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Abstract

Introduction: A simple tool to estimate loading on the lower limb joints outside a laboratory may be useful for people

who suffer from degenerative joint disease. Here, the accelerometers on board of wearables (smartwatch, smartphone)

were used to estimate the load rate on the lower limbs and were compared to data from a treadmill force plate. The aim

was to assess the validity of wearables to estimate load rate transmitted through the joints.

Methods: Twelve healthy participants (female n¼ 4, male n¼ 8; aged 26� 3 years; height: 175� 15 cm; body mass:

71� 9 kg) carried wearables, while performing locomotive activities on an anti-gravity treadmill with an integrated force

plate. Acceleration data from the wearables and force plate data were used to estimate the load rate. The treadmill

enabled 7680 data points to be obtained, allowing a good estimate of uncertainty to be examined. A linear regression

model and cross-validation with 1000 bootstrap resamples were used to assess the validation.

Results: Significant correlation was found between load rate from the force plate and wearables (smartphone:

R2 ¼ 0:71; smartwatch: R2 ¼ 0:67).
Conclusion: Wearables’ accelerometers can estimate load rate, and the good correlation with force plate data

supports their use as a surrogate when assessing lower limb joint loading in field environments.
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Introduction

Background

Physical activity monitoring with inertial sensors is a
growing field of research, with applications in elite
sport,1,2 clinical conditions3,4 and the general popula-
tion. Commercially available inertial sensors allow
individuals to count steps, measure distances
travelled and record physical activity duration, all of
which may positively affect physical activity behav-
iour.5 However, excessive mechanical loading might
be a risk factor for the progression of degenerative
joint diseases such as osteoarthritis.6 Estimating (and
so enabling the monitoring/control of) the loading on
joints during physical activity in everyday life with
commercially available inertial sensors may benefit
some populations such as people with a high risk of
developing degenerative joint diseases or people with
arthritis.

The term ‘load’ describes biomechanical physical
stresses which act on the body or anatomical structures
within the body.7 These stresses can be kinetic, kine-
matic, oscillatory or thermal energy sources. In the pre-
sent study, since kinetic energy sources are of interest,
the term ‘load’ is strictly applied to weight-bearing
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forces on the joints. Load rate is the time derivative of

this load.

Load rate and its effects

While we are concerned with monitoring loading on

joints during everyday life, much of the literature is

in sports science, where repetitive loading on the

lower limb joints is known to be a key component in

the pathophysiology of stress fractures.8 Tibial stress

fractures are related to tibial acceleration and vertical

load rates.8 Daoud et al.9 showed on a large group of

runners that higher positive vertical load rates were

found mostly in people with tibial stress fractures in

comparison to controls. These studies measured the

load rate on the lower limbs with force plates,

which are considered the gold standard for load rate

measuring in biomechanical laboratories. However,

being conducted in the biomechanical laboratory

means that their methods are not suited for measuring

the load rate of everyday activities. Pressure-measuring

insoles are a valid and reliable method to measure

ground reaction force without a force plate.10,11

However, due to their expense and cumbersome

(often wired) nature, these too are unsuitable for

taking measurements during everyday life.

Development of a simple, portable and inexpensive

method to quantify load rate on the lower limb joints

during daily living is required.

Estimating load rate using accelerometers

Commercially available acceleration sensors are com-

monly used for physical activity monitoring during

everyday life.12,13 Neugebauer et al.13 developed a

method for estimating peak vertical and braking

ground reaction forces with accelerometers which

they then validated against a force plate. The errors

that were obtained are for peak vertical ground reac-

tion forces (8.3%) and braking ground reaction forces

(17.8%).
Some authors12,13 validated the use of accelerome-

ters as tools for estimating peak ground reaction forces

on force plates, with both studies yielding high corre-

lation coefficient values. However, the focus of

their validation was the peak ground reaction forces

and not the load rate. The present study hypothesizes

that load rates might be a better indicator for

impact loading on the lower limb joints (following

the literature8,9). Nevertheless, it should be mentioned

that there may be other indications for joint

damage such as biomechanics, age, strength, sex or

predisposing conditions,6 which are not included in

this paper.

Other features used for identifying impact loading

can be found in elite sports research. Hollville et al.14

validated the MinimaxX accelerometer against a force

plate by calculating the mean acceleration rate magni-

tude of the accelerometer and force plate (specific to a

team sport activity performed on the force plate). The

correlations between the accelerometer data and the

force plate data were between 0.74 and 0.93. Their

study supports the use of acceleration rate magnitude

as a suitable method for capturing impact loadings on
the lower limb joints. Wundersitz et al.15 assessed the

validity of a MinimaxX accelerometer worn on the

upper body for estimating peak forces during running

and change-of-direction tasks. Peak vertical accelera-

tion and acceleration magnitude values (m/s2) were

converted to force values (N) via Newton’s second

law of motion (i.e. multiplying by the participant’s

body mass) and were compared against the peak

ground reaction force from the force plate. They

showed that accelerometers worn on the upper body

could provide a relative measure of peak impact force

experienced during running and two change-of-

direction tasks (45� and 90�). This approach involved

including the participant’s body mass in the equation,

which was one of the hidden variables that Hollville
et al.14 did not use. Since the accelerometer was

attached to the upper body of the individuals, the

actual accelerometer measurements came from the

upper body, where a lighter/attenuated force was

applied. This could be construed as not being an accu-

rate way of measuring load. Nevertheless, as an esti-

mation, it had high correlation with the ground

reaction force and, hence, might be seen as a valid

method for estimating ground reaction force with

accelerometers.
Some authors14,15 validated two different accelera-

tion values against force plate data: the mean acceler-

ation rate (jerk) magnitude and the peak force (peak

acceleration multiplied by the participant’s body mass).

The approach in the present study is a combination of

both quantities: the accelerometer rate magnitude was

multiplied by the participants’ body mass to obtain an

estimation of the load rate.
Although previous studies using accelerometers for

the purpose of estimating ground reaction forces or

accelerometer rates showed good correlations with

respect to force plate data,12–15 validation studies

assessing the relationship between load rate estimated
with wearables and force plates are still necessary.

The aim of the current study was to assess the valid-

ity of load rate estimated with wearables against the

‘gold standard’ equipment, the force plate, during loco-

motive activities (walking, jogging, running) on an

anti-gravity treadmill.
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Methods

The study design was cross-sectional. Twelve healthy

adults (female n¼ 4, male n¼ 8; aged 26� 3 years;

height: 175� 15 cm; body mass: 71� 9 kg; mean�
standard deviation) participated in the study.
Participants were recruited via posters on multiple noti-

ceboards around the University of Southampton. Once

a participant showed interest, the researchers sent an

email to them with the participant information sheet

and an invitation to the study. Based on the screening,

which excluded those with lower limb pathologies or

any musculoskeletal, neurological or systemic diseases

or other physical disabilities which may have limited

their mobility, 12 of 18 volunteers accepted the invita-
tion. Data collection took place at Southampton

Football Club’s training facilities. The sample of con-

venience of 12 participants was chosen due to limited

time and access to the facility. Each participant com-

pleted 18 different trials (six different bodyweight con-

ditions: 30, 60, 80, 90, 100 and 110%� three speed

conditions: 5, 8 and 12 km/h). The study was approved

by the Faculty of Health Science Ethics Committee at

the University of Southampton (no. 17086).

Data collection

A simple Android app was used to acquire acceleration

values from the microelectromechanical systems

(MEMS) sensors in one smartphone between the shoul-

der blades (Smartphone 1, SP1) and one smartwatch on

the right wrist (Smartwatch 1, SW1). All participants

were asked to put on an elastic sports vest holding
Smartphone 1, which was positioned in such a way as

to have it located between their shoulder blades. This

location aligns with elite sports practice,1,2 where ath-

letes wear accelerometers between their shoulder

blades. However, to simulate the real-world activity

monitoring, an additional smartphone (Smartphone

2, SP2) was attached to the lateral right thigh with

cohesive tape, and a smartwatch (Smartwatch 2,

SW2) was placed on the left wrist. For Smartphone 2
and Smartwatch 2, only data for six participants were

available due to technical limitations. The lateral right

thigh was chosen to represent the usual position on

the body of the smartphone: the hip pocket. The smart-

phones were SonyVR XperiaTM Z Compact

(127� 65� 9:5 mm, 137 g) and the smartwatches were

Moto 360 from MotorolaVR (46� 46� 11 mm, 54 g).
Although the main objective of the study was to

assess the validity of the wearables with respect to

data from the treadmill force plate, the acceleration

data from the wearables was also validated. Similar

accelerometers were calibrated in previous works by

Bassett et al.16 and Lee17 although only energy

expenditure results were reported, while Boyd et al.18

assessed the validity of MinimaxX accelerometers for
measuring physical activity in Australian football. The
smartphone was mounted on a shaker (Brüel & Kjær
(B&K) type 4809), with the smartwatch (with strap
removed) and a B&K Type 4524-B lightweight triaxial
piezoelectric OrthoShear accelerometer attached to the
back of the phone via beeswax and tape. Data captured
from all three devices during a 0–10Hz sine sweep was
aligned and resampled at 50Hz. This frequency range
resulted in a load rate range equivalent to that seen
during the treadmill experiments (0 < D̂FL

Dt

��� ��� < 4�
104 N/s), using m¼ 71 kg (see equation (2) below).
The time domain root-mean-squared error ratios
between the B&K accelerometer and smartphone and
B&K accelerometer and smartwatch-derived load rate
were 5.41% and 5.35%, respectively (R2 between all
three devices was 1.00). These errors are 25.8% and
25.5% of the RMSER values for linear regression
Model 1, detailed in ‘Linear regression models’ section.
Measurement errors due to the sensors are therefore
significantly smaller than other factors in the
experiment.

The anti-gravity treadmill was the M320 from Alter-
GVR . The floor of the anti-gravity treadmill is mounted
on four load cells which serve as a force plate. The
voltage signals from the four load cells were collected
with a sampling frequency of 128Hz using four ana-
logue inputs on a NIVR DAQ USBTM device. The ported
signal was collected with the LabVIEWTM software
with the help of the data acquisition assistant. For
the Alter-G anti-gravity treadmill, 128Hz was the max-
imum sampling frequency available. Before the data
collection, the force plate was calibrated with 25
weights between 0 and 90 kg. The weights used were
weighed on a digital milligram scale and then placed
in the centre of the force plate. The voltage signal for
each weight was used for building a linear function
(R2 ¼ 1:000), which transformed voltage signal into
force.

To test whether the wearables are able to estimate
the amount of loading through joints, different joint
loads needed to be tested, and the anti-gravity treadmill
was one way of achieving this. It enabled the collection
of multiple data points for varying speeds and gave a
broad spectrum of different loading conditions on the
joints. The treadmill comes with neoprene compression
shorts that ensure an airtight seal in the enclosure. Air
pressure lifts the participant off the treadmill floor,
controlled by the weight measured by load cells
beneath the floor. During the locomotive activities,
the researcher changed randomly the bodyweight per-
centage (30, 60, 80, 90, 100 and 110%) setting, and the
anti-gravity treadmill would lift the participants
according to the percentage.
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Another advantage of using the anti-gravity tread-

mill was that it has an integrated force plate, albeit with

a sampling frequency somewhat lower than a biome-

chanics laboratory walk-way force plate (128 Hz vs.

>500Hz). The low sampling frequency of the wear-

ables (50Hz) required that we sampled many steps to

obtain accurate data. However, a walk-way force plate

would only allow one step to be recorded at a time.

A treadmill was therefore more appropriate as a vali-

dation tool. The multiple steps recorded mitigate the

reduced sampling frequency, with averaging over many

steps used here instead of filtering a high frequency

signal. Averaging over a large number of steps allows

us to obtain a more accurate mean without smoothing

problems from filtering.12

The speed conditions (5, 8 and 12 km/h) were chosen

to obtain a broad locomotive range from walking, to

jogging and then to running. Each trial lasted 90 s, with

the smartphone, smartwatch and force plate data being

collected simultaneously. The 90-s trials with a 60-s

sampling window were a pragmatic balance between

obtaining accurate mean values from the sensors and

participant fatigue. Any possible effects due to fatigue

were further mitigated by allowing a rest period

between trials. The first 20 s of recording served as a

period of habituation and were discarded before the

data were processed. The next 60 s were used for data

processing, while the last 10 s of each trial were dis-

carded to avoid recording possible behaviour changes

associated with the trial ending.

Data processing

The data were processed using MATLAB (Version

R2016b, The Math WorksVR , Natick, MA).
If the infinitesimal calculus of the load rate is

defined as

_FL ¼ dFL

dt
¼ m

da

dt
; (1)

the estimated mean load rate magnitude is

�̂
DFL

Dt

�����
����� ¼ 1

n� 1

Xn�1

j¼1

m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX3
i¼1

ai;tjþ1
� ai;tj
Dt

� �2

vuut (2)

where a1, a2, a3 are the acceleration in the x, y, z direc-

tions and n the number of data samples at interval Dt.
With units of kg m/s3¼N/s, this estimated mean

load rate magnitude was used for the remaining anal-

yses (m¼meter, s¼ seconds, N¼ newton and

kg¼ kilogram).

Linear regression models

A linear mixed regression model was chosen due to the

existence of hidden variables which were not measured

while collecting the data, such as anatomy, muscle

strength and the style of the gait of the individuals.

The load rate data from the force plate was the

response variable, the data from the wearables, the pre-

dictor variables and the participants were all the group-

ing variable.
The data were used to build three different linear

regression models.
Model 1 (M1)

yM1
m;i ¼ aWear þ bWearxm;i|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

Fixed effect

(3)

is a linear model with fixed effects, considering only the

population’s average behaviour and ignoring the

between-subject variation in ambulatory activities.
Model 2 (M2)

yM2
m;i ¼ aWear þ bWearxm;i|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

Fixed effect

þ ai|{z}
Random effect

(4)

is a linear mixed model with random intercept, which

assumes that the between-subject variation affects only

this random intercept.
Model 3 (M3)

yM3
m;i ¼ aWear þ bWearxm;i|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

Fixed effect

þ ai þ bixm;i|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Random effect

(5)

is a linear mixed model with random intercept and

slope, allowing for the between-subject variation affect-

ing both the intercept and slope.
The estimated mean load rate magnitude (2) from

the force plate (the response variable) is ym;i for obser-

vation m and participant i, aWear and bWear are the inter-

cept and slope of the estimated load rate of the

wearables (fixed effect predictor variables) and ai and
bi are the intercept and slope of each participant

(random effect predictor variables).
To obtain a better indication of uncertainty in our

models, the bootstrapping resampling method was

used, wherein vectors of the same sample length as

the original data are created by drawing, with replace-

ment, random observations from the original data

set.19 One thousand bootstrap vectors were created

and cross-validated.20 For every vector, three models

were built: Model 1, Model 2 and Model 3. For the

three models, the R2 and root-mean-squared error

ratios (RMSER ¼
ffiffiffiffiffiffiffi
MSE

p
�yforceplate

) were calculated. Confidence
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intervals were based on the 1000 bootstrap samples.

Cross-validation has the advantage that it provides a

direct estimate of test errors.

Statistical analysis

A one-way ANOVA was used to determine if there was

a significant difference between the mean of the boot-

strapped R2 and RMSER values of Models 1, 2 and 3

followed by a pairwise comparison with the Bonferroni

correction.21 The Bonferroni correction was used to

include the effect of comparing multiple groups.

Hence, the desired p-value has to be divided by the

number of comparisons being conducted, and so a

value of a ¼ 0:05=4 ¼ 0:0125 was used for significance.

The R2 and RMSER values of each model were nor-

mally distributed (p> 0.15). One-way ANOVA with

the Bonferroni correction was used to compare the

R2 values of the four different devices (Smartphone 1,

Smartwatch 1, Smartphone 2, Smartwatch 2). For

comparing the devices with each other, a ¼ 0:05=6 ¼
0:0083 was used for significance.

Results

Participants 1–11 completed all percentage bodyweight

trials at the three speeds mentioned above. Participant

12, however, was only able to complete the 5 and 8 km/

h trials due to time restrictions. Furthermore, the com-

plete data from participant 1 and the 5 km/h data from

participant 2 were identified as outliers and were

removed. Therefore, a total of 186 trials were analysed.
The linear relationship between load rates from the

wearables and the load rates from the force plate can be

seen in Figures 1 and 2. The plots show all data points

of Smartphone 1 and Smartwatch 1 with linear regres-

sion lines.
For both the R2 and RMSER values, 95% confi-

dence intervals were calculated (Table 1). The R2

values of the three models for Smartphone 1 are R2
M1 ¼

0:600:710:48; R
2
M2 ¼ 0:680:800:54 and R2

M3 ¼ 0:710:810:60, demon-

strating a linear relationship exists for all models

between wearables and the force plate.
The one-way ANOVA showed that the three models

had a significant difference (p< 0.0001). The pairwise

comparison showed that Model 3 is the best choice.
For Model 3, Smartphone 1, the performances of

the models for the three different speed conditions

are R2
5km=h ¼ 0:860:930:76; R

2
8km=h ¼ 0:740:900:52, and R2

12km=h ¼
0:770:900:56 (see Table 2).

The R2 values of the four devices were (all for Model

3): R2
SP1 ¼ 0:790:870:69; R

2
SP2 ¼ 0:780:870:66; R

2
SW1 ¼ 0:750:860:62;

R2
SW2 ¼ 0:770:870:66 (Table 3). The R2 values of each

model and device were normally distributed

Figure 1. Whole dataset of all participants for Smartphone 1
with linear regression lines.

Figure 2. Whole dataset of all participants for Smartwatch 1
with linear regression lines.

Table 1. R2Model and RMSER values,� 95% confidence intervals
for all participants using all of the smartphone and smartwatch
data which was collected.

Device Model 1 Model 2 Model 3

SP1 – R2 0:600:710:48 0:680:800:54 0:710:810:60

SP1 – RMSER 0:210:240:18 0:190:220:15 0:180:210:15

SW1 – R2 0:600:700:48 0:630:740:49 0:670:780:55

SW1 – RMSER 0:210:240:19 0:200:240:17 0:190:220:16

Table 2. R2speed values, �95% confidence intervals for each
speed for Smartphone 1 (between the shoulder blades).

Speed (km/h) Model 1 Model 2 Model 3

5 0:510:690:29 0:830:900:72 0:860:930:76

8 0:400:620:21 0:690:830:53 0:740:900:52

12 0:280:540:02 0:470:770:13 0:770:900:56

All differences in the models were significant (p< 0.0001,

a ¼ 0:05=4 ¼ 0:0125).

Nazirizadeh et al. 5



(Kolmogorov–Smirnov, p5km=h ¼ 0:89; p8km=h ¼ 0:28;

p12km=h ¼ 0:81).

The one-way ANOVA showed that there was a sig-
nificant difference (p< 0.0001). And the pairwise com-
parison showed that just Smartwatch 1 was significantly
different (p< 0.0001, a ¼ 0:05=6 ¼ 0:0083).

The data for this current study are available on
Github.22

Discussion

The present findings show R2-values between 0.28 and
0.86 for force plate and wearable estimates of load rate
data, while the participants performed locomotive
activities on an anti-gravity treadmill. In this section,
the different models (Model 1, Model 2, Model 3), the
models with different speed conditions (5, 8 and
12 km/h), and the difference between the wearables
on different body parts are discussed.

In Figures 1 and 2, the linear regression lines for walk-
ing have a higher slope than the slopes of the jogging or
running data. Looking in detail at the slope of thewalking
data, the wearables seem to underestimate the load rate in
comparison to the force plate. This indicates that wear-
ables might slightly underestimate the load rate for low-
intensity activities. For jogging and running, however, it
seems that the wearables mostly overestimated the load
rate data in comparison to the force plate data. This
speed-dependent relationship highlights that, although
data from wearables might be used as a surrogate for
ground reaction data, it is not a direct replacement. This
information is important if future applications are being
developed. For each activity, a dedicatedmodelmight lead
to better predictions.

To assess the validation of load rate estimated with
wearables against the force plate during locomotive
activities, two linear mixed regression models and a
linear regression model were developed. A one-way
ANOVA showed that all models were significantly dif-
ferent from each other (p< 0.0001). The pairwise com-
parison helped to identify the best model, which was

Model 3. The difference between Model 1 and Model 3
was the highest with DR2

M3;M1 ¼ 0:11;
DRMSERM3;M1 ¼ �0:031. Hence, knowing that Model
3 had the highest R2 and lowest RMSER values would
lead to the decision that Model 3 (R2

M3 ¼ 0:710:810:60) is the
best performing model. Model 3 included, in compar-
ison to Model 1, random slope and intercept effects,
which takes into account unknown participant-specific
characteristics, such as muscle structure, skeletal struc-
ture or participant height, all of which are hidden var-
iables for the model. To examine a simpler model, the
random slope of Model 3 was excluded: i.e. Model 2
with a fixed effect and a random intercept, which led to
a lower R2

M2 ¼ 0:680:800:54. Therefore, Model 2 implies that
different participants did, indeed, have hidden variables
which, in turn, influenced the slope and intercept of the
function. Nevertheless, the improvement of Model 3
over Model 2 was small with DR2

M3;M2 ¼ 0:080.
It was essential to consider Model 1 (R2

M1 ¼ 0:600:710:48),
with just fixed effects, to be able to develop a baseline
model. Adding random slope and intercept effects cre-
ates a more accurate model but with the disadvantage of
being a less generalizable model. Neugebauer et al.13

also created linear mixed models for their analysis,
which were in comparison to the models in this study
much more complex. They considered the predictor var-
iables: acceleration, participant mass, type of activity
(walk¼ 0, run¼ 1) and interaction between acceleration
data and type of activity. This complex model yielded a
small absolute error value of 8.3%, where the type of
activity had the most significance in the model. This led
to the decision to conduct further analysis considering
the speed condition (5, 8 and 12 km/h) to be able to
compare the model from Neugebauer et al.13 with
Model 3 in this study.

When comparing the different speed conditions
recorded with Smartphone 1, it can be seen that for
Model 3, the R2 values do not vary substantially

(R2
5km=h ¼ 0:860:930:76; R

2
8km=h ¼ 0:740:900:52 and R2

12km=h ¼
0:770:900:56, Table 2). The R

2 value for the 5 km/h, howev-

er, was the highest. This implies that the model was
suited to monitoring people using wearables at varying
speeds: e.g. covering the range of people with a slower
gait to people with faster gaits. Knowing the speed of
the locomotive activity increases the R2 and yields sim-
ilar results to those of Neugebauer et al.13 However,
Model 3 is less complex and has just one prediction
variable (load rate estimated by wearables) and one
grouping variable (participant), which leads to a
direct relation between load rate estimated by wear-
ables and load rate estimated by force plates.

When comparing the wearables (Smartphone 1,
Smartwatch 1, Smartphone 2, Smartwatch 2) attached
to different body parts, all devices had very similar

Table 3. R2speed values, �95% confidence intervals for the devi-
ces at different body locations (for six participants).

Device (location) Model 1 Model 2 Model 3

SP1 (between

shoulder blades)

0:650:770:51 0:760:860:65 0:790:870:69

SW1 (right wrist) 0:640:750:52 0:700:800:56 0:750:860:62

SP2 (right hip) 0:750:850:62 0:770:870:62 0:780:870:66

SW2 (left wrist) 0:690:800:56 0:750:840:62 0:770:870:66

Smartwatch 1 had a significant different mean (p< 0.0001,

a ¼ 0:05=4 ¼ 0:0125).
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R2 values (R2
SP1 ¼ 0:790:870:69; R2

SP2 ¼ 0:780:870:66; R
2
SW1 ¼

0:750:860:62; R2
SW2 ¼ 0:770:870:66, Model 3 results, see Table 3).

However, the pairwise comparison showed that
Smartwatch 1 differed from the other three devices
(a ¼ 0:05=6 ¼ 0:0083). Smartwatch 1 was on the right
wrist, which most often deviated from a consistent
motion (for actions such as stroking one’s hair, looking
at the smartwatch or gesticulating). These results imply
that the suitability of wearables as a surrogate for
ground reaction load is largely independent of location
on the body. However, the authors propose that for
further research, the non-dominant wrist of the partic-
ipant is used to avoid confounders. Also, it is suggested
that between the shoulder blades and the right hip are
suitable locations future studies.

The comparison between the three models may help
other researchers understand the generalizability of the
methods used in the present study. Neugebauer et al.13

used a complex generalized regression model, which
included acceleration, weight, type of activity and the
interaction between the type of activity and accelera-
tion. The generalization of their model is difficult due
to its complexity. The models used here are kept as
simple as possible. Hence, the load rates estimated
with the wearables and force plate are directly related
to the models. Another finding was that knowing the
speed of the activity increased the quality-of-fit.
Considering the speed led to similar results to
Neugebauer et al.13 which included the ‘type of loco-
motion (walk or run). However, including the speed in
the model makes the model less general, hence, less
useful for monitoring everyday living.

Another added complexity of the models of Meyer
et al.12 and Neugebauer et al.13 is, unlike load rate esti-
mation, the requirement for an algorithm to identify
peak accelerations (which may also lead to errors
when analysing noisy signals).

A major limitation of the four previous validation
studies12–15 is that all force plates were placed in the
middle of the laboratory, thereby giving the partici-
pants between 10 and 15 m to perform the activities.
Except for Hollville et al.14 who used six force plates,
all other studies used one force plate in the middle of
the room. One force plate means that, for each trial,
data for just one step was available. Hollville et al.14

and Wundersitz et al.15 repeated their trials around six
to seven times to obtain a better estimate of the uncer-
tainty. The force plate integrated treadmill, on the other
hand, generated data for every step over the 60s sam-
pling time. A better estimate of uncertainty in the data
could therefore be made. Furthermore, with the tread-
mill, a period of habituation for 20 s of walking, jogging
or running was possible during each trial, which would
not have been possible if the participants just had 10–
15m in which to do the activities. Additionally, to

obtain a better estimate of the uncertainties in the
models, bootstrapping and cross-validation were used.

Limitations

One of the weaknesses of this study was the limited
number of participants. A larger number of participants
would have been desirable but, due to restricted time at
the facility, the number was kept to 12 participants.

The lower limb has in some sense been treated as a
single segment, rather than a complex chain of joints,
whose interactions might vary based on age, strength,
gender or predisposing conditions.

Participants’ trainers (shoes) were not standardized,
which could be a confounder as they have different
absorption properties.

One limitation was the number of wearables
attached to the participants. A greater number would
have given a better understanding of the position of the
wearables on the participants’ bodies and how they
affect the load rate data.

Improved R2 and RMSER values might have been
achieved with more participants and higher sampling
rates (the on-board sensor sampling rates ofwearables con-
tinue to improve with the development of the technology).

There are studies showing that a force measuring
treadmill produces noise due to the treadmill.23 This
was not included in the analysis and might be a limita-
tion of the study.

Conclusion

Smartphones appear to provide an acceptable level of
accuracy for estimating load rate on the lower limbs
during locomotive activities on a treadmill. The best
model was Model 3 with 71% validity. The term ‘accept-
able’ is warranted because the correlation found between
load rate data from the wearables and the force plate can
be described as a ‘high positive correlation’ from the
guidelines of Hinkle et al.24 The present results may,
therefore, be considered as positive. The models’ validity
was high for varying speeds. Therefore, it is suitable for a
range of activities from everyday to the athletic.

These positive results support further research in using
wearables to estimate load rate, which may lead to a pro-
gressive development in healthcare and the self-
management of arthritis and exercise. Wearables with
load rate estimation may provide an easy, objective and
cost-effective method for people to measure their activity
concerning the load on their joints during daily activities.
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