin increased TNF-a production by both BN and
Lewis astrocytes, but did not alter the overall pattern ofTNF-a
expression in response to LPS or IFN-y/LPS (Table 1) . Similar
results were obtained for IFN-y/IIr1a-induced TNF-a
production (data not shown) . Most striking is the consistent
low level of TNF-a production by Lewis rats in response to
LPS plus indomethacin, and the enhancement with IFN-,y
pretreatment . These results suggest that differential TNF-a
production by astrorytes from BN and Lewis rats is not due
to suppression by endogenous PGE2 .
TNF-a mRNA Expression by Astrocytesfrom EAE-resistant

and -susceptible Strains. We next examined TNF-a mRNA
levels from stimulated BN and Lewis astrocytes to assess if
differences in TNF-a protein expression were reflected at the
mRNA level. We had previously used the sensitive technique
of reverse transcription (RTPCR) to demonstrate levels of
TNF-a mRNA in astrorytes because very low levels of this
specific RNA are expressed (11) . The astrorytes from BN and



Table 1.

	

BN and Lewis Astrocyte TNF-a Production in the Presence ofIndomethacin

Indomethacin
Rat strain

	

Cell treatment

	

(1 FAg/ml)

BN

	

LPSS

	

-
LPS

	

+
IFN-y/LPSII

	

-
IFN-y/LPS

	

+

Lewis

	

LPS

	

-
LPS

	

+
IFN-y/LPS

	

-
IFN-y/LPS

	

+
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Figure 2 .

	

TNF-a production by Lewis as-
trocytes in response to LPS, IFN-'y, and ILi/3.
Rat astrocytes (106) were incubated with cul-
ture media for 18 h; LPS alone was incubated
with culturemediafor 8 h, then LPS (1-10,000
ng/ml) for 10 h. IFN-y/LPS was IFN- ,y
pretreatment (100 U/ml) for 8 h, then LPS
(1-10,000 ng/ml) for an additional 10 h; and
IFN-,y/II*1fl was IFN-y pretreatment (0-1,000
U/ml) for 8 h, then IIAO (1,000 U/ml) for
an additional 10 hr. Cell-free supernatants were
assayed for TNF-ca activity as described in
Materials and Methods. These results are rep-
resentative of four experiments . Statistical anal-
ysis was performed comparing LPS alone (1,000
ng/ml; 10,000 ng/ml) to IFN-y/LPS. (*) p
0.02 ; (* *) p < 0.005 .

TNF-a activity was assessed as described in Materials and Methods.
t Fold increase compares the TNF-a concentration from cells in the presence of indomethacin to those in the absence of indomethacin .
S Control media for 8 h, then LPS (10 jig/ml) for 10 h.
II IFN- , y (100 U/ml) for 8 h, then LPS (10 Fig/ml) for an additional 10 h.

TNF-a activity"

pg/ml

Fold
increaset

816 .0 ± 30
1,126 .0 ± 84 1 .4
1,233 .0 ± 18
3,546 .0 ± 55 2.8

36 .2 ± 4
45 .0 ± 4 1 .2
602 .5 ± 36

2,137.5 ± 77 3.5



Lewis were incubated with LPS (10 jig/ml) for 4 h, IFN--Y
(100 U/ml) for 8 h followed by LPS for an additional 4 h,
or IFN-y (100 U/ml) for 8 h followed by IIAR (100 U/ml)
for an additional 4 h ; then RNA was isolated. Using this
RNA, we initially synthesized the corresponding cDNA by
RT, and then used PCR to amplify a specific sequence of
the TNF-ci cDNA as described in Materials and Methods.
As shown in Fig. 4, the amplified TNF-ot cDNA sequence
is detected in astrocytes stimulated with LPS alone, IFN-
y/LPS, or IFN-y/11,10, but not in unstimulated astrocyte
cultures . The amplified sequence, hybridizing with a mouse
TNF-cx cDNA probe, had the expected size of 275 bp . To
insure linearity of the assay, varying amounts of the PCR
product (1-16 p,l) were run on a Southern blot . Scanning
ofthe autoradiographs was performed on the exposure shown
in Fig . 4, as well as ones developed for less time. Differences
in TNF-ct mRNA expression were observed within each rat
strain, depending on the stimulus used, as well as between
BN and Lewis astrocytes. Comparing TNF-ci mRNA levels
in BN astrorytes, our results indicate that these cells express
TNF-oi mRNA in response to LPS alone, and slightly more
upon pretreatment with IFN-y (1.5-fold increase) . Low levels
of TNF-ot mRNA are expressed in response to stimulation
with IFN-y/IL1# compared with mRNA levels from LPS-
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Figure 3.

	

TNF-a production by Lewis x
BN Ft astrorytes in response to LPS, IFN-y,
and IL1i3. Rat astrocytes (106) were incubated
with culture media for 18 h; LPS alone was
incubated with culture media for 8 h, then LPS
(1-10,000 ng/ml) for 10 h . IFN-y/LPS was
IFN-T pretreatment (100 U/ml) for 8 h, then
LPS (1-10,000 ng/ml) for an additional 10 h ;
and ON-y/IL10 was IFN-y pretreatment
(0-1,000 U/ml) for 8 h, then 11,10 (1,000
U/ml) for an additional 10 h . Cell free super-
natants were assayed for TNF-a activity as de-
scribed in Materials and Methods. These results
are representative of four experiments . Statistical
analysis was performed comparing LPS alone
(1,000 ng/ml ; 10,000 ng/ml) to IFN-y/LPS.
(*) P < 0.02 ; (**)F 4 0.01 .

or IFN-y/LPS-treated astrocytes . When examining TNF-ci
mRNA expression by Lewis astrorytes, we observed that low
levels of TNF-ot mRNA are detected in cells stimulated with
LPS alone, enhanced expression with the combined stimuli
of IFN-y/LPS (2.5-fold increase), and even higher levels of
TNT-ot mRNA upon stimulation with IFN-y/IIr1/3. These
differences within each strain are consistent with the TNF-a
protein results (Figs. 1 and 2), although the differences in
the mRNA levels are not as pronounced . When TNF-cx
mRNA levels are compared between BN and Lewis astro-
cytes, the most striking difference is in response to IFN-.y/11,10
(Fig . 5) .

TNFca Protein Production by PeritonealMacrophages_from EAE-
resistant and -susceptible Rat Strains. To determine if the differ-
ences in TNF-ot production by Lewis and BN astrorytes were
restricted to this cell type, we examined TNF-ot production
by peritoneal macrophages from these same strains. Perito-
neal macrophages were obtained from adult Lewis and BN
rats as described in Materials and Methods, and exposed to the
stimuli of LPS, IFN-y, IFN-y/LPS, and IFN-y/IL1/3 . As
shown in Table 2, peritoneal macrophages from both strains
produce TNF-ci in response to LPS, and IFN-y pretreatment
enhances TNF-a production . In addition, these cells produce
TNF-ot in response to IFN-y/IL1j3 in a comparable manner.



Figure 4.

	

Demonstration of TNF-a mRNA in BN and Lewis astro-
cytes by reverse transcription and PCR. Astrocytes were incubated with
culture media alone (control) for 12 h; LPS (10 Wg/ml) for 4 h; IFN-y
(100 U/ml) for 8 h followed by LPS (10 Kg/ml) for an additional 4 h;
or IFN-y (100 U/ml) for 8 h followed by IIAO (100 U/ml) for an addi-
tional 4 h. Total cellular RNA was isolated and processed for RTPCR
as described in Materials and Methods. Varyingamounts of the PCR product
(1, 2, 4, 8, and 16 141) were analyzed for LPS (lanes 2-6), IFN-y/LPS (lanes
7-11), and IFN-y/II~l[3 (lanes 12-16) . 16 pl of the PCR product from
unstimulated control astrocytes was analyzed (lane 1) . Analysis was by
Southern blot hybridization with a labeled 1,300-bp mouse TNF-acDNA.
The blots were exposed to X-Omat film for 7.5 h at -70°C.

Similar results were also obtained when testing neonatal
microglia (data not shown) . This suggests that TNF-a produc-
tion in these rat strains is regulated differently in astrocytes
vs. peritoneal macrophages and microglia.

Figure 5.

	

Comparison ofTNF-amRNA levels between BN and Lewis
astrocytes. Astrocytes were incubated and processed as described for Fig.
4. mRNA values are expressed in arbitrary units as determined from den-
sitometric scanning of autoradiographs. Each bar graph represents the mean
oftwo experiments (data shownin Fig. 4 and one additional experiment) .
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Table 2.

	

Analysis of TNF-a Production by Peritoneal
Macrophages from EAE-susceptible and -resistant Rat Strains

* TNF-a activity was assessed as described in Materials and Methods.
$ Culture media alone for 18 h.
S LPS (1 F+g/ml) for 18 h.
II IFN-y (100 U/ml) for 18 h.
1 IFWy (100 U/ml) for 8 h, then LPS (1 gg/ml) for an additional 12 h.
** IFN-y (100 U/ml) for 8 h, then IL-1# (1,000 U/ml) for an additional
12 h.

11,6 Protein Production by Astrocytes from EAE-resistant and
-susceptible Rat Strains. We examined 11,6 production by Lewis
and BN astrocytes in response to LPS, IFN-y, and IL11B to
determine ifdifferential cytokine expression by these cells ex-
tended to 1176 . We have recently demonstrated that primary
rat astrocytes secrete IL6 upon stimulation with LPS or the
cytokines TNF-a and IL1a. IFN-y alone has no effect on
IL-6 production, but synergizes with 11710 for enhanced IIr6
expression (14) . Lewis and BN astrocytes were treated with
LPS (1 P.g/ml) with or without IFN-'y (100 U/ml), IFN-y
(100 U/ml), and ILl)3 (1,000 U/ml), or with IFN-y (100

Table 3.

	

BN and Lewis Astrocyte IL-6 Protein Production

IL-6*

* IL-6 activity was assessed as described in Materials and Methods.
t Control media alone for 18 h.
S Control media for 8 h, then LPS (1 ug/ml) for 10 h.

II Control media for 8 h, then IFN-y (100 U/ml) for 10 h.
I IFN-y (100 U/ml) for 8 h, then LPS (1 ug/ml) for an additional 10 h.
* * Control media for 8 h, then IL-10 (1,000 U/ml) for 10 h.
tt IFN-y (100 U/ml) for 8 h, then IL-1(3 (1,000 U/ml) for an additional
10 h.

Cell treatment

TNF-a*

BN Lewis

pg/ml S x IOs cells
Control# 120 ± 20 150 ± 42
LPSS 1,200 ± 121 1,220 ± 430
IFN-, yll 710 ± 37 1,040 ± 135
IFN-y/LPSI 4,009 ± 339 4,210 ± 1210
IFN-y/IL-10"* 1,000 ± 300 1,250 ± 125

Cell treatment BN Lewis

U/ml
Controlt <5 <5
LPSS 82 ± 20 67±15
IFN-yll <5 <5
IFN-y/LPSI 1,354 ± 47 1,240 ± 62
IL-10** 75 ± 30 123±38
IFN-y/IL-ll# 976 ± 25 1,058 ± 72



U/ml) plus IL1O (1,000 U/ml) for 18 h, at which point the
supernatants were harvested and assayed for IL6 production .
Both Lewis and BN astrocytes secrete low levels of IL6 pro-
tein in response to LPS alone, and IFN-y synergizes with
LPS to enhance 11,6 secretion . IFN-y alone does not induce
IL-6 production, but enhances IIAO-induced IL6 expression
(Table 3) . These findings demonstrate that Lewis and BN
astrocytes make comparable amounts of IL6 protein in re-
sponse to LPS, IFN-y/LPS,11,10, and IFN-y/IL10, and in-
dicate that differences in TNF-ca production appear to be
selective.

Discussion
We have demonstrated that astrocytes from EAE-susceptible

and -resistant rat strains differ in their ability to express TNF-ca
mRNA and protein . These differences are especially pro-
nounced for IFN-y priming ofTNF-ca gene expression. En-
dogenous levels of PGE2, a known inhibitor of TNF-a, did
not differ in astrocytes from the two strains. Differential
TNF-a expression is selective for the astrocyte, as both peri-
toneal macrophages and microglia from Lewis and BN rats
express TNF-ci protein in response to all of the stimuli used .
In addition, IL6 production by Lewis and BN astrocytes is
comparable in response to induction by LPS, IFN-y, and IWO,
indicating that cytokine production in general is not altered .
Taken together, these results indicate that the differential
expression ofTNF-amRNA and protein in Lewis and BN as-
trocytes may involve transcriptional and/or post-transcriptional
events .
The pattern ofresponsiveness of astrocytes from both strains

to IFN-y priming for TNF-a production is consistent with
data from Massa et al . (28) on IFN-y inducibility of class
II MHC antigens in these same strains; i.e., Lewis astrorytes
express higher levels of class II MHC antigens in response
to IFN-y than do BN astrorytes . The lack of IFN-y respon-
siveness in the BN astrocyte could be the result ofdifferences
in (a) the number and/or affinity of IFN-y receptors; (b) in-
tracellular second messengers activated by IFN-y; (c) astrocyte-
specific transcriptional factors activated or modified by IFN-y ;
or (d) TNF-aDNA regulatory regions responsive to factors
induced by IFN-y. Our results would suggest that BN as-
trocytes express functional IFN-y receptors capable of binding
ligand and generating a biological response as evidenced by
IL-6 production in response to IFN-y priming, thus ruling
out inherently defective IFN-y-induced signal transduction .
Macrophages from the A/J strain ofmice are deficient in their
response to IFN-y for acquisition of tumoricidal competence
(46) . These macrophages do not respond to IFN-y by activa-
tion of protein kinase C (PKC) or by efflux of intracellular
Cal', indicating a defect in the transduction signals initiated
by IFN-y . Studies on astrocytes from outbred Sprague Dawley
rats indicate that IFN-y induction ofclass II MHC and TNF-a
production utilize different intracellular pathways. IFN-y in-
duction of class II MHC appears to involve the Na'/H' an-
tiporter system (Benveniste, E.N., et al., manuscript in prep-
aration), while TNF-a production occurs via activation of
PKC (Chung, IY, and E.N. Benveniste, unpublished obser-
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vation) . Future studies will be required to determine if these
two intracellular signaling pathways are operational in the
BN astrocyte in response to IFN-,y .

It is also possible that BN astrocytes exhibit a defect in
some aspect of IFN-'y-mediated signal transduction that is
distal to the activation of second messengers, such as IFN-y-
induced transcription factor(s) that interact with regulatory
elements in the TNF-ci promoter. Recently, LPS and IFN-'r
were shown to activate transcription of the mouse TNF-ca
gene in murine peritoneal macrophages via the activation of
NF-KB (47) . TNF-a expression in these cells is different from
that ofrat astrocytes, as LPS and IFN-y alone induce macro-
phage TNF-a production, whereas IFN-y alone has no effect
in astrocytes, but enhances LPS-induced expression . The
priming signal mediated by IFN-y may not be expressed or
expressed in an aberrant manner in BN astrorytes, resulting
in minimal enhancement of LPS-induced TNF-a expression,
and minimal expression of IFN-y/I1,10-induced TNF-oc
mRNA and protein . Since the rat TNF-a gene has not been
cloned, we do not know whether the rat TNF-ci promoter
region contains similar regulatory elements .
The implication of hyporeresponsiveness to LPS in Lewis

astrocytes is not clear. LPS is capable ofinducing IL6 protein
production by Lewis astrocytes, and we have also found that
LPS inhibits the expression ofIFN-y-induced class II antigens
on these same cells (Chung, IY, and E.N . Benveniste, un-
published observation) . Thus, Lewis astrocyte hyporespon-
siveness to LPS is not global, but seems to be restricted to
TNF-a gene expression . In C3H/Hej mice (endotoxin resis-
tant), peritoneal macrophages produce no detectable TNF-a
protein, even when expressing TNF-a mRNA (40) . It has
been suggested that a dual defect prevents TNF-ci expression
in these mice; high concentrations of LPS are required to in-
duce TNF-a mRNA levels within the cell, and a post-
transcriptional defect prevents the translation of the mRNA
to TNF-a protein . Our findings are somewhat similar, al-
though low levels of TNF-ca mRNA are detected in LPS-
treated Lewis astrorytes even when high concentrations of
LPS (10 leg/ml) are used for stimulation . This would sug-
gest a partial transcriptional block, which can not be over-
come by using high concentrations ofLPS, as well as a post-
transcriptional defect .
When comparing TNF-ci mRNA and protein expression

in the two strains, the differences in TNF-ci mRNA levels
are not as striking as those for TNF-a protein, especially in
response to either LPS alone or IFN-y/LPS. There are sev-
eral explanations for these findings, one being the sensitivity
of RTPCR. Using conventional Northern blot analysis, we
were unable to detect mRNA from LPS-stimulated astro-
cytes from outbred rat strains (11), as well as Lewis and BN
rats. The analysis by PCR has increased our level of sensi-
tivity, and we are now able to detect TNF-a mRNA from
LPS-stimulated astrorytes . It is also possible that the TNF-a
gene is effectively transcribed in Lewis and BN astrocytes in
response to all the stimuli tested, but there are differences
in mRNA stability. We have observed that although TNF-a
protein levels are comparable for astrocytes stimulated with
IFN-y/LPS and IFN-y/IW0 from Lewis and Sprague Dawley



strains (11), RNA levels are consistently higher from IFN-
y/IIT1f-stimulated astrocytes. This may reflect TNF-(x
mRNA instability in LPS-stimulated astrocytes, as observed
by Lieberman et al . (10) . Alternatively, transcriptional ac-
tivity in response to LPS for Lewis astrocytes, and IFN-y/II710
for BN astrocytes, may occur, with a subsequent block in
either translation or secretion of mature TNF protein .
Our studies were performed on astrocytes derived from

neonatal rats to define differences that might contribute to
susceptibility for subsequent development of EAE. The dif-
ferent profile of responsiveness in Lewis and BN astrocytes
(especially in response to IFN-y) is not a generalized feature
ofthis developmental stage, as neonatal microglia from these
two strains respond equally well to all stimuli tested for TNF-a
production . We propose that the ability of the Lewis astro-
cyte to respond to IFN-y, a rytokine not normally present
in the CNS except during inflammatory disease states, by ex-
pression of class II MHC antigens and TNF-a production,
may contribute selectively to intracerebral immune responses
and inflammation in this rat strain .
As mentioned previously, EAE is characterized by the

infiltration of mononuclear cells into the CNS, with the pre-
dominant cell types being activated T cells and macrophages.
Activated T cells in the Lewis CNS could serve as an endoge-
nous source of the rytokine IFN-y, and prime astrocytes for
TNF-a expression . Infiltrating macrophages and resident as-
trocytes/microglia represent sources ofILI that could interact
with IFN-y-primed astrocytes, resulting in TNF-a produc-
tion . TNF-a production by Lewis astrocytes in response to
IFN-y and IIJ1 may perpetuate the influx of non-antigen-
specific inflammatory cells into the CNS by increasing the
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